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Abstract: This work deals with a new modified version of the Adomian-Rach decomposition method
(MDM). The MDM is based on combining a series solution and decomposition method for solving
nonlinear differential equations with Adomian polynomials for nonlinearities. With application to
a class of nonlinear oscillators known as the Lienard-type equations, convergence and error analysis
are discussed. Several physical problems modeled by Lienard-type equations are considered to
illustrate the effectiveness, performance and reliability of the method. In comparison to the 4th
Runge-Kutta method (RK4), highly accurate solutions on a large domain are obtained.

Keywords: nonlinear oscillators; Lienard equation; van der Pol equation; Power series method;
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1. Introduction

One of the classical equations often used to describe the development of oscillations in nonlinear
mechanics, more specifically in the study of radio and vacuum tube technology, was formulated by
Alfred-Marie Lienard (1869–1938) [1]. The Lienard-type equation is of the form

dw2

dt2 + F(w)
dw
dt

+ G(w) = 0 (1)

where F(w) and G(w) are assumed to be analytic in w. Equation (1) has been used to model the electric
heart activity, neuron activity and oscillating circuits, in addition to many other models in seismology,
cosmology, biology, mechanics, chemistry and physics [2].

The solution of Equation (1) exists, it is unique, and has a stable limit cycle surrounding the origin
under the conditions of Lienard’s theorem [1].

The Lienard’s theorem [1] establishes criteria for guaranteeing the existence, uniqueness, and
stability of limit cycles surrounding the origin. As a model of oscillating circuits, Equation (1)
was intensely studied. While no exact solution is known in general, several authors have devoted
their attention to study whether or not the Lienard-type equations have unique periodic solutions.
For examples: Écalle [3] and Ilyashenko [4] proved the existence of finitely many limit cycles with
polynomial nonlinearities. Zhang et al. [5] applied the Poincaré-Bendixson theorem to generalize the
previous studies. Under some restrictions on F, Lefschetz [6] gave an existence theorem for periodic
solutions to the forced Lienard-type equation. Results of Lefschetz were systematically improved in
many works [7–9]. On the other hand, several numeric and numeric-analytic algorithms have been
employed to treat Lienard-type equations of integer and fraction derivatives.

Among these attempts are the harmonic balance, the elliptic Lindstedt-Poincare and the
multiple scales methods [10], He’s parameter-expanding methods [11], He’s variational iteration
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method [12,13], the homotopy perturbation method [14], the differential and reduced differential
transform methods [15–17], the Adomian decomposition method and its variants [18–21], and the
residual power series method [22–25].

Main motivation of this analysis is to construct an analytic solution for Equation (1) using the
multi-stage decomposition method [26,27]. Sufficiency of convergence is discussed, and error bounds
for obtained approximations are derived. Recently, the MDM has been successfully implemented to
overcome the singularity and present numerical solutions of initial-value problems [28,29]. The method
exhibited highly accurate approximations with a large effective region of convergence.

2. The Methodology

The Adomian decomposition method was introduced in 1970s by George Adomian [30].
This method is used widely ever since to solve nonlinear (ordinary or partial) differential equations,
integral equations, as well as integro-differential equations, see [31–35] and the references therein.
The solution obtained by this method has a series form which is rapidly convergent and easy to
compute, assuming that we deal with analytic functions, see [36–38]. The series solution can be obtained
when we write the nonlinear term as a series of polynomials, which are called Adomian polynomials.

In general, if we consider
L(w) + N(w) = 0

where L(w) is an invertible linear operator, and N(w) is a nonlinear operator, then the idea of the

Adomian decomposition method is to assume that the solution is given by the series w =
∞∑

n=0
wn.

Then the nonlinear operator can be written as

N(w) =
∞∑

n=0

An(w0, w1, . . . , wn),

where

An(w0 , w1, . . . , wn) =
1
n!

 ∂n

∂λn N

 n∑
k=0

wk λ
k



λ=0

.

Finally, the solution is given by the recursion formula

w =
∞∑

n=0

wn+1 =
∞∑

n=0

L−1[An(w0, w1, . . . , wn)].

One of the most important suggested modifications depends on combining the power series
solution and the Adomian decomposition method [39]. The Adomian polynomials were used to evaluate
the series expansion of nonlinear operators. In this section, an analytic discussion of a suggested
modified multistage decomposition method is presented.

