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Abstract: We consider two different time-inhomogeneous diffusion processes useful to model the
evolution of a population in a random environment. The first is a Gompertz-type diffusion process
with time-dependent growth intensity, carrying capacity and noise intensity, whose conditional
median coincides with the deterministic solution. The second is a shifted-restricted Gompertz-type
diffusion process with a reflecting condition in zero state and with time-dependent regulation
functions. For both processes, we analyze the transient and the asymptotic behavior of the transition
probability density functions and their conditional moments. Particular attention is dedicated to the
first-passage time, by deriving some closed form for its density through special boundaries. Finally,
special cases of periodic regulation functions are discussed.

Keywords: diffusion processes; first-passage time; population dynamics

MSC: 60]J60; 60K37; 60]70; 92D25

1. Introduction

Deterministic and stochastic growth models are been widely used in the literature to study
dynamics of a population. Some such models, as the logistic and Gompertz ones, are characterized
by an intrinsic rate of growth and by a horizontal asymptote; both can be time-dependent. This limit,
called carrying capacity function, can be caused by many environmental factors as living space, food
availability and water supply. In particular, Coleman et al. [1] analyzes the behavior of the deterministic
logistic model in the periodic environment by assuming that the intrinsic growth coefficient and the
carrying capacity are periodic time-dependent function. In Mir [2] and in Mir and Dubeau [3],
the authors study the effect of different time-dependent carrying capacities in deterministic Richards
models, including logistic and Gompertz growths. Tjerve and Tjerve [4,5] propose a unified approach
to the Richards-model family to describe the growth of animals and plants, as well as the number of
bacteria and the volume of cancer cells.

The deterministic approach presents some limitations in mathematical biology since it is always
arduous to predict the evolution of the system accurately. Indeed, the biological systems are subject
to random fluctuations, due partially to environment factors, such as epidemics and nature disasters.
To take into account the environmental fluctuations, often responsible for the discrepancies between
experimental data and theoretical predictions, the idea of growth in random environment has
been considered by various authors (cf., for instance, Goel and Richter-Dyn [6], Ricciardi [7,8] and
Ricciardi et al. [9]). Some diffusion growth models in random environment are considered in Capocelli
and Ricciardi [10], Tuckwell [11], Nobile and Ricciardi [12,13], Skiadas [14], and Kink [15]. Analytical
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properties of logistic and other growth models are taken into account in Di Crescenzo and Spina [16]
and Di Crescenzo and Paraggio [17].

The Gompertz model is widely used in many aspects of biology because it can fit well the
experimental date related to the evolution of same populations of organisms and of certain solid
tumors (cf., for instance, [5] and references therein). In the classical Gompertz model, the intrinsic
growth coefficient and the carrying capacity are chosen as constant parameters. However, sometimes
the description of certain phenomena requires the use of time-dependent functions; in these cases, the
Gompertz model turns out to be particularly effective to describe the population dynamics. For this
reason, many efforts have recently been made to investigate the analytical and statistical properties of
time-inhomogeneous Gompertz models. Specifically, the studies have focused on the following topics:
(i) analysis of probabilistic characteristics, as the transition probability densities, the first-passage
time density through a particular time dependent threshold (cf. Albano et al. [18,19], Ghost and
Prajneshu [20]); (ii) discovery of appropriate procedures to estimate the unknown parameters and
the time dependent functions characterizing the infinitesimal moments of the diffusion process
(see, Gutiérrez et al. [21], Moummou et al. [22,23], Albano et al. [24,25], Roman-Roman et al. [26]);
(iii) study of stochastic Gompertz process with jumps that occur at random time and reset the process to
a fixed value; after each jump, the process restarts with modified grows parameters (see Spina et al. [27],
Giorno et al. [28]). The Gompertz growth model plays a special role also in nonlinear models of
interacting populations (cf., for instance, Goel et al. [29]) and in a non-autonomous predator—prey
system (cf. Buonocore et al. [30]).

In the present paper, we consider two different time-inhomogeneous diffusion processes useful to
model the evolution of a population in a random environment. They are obtained as approximations
of the solution of deterministic Gompertz-type growth models. The first considered process is
an unrestricted time-inhomogeneous Gompertz diffusion process, whereas the second one is a
restricted diffusion process, obtained by including a reflecting condition. Indeed, sometimes in
growth models, the population is not isolated, so that immigration effects may be occur. In these
cases, it is necessary take into account diffusion processes with a reflecting condition in the zero
state. A special diffusion process in the presence of reflecting boundaries are taken into account in
Linetsky [31], Giorno et al. [32,33], and Buonocore et al. [34,35].

In Section 2, we consider the Gompertz diffusion process X(t) with growth rate 5(t), carrying
capacity ¢'() and noise intensity o?(t), whose conditional median coincides with the deterministic
Gompertz growth. Results concerning the transition probability density function (pdf) and its moments
are derived. Particular attention is dedicated to analyzing the first-passage time (FPT) problem and the
asymptotic behavior of the transition densities and of the FPT densities through a constant boundary S
in two cases: (a) for asymptotically constant functions B(t), v(t),c?(t) and for (b) for asymptotically
constant functions B(t),c?(t) with v(t) periodic function. In Section 3, we assume that the carrying
capacity is a periodic time-dependent function and specialize the results of Section 2 when B(t) = B
and v(t) = In[a + bsin(27tt/Q)]; same comparisons are carried out for (i) ¢?(t) = ¢? and for (ii)
02 (t) = ¢% (1 — e=2P*)2 in order to highlight both the role of o2 (t).

