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Abstract: Let Γ be a numerical semigroup. We associate an undirected graph G(Γ) with a numerical
semigroup Γ with vertex set {vi : i ∈ N \ Γ} and edge set {vivj ⇐⇒ i + j ∈ Γ}. In this article, we
discuss the connectedness, diameter, girth, and some other related properties of the graph G(Γ).
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1. Introduction

In the last couple of decades, researchers have been assigning graphs to various kinds of algebraic
structures, which opens new horizons to study algebraic structures with the help of graph theoretic
properties and vice versa. In the recent past, various families of graphs associated with algebraic
structures have been studied by a number of researchers (see [1–8]). The theory of the numerical
semigroup is quite useful in the study of non-negative integer solutions of a linear equation in several
variables with coefficients in N [9–13]. Applications of the numerical semigroup can be found in the
study of the parameters of algebraic geometry codes [14–16].

Algebraic combinatorics employs algebraic methods to solve combinatorial problems and vice
versa. The main feature of this subject is any useful interaction between algebra and combinatorics.
One of the research areas in this field is associating a graph with an algebraic structure and has attracted
considerable attention. It aims at exposing the relationship between algebra and graph theory and
applications of one to the other. In [17], recently, a new combinatorial problem associated with the
numerical semigroup was studied. A subset Γ ⊆ N of nonnegative integers is known as the numerical
semigroup if it satisfies the following condition:

• a + b ∈ Γ ∀ a, b ∈ Γ,
• 0 ∈ Γ,
• N \ Γ is finite.

The least positive integer in Γ, denoted by m(Γ), is known as the multiplicity of the
numerical semigroup. The elements of N \ Γ are called the gaps of Γ, and the largest of these gaps
is known as the Frobenius number, denoted by F(Γ). A numerical semigroup Γ is symmetric if and
only if x ∈ Z \ Γ implies F− x ∈ Γ, while it is known as pseudo symmetric if and only if x ∈ Z \ Γ
implies F− x ∈ Γ or x = F

2 . It is well known that every numerical semigroup is finitely generated, that
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is there exist a1, . . . , at such that Γ =< a1, . . . , at >= {n1a1 + . . . ntat : n1, . . . nt ∈ N}. Moreover, every
numerical semigroup has a unique minimal system of generators. The cardinality of a minimal system
of generators is called the embedding dimension of numerical semigroup Γ, denoted by e(Γ). This is also
well known that e(Γ) ≤ m(Γ). For more details on e numerical semigroup, see [18].

A graph G is a pair of two sets V and E, where V is the set of vertices and E is the set of edges.
The order |V| of a set V is known as the order of the graph, while the order |E| of the set E is known
as the size of the graph. The distance between any two vertices p and q of a graph G is the length
of the shortest path between them, denoted by d(p, q), while the maximum distance between any
two vertices of the graph G is known as the diameter, denoted by diam(G). The length of a shortest
cycle in the graph is referred to as the girth of the graph. An alternate sequence of vertices and edges
v1e1v2e2v3e3v4 · · · vn−1en−1vn is known as a path, denoted by Pn. A graph G is said to be complete if
their is an edge between every pair of edges, and it is doted by Kn. Any vertex p of a connected graph
G is referred to as a cut vertex, whose removal leaves the graph disconnected. A connected graph
without cut vertices is referred to as a non-separable graph. Let Γ be a numerical semigroup. We define
an undirected graph G(Γ) with vertex set {vi : i ∈ g(Γ) = N \ Γ} and edge set {vivj ⇐⇒ i + j ∈ Γ}.

The layout of this paper is as follows. Section 2 consist of four parts. We briefly describe the
concept of connectedness and completeness of G(Γ) in Section 2.1. In Section 2.2, we present some
results regarding the diameter and girth of G(Γ). In Section 2.3, we discuss the concept of the cut-point
and connectivity of G(Γ), and in Section 2.4, we classify G(Γ) for some cases. Finally Section 3
concludes the article.

2. Results and Discussions

This section has been divided into four major parts: In this first part, the connectedness and
completeness of G(Γ) are discussed. The second part consists of the diameter and girth of G(Γ).
The third part is about the cut-point and separability of G(Γ), while in the fourth part, the classification
of G(Γ) is presented.

2.1. Connectedness and Completeness of G(Γ)

In this section, we show that G(Γ) is always a connected graph. Moreover, we provide the
sufficient and necessary condition for G(Γ) to be complete.

Proposition 1. Let Γ be a numerical semigroup of multiplicity m(Γ) and Frobenius number F(Γ). Then, G(Γ)
is a connected graph with order at least m(Γ)− 1.

Proof. This is obvious, because m(Γ) is the smallest positive integer belonging to Γ and F(Γ) is the
largest gap of Γ.

Proposition 2. Let n ≥ 1 be an integer. Then, there is a numerical semigroup Γ of multiplicity two such that
Kn ' G(Γ).