Theorem 1. [26] Suppose that w(t) is an analytic at t = t0, and N(w) =
∞∑

k=0
Ak(w0, . . . , wk) is an analytic

nonlinear operator at w, where the Aks are the Adomian polynomials. If w(t) =
∞∑

k=0
ak(t− t0)

k is given by its

power series expansion around t0, then Ak can be defined in terms of the Aks. That is, Ak = Ak(a0, . . . , ak), and

N(w) =
∞∑

k=0

Ak(a0, . . . , ak)(t− t0)
k.
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Now, we present the methodology to solve the Lienard-type equation of the general form

d2w
dt2 + F(w)

dw
dt

+ G(w) = h(t), w(a) = α,
dw
dt

(a) = β, (2)

where h(t) is an analytic for all t ∈ [a, b] and F(w), G(w) are analytic in the variable w. Let A[a, b] be the
space of all analytic functions on the interval [a, b], then the operator T(w) := d2w

dt2 + F(w) dw
dt + G(w) is

analytic operator defined on A[a, b]. In the operator form, we can write Equation (2) as

T(w) = h(t), w(a) = α,
dw
dt

(a) = β. (3)

To accelerate the solution convergence we use the multi-stage modification. For any fixed N,
we define an equally-spaced partition on [a, b]

a = t0 < t1 < t2 < · · · < tN = b, (4)

with step-size h = b−a
n . For each subinterval [ti, ti+1], we expand w(t) about ti by

w(t) =
∞∑

k=0

ak,i(t− ti)
k, ti ≤ t ≤ ti+1, i = 0, 1, 2, . . . , N − 1, (5)

Using Theorem 1, the nonlinear terms are decomposed, to be

F(w) =
∞∑

k=0

Ak
(
a0,i, a1,i, . . . , ak,i

)
(t− ti)

k, (6)

G(w) =
∞∑

k=0

Bk
(
a0,i, a1,i, . . . , ak,i

)
(t− ti)

k, (7)

and,

h(t) =
∞∑

k=0

ck(t− ti)
k, (8)

where the Adomian polynomials Ak, Bk are defined in terms of the solution coefficients, and the cks are
the power series coefficients of h(t).

Substituting Equations (6)–(8) into Equation (3) gives the equality

∞∑
k=0

(k + 2)(k + 1)ak+2,i(t− ti)
k +

∞∑
k=0

k∑
m=0

(k−m + 1)ak−m+1,iAk(t− ti)
k

+
∞∑

k=0
Bk(t− ti)

k =
∞∑

k=0
ck(t− ti)

k.
(9)

The solution coefficients can be given by the recurrence relation

ak+2,i =

ck −

(
Bk +

k∑
m=0

(k−m + 1)ak−m+1,iAk

)
(k + 2)(k + 1)

, k ≥ 0, (10)

with initial values for the first sub-interval come from given initial data. The nth-order approximate
solution on the first sub-domain is defined to be

wn,0(t) =
n∑

k=0

ak,0(t− t0)
k. (11)
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For each subinterval [ti, ti+1], i = 1, 2, 3, . . . , N − 1, the nth-order approximate solution is

wn,i(t) =
n∑

k=0

ak,i(t− ti)
k, (12)

with starting values

a0,i = wn,i−1(ti), a1,i =
d
dt

wn,i−1(t)
∣∣∣∣∣
t=ti

. (13)

It follows that, at the mish points {t0, t1, . . . , tN−1}, the nth-order discrete approximations are{
α, wn,0(t1), wn,1(t2), ..., wn,N−1(tN)

}
. (14)

If we define
Wn(t) = wn,i−1(t), ti ≤ t ≤ ti+1 , (15)

as a multi-rule function, then
w(t) = lim

n→∞
Wn(t).

That is, Wn(t) approximates the analytic solution w(t) for the Lienard Equation (3) on the whole
domain [a, b].

If we denote the absolute error for the solution w(t) on [ti, ti+1] by En,i(t), then we have

En,i(t) =
∣∣∣T[En,i(t)] − h(t)

∣∣∣, (16)

and the corresponding global absolute error is

E(t) = En,i(t), ti ≤ t ≤ ti+1, i = 0, 1, 2, . . . , N − 1 . (17)

3. Convergence and Error Analysis

In the current section, we state and prove the convergence theorem of the assumed power series
solution in the previous section.

Theorem 2. The power series solution defined in Equation (12) with nonzero coefficients, obtained recursively in
Equation (10), converges uniformly to the solution u(t) of the initial-value problem Equation (3) on |t− ti| < ρ,
where 0 < ρ < R ≤ ∞, R = h M is the radius of convergence with step-size h = ti+1 − ti, and M is an upper
bound of strictly decreasing sequence of coefficients ak,i.

Proof. Applying the ratio test to the sequence of coefficients yields

ρ = lim
k→∞

∣∣∣∣ak+2,i(t− ti)
k+1

∣∣∣∣∣∣∣∣ak,i(t− ti)
k
∣∣∣∣ ≤ h lim

k→∞

∣∣∣∣F(ak,i, ..., a0,i
)∣∣∣∣∣∣∣ak,i

∣∣∣ .