In Section 4, we perform a similar analysis for the Gompertz process Y (t) in the presence of a
reflecting boundary in zero state. Since, in the Gompertz process considered in Sections 2 and 3 the
state zero is unattainable, in Section 4, we build the restricted process by shifting the original Gompertz
process and then by introducing in this last one a reflecting condition in the zero state. For the restricted
process Y (t), the function (t) represents again the growth rate, v(t) is a regulation function and ¢ (#)
gives the noise intensity. For this process, we analyze the transient and asymptotic behavior of the
transition pdf and of FPT density through the constant boundary. Finally, in Section 5, the process Y (t)
is studied for the same cases of Section 3 with B(t) = p and v(t) = In[a + bsin(27tt/Q)] in order to
highlight both the role of ¢?(t) and the effect of the reflecting condition on the population growth.
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2. Time-Inhomogeneous Gompertz-Type Growth

In this section, we analyze the inhomogeneous deterministic and stochastic Gompertz model.
For the stochastic process, we focus on the transition pdf and its moments, on the FPT density and on
the asymptotic behavior of the process.

2.1. Deterministic Evolution
Letv(t) : R™ — Rand B(t) : Rt — R* be continuous functions. We assume that the population
density x(t) evolves according to the Gompertz law:

x(t) = exp{v(t) — [v(to) — lnxg}e*[q’(t)*"’(to”}, t>1ty >0, 1)

where x(ty) = xg and

o(t) = [ Blu) du. @

The function (t) represents the growth rate of the population and the function e’(!) describes the
time-dependent carrying capacity. Indeed, if 0 < xo < ¢"(), then x(t) < ¢*(*) for all t > to, whereas,
if xg > (), then x(t) > e®) for all t > t.

We remark that Label (1) is solution of the differential equation:

da;(tf) _ x(t){u’(t) +B(t) [v(t) — Inx(t)] } x(to) = xo.

From (1), the population density at time ¢ 4 At can be expressed as:
x(t+ At) = x(t) exp{e*‘f’(”“) [v(t + At) e?UHAD () e‘/’(t)} — e 9lt+a) [€¢(t+At) — e‘P(t)} In x(t)}. 3)

Starting from (3), a time-inhomogeneous stochastic diffusion process can be constructed.

2.2. Stochastic Evolution

Under the assumption of random environment, we interpret v(t 4+ At) e?(+20) — () e?(t) as
the mean of the increment Z(t + At) — Z(t) of a time-inhomogeneous Wiener process {Z(t),t > 0}
having mean function v(t)e?(!) and covariance function c(s, t) = fos 29 g2(u) du (s < t), where
o(t) : R™ — R is a continuous function. Therefore,

tAt
Z(t+ At) — Z(t) = v(t + At) e (1) 2 1 W[/ 2P o2 (1) du}, 4)
t

where W(t) is the standard Wiener process.

Making use of the assumption of random environment, denoting by {X(t),t > 0} the
stochastic process describing the evolution of the population, from (3), one obtains the following
stochastic equation:

X(t+At) — X(t) = X(t) {exp{e—(i’(fﬂt) [Z(t + At) — z(t)] — e #(t+AD [eWW) - e<ﬂ<t>] lnX(t)} - 1}, (5)

from which one derives:

10 L7 (t+AL)
X(t+A)—X(t)=X(t) ), ————

{Z(t—i—At) —Z(t) - [e‘f’(t”t) —eé"(f)} lnX(t)}r. ©)
r=1

r!
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Forn=1,2,...1let

E{[X(t+ At) = X(O]"|X(t) = x}
At—0 At

be the infinitesimal moments of X(t). Recalling (6), one obtains:

Ar(x,t) = x{1/(5)+ B(8) [o(6) ~ ] + T2,

Ax(x,t) = d2(t) 22, @)
An(x,t) =0, n=3,4,...

From (7), we note that X(t) is a time-inhomogeneous Gompertz-type diffusion process with
space-state (0,+o0) having infinitesimal drift and variance Aj(x,t) and A;(x,t), respectively.
We remark that the boundaries 0 and +oco are unattainable states for X(f). The transition pdf
fx(x,t|xo, o) of X(t) is solution of the Fokker—Planck equation with the initial delta condition:

Oftliorto) 3 Ty (1) f(a, o to)] +

92
ot ax 2 [AZ(X/ t) fx(x, t[xo, to)} ,

29

(8)
limfx(x,t\xo, to) = (5(t - to).
tlto
Making use of transformations:
1
y=Ix,  y=Inx,  fx(xtlxoto) = fulytlyo to), )
from (8), one has:
ofu(y,tlyoto) 0 19
Y =3y {Cl (. t) fu(y, tlyo, to)} t5 W {CZ(t) fu(y, tlyo, to)}, 10)
lim fi;(y, tyo, to) = 6(t — to),
tlto
with
Ciy,t) =v'(t)+v(t) pt) = B(t)y,  Ca(t) = o>(t). (11)

Therefore, fii(y, t|yo, to) is the transition pdf of a time-inhomogeneous Ornstein-Uhlenbeck
process {U(t),t > 0} with state-space (—oo, +00), whose infinitesimal drift and variance are given
in (11). Hence, fy(y, t|yo, to) is a normal pdf with conditional mean and variance:

M(t[yo, to) = E[U(1)|U(to) = yo] = v(t) + [yo — v(tg)] e~ PO —0t)],

t 12
V(t|ty) = Var[U(#)|U(ty) = yo] = e 201) / 2 62 () du, (12
to
respectively. Recalling (9), the transition pdf of X(t) is lognormal:
1 1 [Inx — M(t|In xo, t)]?
x,t|xg,tg) = — —— expq — , x,x9 > 0. 13
fulutho o) =5 o P vy S 1
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Moreover, conditional mean, median and variance are:

E[X(£)|X(tg) = x0] = eXp{M(t\ Inxo, o) + V(f2|t0) },

Med[X(t)|X(to) = xo] = exp{M(t\ In xo, tg)}, (14)

Var[X(£)| X (to) = x0] = exp{z M(t|Inxo, to) + V(t|t0)} [exp{V(tuO} - 1]

We note that the conditional median of X(t) does not dependent upon ¢(t) and it coincides
with the deterministic solution given in (1). Furthermore, when ¢(t) is zero, the conditional mean is
identified with the deterministic solution and the conditional variance is zero.

2.3. First-Passage Time Problem for X (t)

We consider the FPT problem for the diffusion process X (t) with infinitesimal moments (7). Let

inftzto{t : X(t) > S(t)}, 0< X(to) =xp < S(fo),
Tx = (15)
inftzto{t s X(t) < S(1)}, X(tg) = x9 > S(tp) >0,

be the random variable that describes the FPT of X(t) from X(f) = xg to the continuous boundary
S(t) € CY(T). The FPT pdf gx|[S(t),t|xo,to] = dP(Tx < t)/dt is solution of the first-kind Volterra
integral equation:

fx(xtlx0,t0) = [, 8x[S(T), T|x0, to] fx[x, #[S(T), 7] d=

[0 < xg < S(tg),x > S(t)] or [xg > S(ty),0 < x < S(t)]. 16)

Due to (9), one has gx[S(t), t|xo, to] = gu[InS(t),t|Inxg, ty], where g7 is the FPT density of the
Ornstein—Uhlenbeck process with infinitesimal moments (11). Then, making use of the results given
in Di Nardo et al. [36], the FPT density ¢x[S(t), t|xo, to] is a solution of the following non-singular
second-kind Volterra integral equation:

ex[S(t), t|xo, to] = —20¥x[S(t), t|x0, to] + 20 ftz gx[S(T), T|xo, to] ¥x[S(t), t|S(7), T] dT

17
0< x0 < S(t), x = S(t)] or [10 > S(to), 0 < ¥ < (1), )
with 0 = 1 when xy < S(tp) and ¢ = —1 when xy > S(#(), where
/ / (#) — t (u)
Fx(S(0), ] = { OO0 gy sttty ZOSTR [ d
‘ (18)

Iny— 2(4) e® () +o(T)
+S(t) =L 2v(r) jgegw)(i) -y } fx[S(t), ty, T].

An effective numerical procedure to obtain gx[S(t), t|xo, to] via (17) is given in Di Nardo et al. [36]
and Buonocore et al. [37]. Furthermore, if the boundary S(t) is chosen as

ot
S1(t) = exp{v(t) +die?®) /0 2 o2 (1) du + dy e ?) }, >0, dy,dy €R, (19)

then

o(t)+o(tg) o2
gx[S1(t), t|xo, to] = [In S1(to) — Inxo JZ‘?W—?'Z‘(T”%‘ S1(t) fx[S1(t), t|x0, to] 20)

[O < xp < 51(1’0)] or [X() > Sl(to)],
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with fx(x, t|xo, tp) given in (13). Moreover, one has:

1, dl [ln Sl(t()) - 11‘13(0] < 0,

i 8x[S1(t), txo, to] dt = (21)
exp{ ~2d1¢7(0) [In 8, (t) — Inxo] },  d1 [InS1 (to) — Inxo] > 0.

Note that, if d; = dy = 0 in (19), then S1(t) = ¢"(*) coincides with the carrying capacity and,
from (20), it follows that gx[e(!), t|x, tg] does not depend on v(t), but it depends only on v(tp).
2.4. Asymptotic Behavior for X (t)

We analyze the asymptotic behavior of the process X (t) when the functions (t) and o (t) admit
finite limits as the time increases by distinguishing two different cases: (2) v(t) admits a finite limit
and (b) v(t) is a periodic function of period Q.

Case (1) We assume that

lim B(t) =B, lim o%(t) = o2, lim v(t)=v  (B>0,0>0,veR). (22)

t—>+o00 t—+o0 t——+oo

From (2) and (12), one has

Jim g(t) =+eo,  lim M(t[Inxo,to) =v,  lim V(t[to) = ;ﬁ (23)
so that, from (13), one obtains the steady-state density:
Wx(x) = tgriloofx(x,ﬂxo, ty) = % \/E exp{—i'[3 (ln:;— v)* }, x > 0. (24)
Making use of (23) in (14), the asymptotic mean, median and variance follow:
o2
lim E[X(8)[X(to) = xo] = exp{v+ I}'
Jim Med[X(t)|X(to) = xo] = ¢’, (25)

i Var[X(8)|X(to) = xo] = exp{Zv—i— ;’;} [exp{gz} - 1}

Under the assumptions (22), we analyze the asymptotic behavior of the FPT density gx (S, t|xo, to)
through a constant boundary S(t) = S, with S > 0. As the threshold S is progressively moved away
from the starting point of the process X(t), an exponential approximation is shown to hold for the
FPT pdf ¢x(S, t|xo, to) (cf. [38,39]). Indeed, if 0 < xg < Sand S > e" orif xp > Sand 0 < § < ¢,
the following behavior holds:

gx (S, t|x0,to) ~ §x(S,t) = Rx(S) e Rx(9) (t=to), (26)
where
Rx(S) = —2¢  Lim Yx[S(t), tly, T] = eBS (InS —v) Wx(S), (27)

with ¥x[S(t), t|y, ] given in (18) and ¢ = 1 when 0 < xp < Sand ¢ = —1 when xp > S > 0.