But,

H
(
ak,i, ..., a0,i

)
=

ck −

(
Bk +

k∑
m=0

(k−m + 1)ak−m+1,iAk

)
(k + 2)(k + 1)

is rational function in the power series coefficients that defined recursively in Equation (10). That is,
F can be expressed as

H
(
ak,i, ..., a0,i

)
=

Pk(a0,i)

(k + 2)(k + 1)
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where Pk is a dependent polynomial of degree k in a0,i. The ratio∣∣∣∣H(
ak,i, ak−1,i, ..., a0,i

)∣∣∣∣∣∣∣ak,i
∣∣∣

is strictly decreasing while the numerator is of degree less than denominator. Thus, it is bounded
above. By the analyticity of F, G and h, they can be approached by polynomials with bounded above
coefficients, say MF, MG and Mh respectively, to get

ρ ≤ h lim
k→∞

∣∣∣∣H(
ak,i, ak−1,i, ..., a0,i

)∣∣∣∣∣∣∣ak,i
∣∣∣

< h(MF + MG + Mh)

< h M = R

for ti < t < ti+1, which completes the proof.

The following theorem deals with the efficiency of the approximation even if a few terms of series
solution are considered.

Theorem 3. The absolute error for the power series solution defined in Equation (5) has exponential decay for
step-size h < 1.

Proof. For each t ∈ (ti, ti+1), among Equation (16), and using the recurrence relation in Equation (10),
we get

En,i(t) =
∣∣∣L[En,i(t)] − h(t)

∣∣∣
=

∣∣∣∣∣∣ ∞∑k=0
(k + 2)(k + 1)ak+2,i(t− ti)

k +
∞∑

k=0

k∑
m=0

(k−m + 1)ak−m+1,iAk(t− ti)
k

+
∞∑

k=0
Bk(t− ti)

k
−

∞∑
k=0

ck(t− ti)
k
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
∞∑

k=0
(k + 2)(k + 1)

ck−

(
Bk+

k∑
m=0

(k−m+1)ak−m+1,iAk

)
(k+2)(k+1) (t− ti)

k+

∞∑
k=0

k∑
m=0

(k−m + 1)ak−m+1,iAk(t− ti)
k +

∞∑
k=0

Bk(t− ti)
k
−

∞∑
k=0

ck(t− ti)
k
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∞∑

k=0

ck(t− ti)
k

∣∣∣∣∣∣∣.
By Taylor’s theorem and the fact that |t− ti| ≤ h, we conclude that

En,i(t) ≤ C hn+1,

for some positive constant C.

4. Numerical Applications

In this section, we implement the modified multistage decomposition method (MDM) to obtain
numeric-analytic solutions to the nonlinear oscillators governed by Lienard-type Equation (1) with
different nonlinearities. The step-size is chosen within the radius of convergence in Theorem 3.
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Example 1. Consider the homogeneous Lienard Equation (1) with cubic and quantic nonlinearities

F(w) = 0, G(w) = `w + µw3 + υw5, (18)

where `, µ and υ are real coefficients, with initial data

w(0) =

√
−2`
µ

, w′(0) = −
`
√
−`

µ
√
−2`
µ

, (19)

This example has been considered in many works [40–43]. Feng [40] obtained the explicit exact
solution to be

w(t) =

√√
−2`

(
1 + tanh

(√
−` t

))
µ

(20)

Our goal is to generate numeric solutions of the 10th order. The Adomian polynomials Bk’s
regarding to the nonlinear term G(w) in terms of solution coefficients ak’s are

B0 = ` a0 + µ a0
3 + υ a0

5, B1 =
(
` + 3µ a0

2 + 5υ a0
4
)
a1,

B2 =
(
` + 3µ a0

2 + 5υ a0
4
)
a2 +

(
6µa0 + 20υa0

3
) a1

2

2! ,

B3 =
(
` + 3µ a0

2 + 5υ a0
4
)
a3 +

(
6µa0 + 20υa0

3
)
a1a2 +

(
6µ+ 60υa0

2
) a1

3

3! ,

B4 =
(
` + 3µ a0

2 + 5υ a0
4
)
a4 +

(
6µa0 + 20υa0

3
)(

a1a3 +
a2

2

2

)
+

(
6µ+ 60υa0

2
) a1

2a2
2

+120υa0
a1

4

4! ,

The series solution Equation (12) on the subinterval [ti, ti+1] is computed, with the aid of
Mathematica [44] to be

wn,i(t) =
n∑

k=0

1
2k−1k!

√
(−`)k dk

dtk

(
etanh−1(tan (t))

)
t=ti

(t− ti)
k. (21)

This solution converges to the closed exact solution form Equation (20) as n becomes
sufficiently large.