Case (b) We suppose that

lim B(t) = B, lim o?(t) =0%  v(t+kQ)=v(t) (B>0,0>0keNy). (28)

t—+o0 t—+o0
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From (2) and (12), one has

2
lim (t+kQ) = +eo, lim M(t+kQ|Inxo to) =v(t), lim V(t+kQlto) = 7 (29)
—+oo

k——+o0 — o0 28’

so that, from (13), one obtains the asymptotic density:

1 _ 2
Wx(x,t) = kgrfoofx(x,t+kQ\x0, to) = % % exp{—'B[nxU—zv(t)]}, x>0. (30)

Making use of (29) in (14) the asymptotic mean, median and variance follow:

2

Jim B[X(+kQ)|X(t0) = x0] = exp{v(t) + {5},

Jim Med[X(t + kQ)|X(to) = xo] = '™, (31)
2 2

kETmVW[X(f +kQ)[X(to) = x0] = eXP{2V(t) + ;—B} [exp{;ﬁ} - 1].

Under the assumptions (28), we analyze the asymptotic behavior of the FPT density gx (S, t|xo, to)
through a constant boundary S(t) = S, with S > 0. From (18), one has:

Rx(S,t) = ~2¢ lim ¥x[S(t+kQ),tly, 7] = oS {v/(1) + BllnS —v()] | Wx(S,),  (32)

with ¢ = 1 when 0 < xp < Sand ¢ = —1 when xyo > S > 0. Furthermore, denoting by
&(t) = exp{v(t) —v/(t)/B}, we have that Rx(S,t) > 0if 0 < xp < Sand S > {(t) orif xg > S
and 0 < S < §(t) for all t > ty. As the threshold S moves away from x, a time-inhomogeneous
exponential approximation holds for the FPT pdf gx (S, t|x, to) (cf. [38,39]). Indeed, if 0 < xp < S and
S>¢(t)orifxg > Sand 0 < S < E(t), forall t > ty, one has:

-t
ax(S, txo, to) ~ 8x(S, ) = Rx(S, 1) exp{— [ Rx(S,u) du}, (33)
J 10

with Rx (S, t) given in (32).

3. A Special Gompertz-Type Growth with Periodic Carrying Capacity

In the deterministic and stochastic Gompertz-type model, we assume that the growth rate f(t) =
(B > 0) and the carrying capacity e'(*) is a periodic function of period Q, such that

v(t) =1In [a +b sin(zgt” (a>0b>0). (34)

In Figure 1, we plot the deterministic curves x(t), given in (1), for xg = 1 and xyp = 5 (solid blue
curves); the dashed curve represents the periodic carrying capacity e'(!) = e + 0.3 sin(277 t).
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Figure 1. The deterministic curves x(t), given in (1), with ty = 0, = 0.6, v(t) = In[e + 0.3 sin(27 t)]
and for xg = 1 and xy = 5 (solid blue curves); the dashed curve represents the carrying capacity e?(!).

Moreover, in the stochastic Gompertz model X(t) with infinitesimal moments (7), we consider
two cases: (i) 02(t) = o2 and (ii) 0?(t) = 0% (1 — e 2P")2, with o > 0.

Case (i) Let 0%(t) = ¢, with ¢ real positive constant. In this case, from (12) one has:

2

Mitlyo,fo) = v(t) + [y = vlto)) e P, V(tlto) = 5 (1—e 20, (35)
For the same choices as Figure 1, with xg = 5 and ¢ = 2, on the left of Figure 2, we plot the
transition pdf, given in (13), as function of t when x = 2 and x = 4 (solid blue curves); the dashed
curves represent the corresponding asymptotic densities, obtained from (30). On the right of Figure 2,
for the same choices as Figure 1 with xyp = 5 and 02 = 2, the conditional mean and median (14) are
compared with the corresponding asymptotic behaviors, given in (31). Note that the median coincides

with the deterministic curve plotted in Figure 1.

fx&x,115,0) 10
025 |
8F E[X(0|X(0)=5]

020

x=2 6!
0151\ A~ -
0.10 4 Med[X(OIX(0)=5]

’ x=4 L
0.05 2
0.00 s : s : \ ol '
0 I 2 3 4 5! 0 2 4 6 3

Figure 2. For the same choices as Figure 1, with xy = 5 and 02 = 2, on the left the transition densities
are plotted for x = 2 and x = 4, whereas, on the right, the conditional mean and median (solid blue
curves) are shown. The dashed curves indicate the corresponding asymptotic behaviors.

On the left of Figure 3, the FPT pdf gx[S1(t), t|xo, to] through the carrying capacity S; (t) = e¥(*),
given in (20), is plotted as function of t for the same choices as Figure 1, with xy = 5 and 0? = 2. Note
that, in this case, the shape of the FPT pdf is not affected by the periodicity of the boundary. Moreover,
on the right of Figure 3, we plot the asymptotic behavior gx (S, t), given in (33), of the FPT density
gx(S, t|xo, tp) through the constant boundary S = 20 when xy < S.
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8x(S,1)

gxle” 115,01
30

1

] 5 10 15 20

Figure 3. The FPT density through the carrying capacity S;(t) = ¢“(*) = ¢ 4 0.3 sin(27t) is plotted on
the left for the same choices as Figure 1, with xg = 5 and ¢? = 2. On the right, the asymptotic behavior
of the FPT pdf through S = 20 is shown.

Case (ii) Let
o2(t) = o? (1— e 2P1)?, (36)

where ¢ is a real positive constant. In this case, 0> () is an increasing monotonic function which tends
to 0% as t — +oco. From (12), one has:

M(tlyo, o) = v(t) + [yo — v(to)] e P=10),  V(t|to) = ©5™" [sinh(2B 1) — sinh(2to) — 28(t — to)|.  (37)

For the same choices as Figure 1, with xg = 5 and ¢?(t) given in (36) with ¢ = 2, on the left of
Figure 4, we plot the transition densities, given in (13), as function of t when x = 2 and x = 4 (solid
blue curves); the dashed curves represent the corresponding asymptotic densities, obtained from (30).
On the right of Figure 4, for the same choices as Figure 1 with xp = 5 and 0?(t) = 2(1 — e’l'Zt)Z,
the conditional mean and median (14) are compared with the corresponding asymptotic behaviors,
given in (31). Note that, also in this case, the median coincides with the deterministic curve plotted
in Figure 1. By comparing Figures 2 and 4, we remark that the asymptotic behaviors are the same,
the medians are the same, whereas some differences are highlighted on the averages. Furthermore,
the transient behaviors of the transition pdf of Figure 4 are delayed with respect to those shown in

Figure 2.

Sfx(,115,0) ~
04 10

8- E[X(1)]X(0)=5]

Med[X(1)|X(0)=5]

Figure 4. As in Figure 2, with 02 (t) = 2(1 — 6*1'2’)2.

Finally, in Figure 5, the FPT density ¢x[S1(t), f|xo, to], given in (20), through the carrying capacity
Si(t) = e") = e+ 0.3 sin(27t), is plotted as function of t for the same choices as Figure 1 with xg =5
and 0?(t) =2(1 - e‘l’Zt)z. Note that the FPT density of Figure 5 is delayed with respect one showed
on the left of Figure 3.
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gxle”,115,0]
12;

10}
038/
06/
04/

02}

0.0 L : L t
0 1 2 3 4 5

Figure 5. The FPT density (20) through the carrying capacity S;(t) = ¢'(*) is plotted for the same
choices as Figure 1 with xo = 5 and ¢?(t) = 2(1 — 6—1.2t)2.

4. Time-Inhomogeneous Restricted Gompertz-Type Growth

In this section, to take into account immigration effects, occurring when the population is not
isolated, we analyze a Gompertz-type diffusion process restricted by a reflecting boundary in the
zero state. We remark that in the classical Gompertz process the state zero is unattainable, so that,
to build the restricted process, we first shift the original Gompertz process and then we introduce
in this last one a reflecting condition in the zero state. For the obtained restricted diffusion process,
we determine the transition pdf and its moments; furthermore, we analyze the FPT problem and we
study the asymptotic behavior.

4.1. Deterministic Evolution

Starting from (1), we perform the transformation y(t) = x(t) — e"(*), so that y () evolves according
to the following law:

y(t) =" [eXP{ [In(arg +e"(10)) — w(tg)] e~ 7 -#(t0) | 11, t> 120, (38)

with y(fp) = xp > 0 and ¢(t) given in (2). Since xo > 0, one has y(t) > 0 for all t > ty and
lim; o y(t) = 0, so that the population size decreases to zero and the extinction takes place when ¢
tends to infinity. Therefore, differently from the Gompertz-type model, analyzed in Section 2, in this
case, ¢'(*) does not represent the carrying capacity, rather it can be interpreted as a regulation function
that influences the population dynamics. From (38), we have:

W — [y(0) + 0] {6+ B0 ) ~ n(y () +¢ )]} = (0, yr0) = o

By using (38), the population density at time ¢ + At can be expressed as follows:
y(t+ At) + eV 80 = {y(t) + e”(t)} exp{e“”At) [v(t + At) e?HAD () e‘P(t)}

(39)
9+ [op(t+00) _ o9(0] 1n [y 1) + '] }

Starting from (39), a stochastic restricted time-inhomogeneous diffusion process can
be constructed.
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4.2. Stochastic Evolution

Under the same assumption of random environment of Section 2.2, starting from (39), we consider
the stochastic process {Y(t),t > 0} that satisfies the following stochastic equation:

[T( 4 Af) 4+ e 0H80] — [V() + 0] = [V(1) + )] [exp{e—¢<t+m> 20+ 80 - 2(1)]
40
e (t+A) [e¢<t+At> _ eﬂﬂ In[Y () + e/®)] } _ 1}, 40

with Z(t + At) — Z(t) given in (4). Proceeding as in Section 2.2, we obtain the infinitesimal moments
Bu(x,t) (n=1,2,...) of Y(¢):

By(x,t) = [x +¢'!] {v’(t) +B(H) v(t) — B(t) In[x + '] + 5 } —v(t)e'®,

Ba(x,t) = o2(t) [x + 1))’ (41)
Bu(x,t) =0, n=3,4,...

Hence, Y(t) is a time-inhomogeneous diffusion process with space-state (—e?(), +-c0) having
infinitesimal drift and variance By (x, ) and By(x, t), respectively. The transition pdf f5(x, t[xo, t) is

f?(xl t|X0, tO) = fX [.X' + ev(t)r t‘xo + ev(tO)/ tO]/ (42)

with fx(x, t|xo, fo) given in (13).