With step-size h = 0.1, the 10th-order analytic solution w10,1(t) for 0.1 ≤ t ≤ 0.2, can be obtained
by calculating the coefficients ak,2’s with starting values

a0,1 = w10,0(0.1), a1,1 =
d
dt

w10,0(t)
∣∣∣∣∣
t=0.1

. (22)

Completing solutions for our problem requires repeating this step for i = 2, 3, 4, . . . , N− 1. In order
to exhibit the efficiency of the presented modification with respect to RK4 method, let ` = −1, µ = 4 and
υ = −3. Figure 1 shows the comparison of the exact solution and the 10th order multi-rule approximate
analytic solution. It is obvious that our technique is very efficient and accurate, compared to RK4
method used in solving this problem. Furthermore, the domain can be expanded with a preservation
of the convergence, unlike with others. The obtained absolute errors are shown in Figure 2.
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Example 2. Consider the van der Pol oscillator in the standard form [45]

w′′ − ε
(
1−w2

)
w′ + w = 0, ε > 0, (23)

which describes a position w(t) of a particular as function of time t with a nonlinear damping term represented
by the scalar ε. The simple harmonic motion equation is the special case when ε = 0. It is a non-conservative
oscillator with linear spring force and nonlinear damping force, for which energy is degenerated at high amplitudes
and generated at low amplitudes. As a consequence, there exist oscillations around a state at which energy
generation and degeneracy balance out, and gives rise to a periodic motion known as a limit cycle.

Recently, different attempts have been directed toward numeric-analytic solutions for the van
der Pol oscillator, see [46] and the references therein. In order to demonstrate the advantage of our
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modification over the RK4 method, the behavior of 10th-order approximate displacement, with the
same order approximation in the RK4 method, subject to initial data

w(0) = 2, w′(0) = 0, (24)

are illustrated in Figure 3. The corresponding absolute errors given in Equation (16), despite an exact
solution being unknown, are shown in Figure 4. The obtained absolute errors in the case of our
approximation show that the results are highly accurate that make the obtained approximate solution
acceptable as a criterion of comparison.Mathematics 2019, 7, x 9 of 14 
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In this problem, the displacement behavior is periodic and approaches, versus velocity, the limit
cycle in the phase plane. Figure 5 represents the phase plane diagrams for van der Pol oscillator at
ε = 1 and the step-sizes h = 0.1 and h = 0.5.
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Example 3. The classical Duffing-van der Pol oscillator is governed by the Lienard-type differential equation

w′′ − ε
(
1−w2

)
w′ + `w + µw3 = 0, w(0) = α, w′(0) = β, (25)

where ε, ` and µ are positive coefficients. Equation (25) has been extensively studied as an autonomous equation
that describes the propagation of voltage pulses along a neural axon, in addition to potential applications in many
other scientific fields, see [47] and the references therein.

Our approach constructs an analytic solution and estimates errors for several values of parameters
on a large domain. As in the previous examples, the obtained results using the 10th-order solution
compared to those of the RK4 method are plotted in Figure 6. Figure 7 shows the corresponding
multi-rule absolute errors defined in Equation (16) with step size h = 0.5, ε = 0.1, ` = 1, µ = 0.4, α = 1
and β = 0. The modified decomposition scheme is a very powerful tool for treating the Duffing-van
der Pol oscillator with a sufficiently large step-size compared to RK4 method.
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Example 4. Consider the Lienard-type equation with rational nonlinearity

w′′ +
w

1 + εw2 = 0, ε > 0 (26)

subject to
w(0) = 1, w′(0) = 0. (27)

For the case of ε = 1 and the step-size h = 0.5, the 10th-order approximate analytic solution using
the modified decomposition and RK4 methods are obtained, using Mathematica [45], and graphed in
Figure 8. With an unknown exact solution, the absolute errors between the two methods favoring the
MDM approach, as shown in Figure 9.
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5. Discussions and Conclusions

In this paper, the non-linear second order Lienard-type equation, with different nonlinearities, is
considered via the multi-stage modified decomposition method. The method does not need linearization,
weak nonlinearity or perturbation. It is based on combining the power series method and Adomian
decomposition method by replacing nonlinearities with the corresponding Adomian polynomials
expansions. While, in contrast to the Adomian decomposition method and incomputable integrals
for much nonlinearity, a higher of series solution can be obtained easily using our modification.
On the other hand, our technique overcomes the weakness and high complexity of power series
method in solving such problems. With scientific and engineering interests, the presented technique
is investigated and modified to approximate the solutions of the van der Pol and Duffing-van der
Pol equations analytically. We define a continuous analytic multi-rule solution on a large interval.
The errors estimation with unknown exact solutions is also obtained.

In addition to the possibility of finding exact solutions, the applicability of our modification is
confirmed by the high accuracy obtained in comparison to other existing methods. The highly accurate
solutions make the obtained approximations acceptable as a criterion of comparison in coming works.
The stability and existence of periodic solutions (limit cycles) is included numerically.
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