In order to describe the population dynamics, we consider the stochastic process {Y(t),t > 0},
obtained by restrict the space-state of Y () to the interval [0, +00), with 0 reflecting boundary. This
ensures that the population does not become extinct. The transition pdf ry (x, t|xo, tp) of the restricted
diffusion process Y () is a solution of the Fokker-Planck equation and satisfies the reflecting condition
in zero state and the initial delta condition:

ary (x, t|xo, to) _ d 1 92
T Ty {Bl(x,t) ry(x, t|xo, to)} + 3922 [Bz(x,t) ry(x, t|xo, to)},
10
1;?3{31 (x,8) ry (x, xo,b0) = 5 5 [Bz(x,t) ry (x, tx0, to)]} 0, (43)

lim ry (x, t|xo, to) = 6(t — to),
tt

with B;(x,t) (i = 1,2) given in (41). The second equation in (43) expresses a zero-flux condition at
x = 0 for the restricted process Y (t). Making use of transformations:

y=In[x+ e”(t)], vo = In[xo + ev(tO)], ry(x, t|xo, to) = ru(y, tlyo, to),  (44)

x 4 ev(h)
from (43), one has:
oru(y, tlyo, t 0 1 02
Py Wl 2 [ea(y0) ruty oo )] + 3 oz [C20) rulw v )],
lim {Cl(y, t) ru(y, tlyo, to) — Ga(t) iru(y,ﬂyo, to)} —v'(t) ru(y, tlyo, to) = 0, (45)
ylv(t) 2 ox

limru(y,t\yo,tg) = (S(f - to),
t1to

with C;1(y,t) and Cy(t) given in (11). Therefore, r;(y, t|yo, to) is the transition pdf of a restricted
time-inhomogeneous Ornstein—Uhlenbeck process restricted to the state-space [v(t),+o0) by a
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reflecting condition in v(t). The second equation in (45) expresses a zero-flux condition at y = v(t) for
the restricted Ornstein—Uhlenbeck. As proved in Buonocore et al. [34], one has

ru(y, tlyo, to) = fu(y, tlyo to) + ful2v(t) —y, tlyo, o],  y >v(t), yo > v(to),

where fi;(y, t|yo, to) is a normal pdf with conditional mean and variance given in (12). Recalling (44),
the transition pdf of Y(t) is

1 1 [In(x+e" ) —M(¢] In(xg+¢"10)),£9)]2
ry(xtlxo, o) = o V2 V(i) Xp{* 2V () ; }
1 1 _ 2v()—In(x+e"1)—M(t] In(xo+e"0)) )] (46)
+x+e"(*) V21 V(tt) exp{ 2V (tlto) }’

x,xg9 > 0.

Moreover, setting 1o = In(xg + ¢"(0)), the conditional mean and second order moment are:

E[Y(8)|Y(to) = x0] = § exp{ M(tlyo, to) + "4 | {1 - Erf{V<f>*Mﬂyg(ff‘Z)V<”t0>} }

(47)
+gzuz<t> exp{—M(t|yo, o) + V(tz\to)} {1 + Erf[V(t)*M\%y‘g,(tf')t;V(t\to)} } —ev(®),
E[Y2(1)[¥(to) = x0] =  exp{2 M(tlyo, to) + 2V (¢to) } {1 - Erf[V(t)iMi;lgovlt(i)';)ZV(tltO)} }
+e4”2<'> eXP{_Z M(t|yo, to) +2 V(tlto)} {1 - Erf {V(t)iMyzyov’t(()tith(t'toq } "

—e2v() — 2V E[Y (£)|Y (tg) = x0],

where Erf(x) = (2//7) [y e~?* dz denotes the error function. Furthermore, when ¢ (#) is zero,
the conditional mean is identified with the deterministic solution (38) and the conditional variance
is zero.

4.3. First-Passage Time Problem for Y (t)

We consider the FPT problem for the restricted diffusion process Y(#) with infinitesimal
moments (41). Let

infy>g {t: Y(t) > S(t)}, 0 < Y(tg) = x0 < S(tp),
Ty = (49)
il‘lftzto{f : Y(t) < S(i’)}, Y(fo) = X9 > S(to) >0,

be the random variable that describes the FPT of Y (¢) from Y (#y) = x( to the continuous boundary
S(t) € CI(T) and let gy[S(t), t|xo, to] = dP(Ty < t)/dt.
If xg > S(tp) > 0, the reflecting boundary 0 does not affect the FPT through S(t), so that

gy[S(t),tle, to] =g9x [S(t) +€V(t),t’JC0 + ev(tO),to], X9 > S(to) >0, (50)

where gx is the FPT pdf of the diffusion process X(t) analyzed in Section 2.4. In this case, the FPT
density through zero state is of interest and the related pdf can be obtained from (20). Indeed, setting
d1 = dp = 01in (19), from (20) and (50), one has:

gy (0,t[xg, to) = &x [ev(t),t xo + '), to]
= {ln[xo + eV(tO)} — y(to)} M eV(t) fX [gv(t), t|x0 + eV(tO), tO]/ xg >0, (51)

fti) e20(1) g2 (1) du
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with fx given in (13). Moreover, recalling (21), from (51), it follows that
+o0 +oo
/ gy (0, t|xq, to) dt = / gx[e'W, tlxg + ') ko] dt =1,
Jtg Jtg

so that the first passage through zero state is a certain event. Instead, when 0 < xo < S(tp),
the reflecting boundary 0 affects the FPT through S(t). Indeed, the FPT pdf is a solution of the
first-kind Volterra integral equation:

t
7’y(X,t|X0, to) = [ gy[S(T),T|X0, to] 1’y[X,t|S(T),T} dt [0 <xy < S(to),x > S(i’)] (52)

In this case, making use of the results given in Buonocore et al. [34], the FPT density
Qy[S(t), t|xo, to] is a solution of the following non-singular second-kind Volterra integral equation:

8y [S(t), tlxo, to] = —2¥y[S(t), t|x0, to] +2 [ gv[S(T), T|x0, to] ¥y [S(t),¢[S(7), 7] dT, 0 <x0 < S(to), (53)

where

v(t)] InS()+e" ] —v(t) (1) 22O —p(t) [0 0P (u) du
¢ ] 2 th e20(u) g2 (1) du (54)

V(51 In[y+e(D]—v 2(p) e(1)+9(7)
HS() 0] Bl T PO by (5(0), ly, ),

|
wn
—
~
=
-

with ry[x, t|xg, tp] given in (46). Equation (53) can be used to obtain a numerical evaluation of gy.

4.4. Asymptotic Behavior for Y (t)
We analyze the asymptotic behavior of the process Y(t) in the same cases of Section 2.4.

Case (1) Under the assumptions (22), the relations (23) again hold. Hence, from (46), one obtains the
steady-state density:

- 2 B _ﬁ[ln(x+e")—1/]2
Wy (x) = tim_ry(x,tlxo,to) = —— Ve exp{ - } x>0, (55)

Making use of (23) in (47) and (48), the asymptotic mean and second order moment follow:

limy_s oo E[Y ()] Y (o) = xo] = ¢ {exp{%} {1 + Erf(ﬁ)} - 1},
limys o0 E[Y2(£)[Y (fo) = xo] = €2V {1 —2exp{5} [1 + Erf(ﬁ)} +exp{% } [1 + Erf(ﬁ)} }

Under the assumptions (22), we analyze the asymptotic behavior of the FPT density gy (S, t|xo, to)
through a constant boundary S(t) = S, with 0 < xy < S. From (54), one has:

(56)

Ry(S) = -2 tli)rfm‘Fy[S(t),ﬂy, 7] = B(S+e") [In(S+e") —v] Wy(S) (57)

with Wy (x) given in (55). Hence, if 0 < xg < S, the FPT pdf gy (S, t|xo, tp) admits the following
asymptotic behavior:
ey (S, txo, to) ~ gy (S, t) = RY<S)E*RY(S) (t=to) (58)
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with Ry (S) given in (57).

Case (b) Under the assumptions (28), relations (29) are satisfied, so that, from (46), one obtains the
following asymptotic density:

. n(x+e'®)—v
W (3, 8) = limy oo P (3 £+ KQI30,t0) = 25 /o exp{ ~ Bl OEY s 0. (59)
Making use of (23) in (47) and (48), the asymptotic mean and second order moment follow:
limy oo E[Y (E)|Y (tg) = x¢] = &' {exp{g} {1 + Erf(ﬁ)} - 1},
i 2 — xn] =2V 1 = a2 o a2 o
limy— oo E[Y2(1)|Y (f0) = x0] = € {1 2 exp{45} [1 +Erf<2\/ﬁ)] +exp{ 3 } {1 —&—Erf(\/g)} }

Under the assumptions (28), we analyze the asymptotic behavior of the FPT density gy (S, t|xo, to)
through a constant boundary S(t) = S, with 0 < xg < S. From (54), one has:

(60)

Ry(S,t) = =2 limy_, o Yy [S(t + kQ), ty, T] = {Sv’(t) + B[S +e"W][In(S +e'M)) —v(t)] } Wy(S,t), (61)

with Wy (x, ) given in (59). Therefore, if 0 < xy < S and if the boundary S satisfies the condition
SV'(£) + B[S + '] [In(S + ') —v(t)] >0

for all t > t(, then the FPT pdf gy (S, t|xo, to) admits the following asymptotic behavior:

¢
v (S, txo, t0) ~ gy (S, t) = Ry(S,t) exp{—/t Ry (S, u) du}, (62)

with Ry (S, t) given in (61).

5. A Special Restricted Gompertz-Type Growth with Periodic Regulation Function

In the deterministic and stochastic restricted Gompertz model, we assume that the growth rate
B(t) = B (B > 0) and the function v(t) is expressed as in (34). In Figure 6, we plot the deterministic
curves y(t), given in (38), for xo = 1 and x¢ = 5.

As in Section 3, for the restricted process Y (t) with infinitesimal moments (41), we consider two
cases: (i) 02(t) = 0% and (ii) 0%(t) = 2 (1 — e~2#*)2, with o > 0.

Case (i) Let 0?(t) = 02, with ¢ a real positive constant. Equation (35) holds. For the same choices
of Figure 6 with xo = 5, in Figure 7, we plot the transition pdf, given in (46), as a function of ¢ for
x = 2 and x = 4 (solid blue curves) for two different choices of ¢%. The dashed curves represent the
corresponding asymptotic densities, obtained from (59).

Y@
6~

5

% i 2 3 7 5!

Figure 6. The deterministic curves y(t), given in (38), with ¢ty = 0, B = 0.6, v(t) = In[e + 0.3 sin(27t t)]
and for xg = 1 and xy = 5.
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ry(x,115,0) ry(x,1)5,0)

030,
0.25

025 |

0.20 x=2 0.20

0.15 N\’ Sl S’ N 0.15 1

0.10 0.10}

0.05 x= 0.05

0.00 - = — t 000 : : : >
0 1 2 3 4 0 1 2 3 4

@) (b)

Figure 7. The transition densities, given in (46), are plotted as a function of ¢ for the same choices
as Figure 6 with xyg = 5 for x = 2 and x = 4 (solid blue curves). The dashed curves indicate the
corresponding asymptotic densities. (a) 0 = 0.2; (b) 02 = 2.

Moreover, for the same choices as Figure 6, with xo = 5, in Figure 8, the conditional mean given
in (47) is compared with the corresponding asymptotic behaviors, given in (60) for 02 = 0.2 and ¢ = 2.
We note that the value of 02 influences the behavior of conditional mean function; indeed, small values
of ¢? induce a decrease in population size. Furthermore, due to the effect of the reflecting boundary
in zero state, the mean size of the population always remains positive when t increases, so avoiding
the extinction.

E[Y(0)]Y(0)=5] E [Y%Y(()):ﬂ

(@) (b)

Figure 8. The conditional mean, given in (47), is compared with the corresponding asymptotic
behavior (60) for the same choices as Figure 6 with xo = 5. (a) 0% = 0.2; (b) 0% = 2.

On the left of Figure 9, the FPT pdf gy (0, t|xo, to), given in (51), is plotted as function of ¢ for the
same choices as Figure 6 with xyp = 5 and 0 = 2; note that the shapes of the FPT pdf are not affected
by the periodicity of v(t). Furthermore, on the right of Figure 9, the asymptotic behavior gy (S, t) of
the FPT density gy (S, t|xo, fo), given in (62), is shown with S = 20 and x( < S.

Case (ii) We choose 02 (t) as in (36). Relation (37) holds again. For the same choices as Figure 6,
with xg = 5, in Figure 10, the transition pdf, given in (46), is plotted as a function of ¢, with U’Z(t)
given in (36) for x = 2 and x = 4 (solid blue curves) and two different choices of 0?. The dashed
curves represent the corresponding asymptotic densities, obtained from (59). We note that the transient
behaviors in Figure 10 are delayed with respect to those shown in Figure 7. Moreover, for the same
choices as Figure 6, with xg = 5, in Figure 11, the conditional mean (47) is compared with the
corresponding asymptotic behavior, given in (60). By comparing Figures 8 and 11, we note that the
asymptotic behaviors of the averages are the same; moreover, the behaviors of the conditional mean
function are strongly influenced by o2(t).
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£v(0,115,0) Zy(S.0)
127 035,
0.30
025
0.20
0.15
0.10

0.05

0.00

0 5 10 15 20"
() (b)

Figure 9. The FPT density (51) is plotted on the left for the same choices as Figure 6 with xy = 5.
The asymptotic behavior gy (S, t) of the FPT density gy (S, t|xo, t) is shown on the right, given in (62),
with S =20 and x < S. (a) 02 = 2; (b) 0% = 2.

In Figure 12, the FPT density gy (0, t|xo, to), given in (51), is plotted as a function of ¢ for the same
choices as Figure 1 with xg = 5 and ¢?(t) = 2(1- e 12 t)z. Note that the FPT density of Figure 12 is
delayed with respect to that shown on the left of Figure 9.

ry(x,{|5,0) rb(.,\S‘,{|5,0)

12}

].0; 04/

0.8; 03

0'6; 02

04 It x=2

0.2;_{ N S —

t x=4

005° 00 i 2 3 i 5!

(b)

Figure 10. The transition densities, given in (46), are plotted as function of t for the same choices
as Figure 6 with xyg = 5, for x = 2 and x = 4 (solid blue curves). The dashed curves indicate the
corresponding asymptotic densities. (a) o%(t) = 0.2(1 — e_l‘Zt)z; (b) o2(t) =2(1— e_l‘Zt)z.

E[Y(0)]Y(0)=5] E [Y%Y(O)=5]

(a) (b)

Figure 11. The conditional mean, given in (47), is compared with the corresponding asymptotic
behavior (60) for the same choices as Figure 6 with xg = 5. (a) 02(t) = 0.2(1 — e_l'Zt)2; (b) 72(t) =
2(1—e712t)2
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8r(0,15,0)

08+

06+

04+

02+

. , . |t
1 2 3 4

0.0
0

Figure 12. The FPT density (51) through the zero state is plotted for the same choices as Figure 6 with
xgp =5and o?(t) =2(1 - e*ut)z.

6. Conclusions

In this paper, we consider two different time-inhomogeneous diffusion processes useful to model
the evolution of a population in a random environment. They arise as approximations of the solution of
deterministic Gompertz-type growth models. The first considered stochastic model is a Gompertz-type
diffusion process X (t) with growth rate (t), carrying capacity e'(!) and noise intensity o2(t), whose
conditional median coincides with the deterministic solution. The second stochastic model is a shifted
Gompertz diffusion process Y (t), restricted to the interval [0, +-00), where zero is a reflecting boundary;
the growth rate (t), the regulation function v(t) and the noise intensity ¢?(t) are time-dependent.
For both processes, particular attention is dedicated to analyzing the first-passage time problem and the
asymptotic behavior of the transition densities and of the FPT densities through a constant boundary S
in two cases: (a) for asymptotically constant functions B(t), v(t), o?(t) and for (b) for asymptotically
constant functions B(t), 0% (t) with v(t) periodic function. In particular, for the considered stochastic
models with B(t) = B and v(t) = In[a + bsin(27tt/Q)], some comparisons are carried out for (i)
0% (t) = ¢? and for (i) 0?(t) = 0 (1 — e~2P*)? in order to highlight both the role of 0?(t) and the effect
of the reflecting condition on the population growth.
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