Proof. For an integer n ≥ 1, consider a numerical semigroup Γ =< 2, 2n + 1 >. Then, clearly, Γ is
symmetric and g(Γ) = {1, 3, 5, . . . , 2n− 1}. As all positive even integers are in Γ and the sum of two
odd integers is an even integer, therefore, for all i, j ∈ g(Γ), i 6= j gives i + j ∈ Γ. This implies that every
two vertices of G(Γ) has an edge, and therefore, G(Γ) is isomorphic to a complete graph of order n.

Theorem 1. Let G(Γ) be a graph associated with a numerical semigroup Γ. Then, G(Γ) is complete if and only
if Γ is one of the semigroups given in Table 1.
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Table 1. List of Numerical semigroups Γ for which G(Γ) is complete.

Γ e(Γ)

< 2, 2n + 1 >, n ≥ 1 2
< 3, 4 > 2
< 3, 4, 5 > 3
< 3, 5 > 2
< 3, 5, 7 > 3

Proof. If G(Γ) is complete, then m(Γ) ≥ 4 is not possible because if m(Γ) ≥ 4, then there exist
1, 2 ∈ g(Γ) such that there is no edge between v1 and v2. Therefore, the only possibilities remaining are
either m(Γ) = 2 or m(Γ) = 3. If m(Γ) = 2, then the only possibility is that Γ =< 2, 2n + 1 >, n ≥ 1, and
if m(Γ) = 3, then either Γ =< 3, v0 > or Γ =< 3, v0, v1 >, as G(Γ) is complete; therefore, v0 must be
four or five, because if v0 ≥ 7, then there exist 1, 4 ∈ g(Γ) such that there is no edge between v1 and v4.
Now, if v0 = 4, then Γ =< 3, 4 > or Γ =< 3, 4, 5 >, and if v0 = 5, then, Γ =< 3, 5 > or Γ =< 3, 5, 7 >.
The other implication is obvious.

In Figure 1, we provide two examples of complete graphs corresponding to the numerical
semigroups < 2, 11 > and < 3, 5, 7 >.
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(a) G(< 2, 11 >) ' K5

v
1

v
2 v

4

(b) G(< 3, 5, 7 >) ' K3

Figure 1. Two examples, when G(Γ) is complete.

2.2. Diameter and Girth of G(Γ)

In this section, we present our results on the diameter and girth of G(Γ).

Proposition 3. Let G(Γ) be a graph associated with a numerical semigroup Γ. Then, diam(G(Γ)) ≤ 2.
Furthermore, if G(Γ) contains a cycle, then gr(G(Γ)) ≤ 5.

Proof. As F(Γ) ∈ g(Γ) is the largest gap, therefore F(Γ) + k ∈ Γ for all k ∈ g(Γ) and k 6= F(Γ).
This implies that vF(Γ) has an edge with every vertex vk, and therefore, d(vF(Γ), vk) = 1. Now, for any
two vertices vi and vj, i 6= j, we have:

d(vi, vj) ≤ d(vi, vF(Γ)) + d(vF(Γ), vj) ≤ 2;

this implies:
diam(G(Γ)) ≤ 2.

Moreover, if any undirected graph G has a cycle, then gr(G) ≤ 2diam(G) + 1 (see [19],
Proposition 1.3.2). Therefore, gr(G(Γ)) ≤ 5.
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Proposition 4. Let G(Γ) be a graph associated with a numerical semigroup Γ. If the order of G(Γ) ≥ 4, then
G(Γ) must contain a cycle of length three.

Proof. If G(Γ) is complete, then trivially, it contains a cycle of length three, and if G(Γ) is not a
complete graph, then m(Γ) ≥ 3 (see Theorem 1). Note that, if F(Γ) > m(Γ)− 1, then 1, m(Γ)− 1, F(Γ)
are distinct and must belong to g(Γ). Since F(Γ) ∈ g(Γ) is the largest gap, therefore vF(Γ) has an
edge with vertices v1 and vm(Γ)−1. Furthermore, v1 and vm(Γ)−1 are connected by an edge because
1 + m(Γ)− 1 = m(Γ) ∈ Γ. This gives that vertices v1, vm(Γ)−1 and vF(Γ) form a cycle of length three
(see Figure 2a). Now, if F(Γ) = m(Γ)− 1, then m(Γ) ≥ 5 because the order of G(Γ) ≥ 4. In this case,
m(Γ)− 3, m(Γ)− 2, F(Γ) are distinct and must belong to g(Γ). Note that

m(Γ)− 3 + m(Γ)− 2 = (m(Γ)− 1) + (m(Γ)− 4) = F(Γ) + (m(Γ)− 4).

This gives that vm(Γ)−2 and vm(Γ)−3 are connected by an edge, and therefore, vm(Γ)−3, vm(Γ)−2,
and vF(Γ) form a cycle of length three (see Figure 2b).

v

F(   ) m(   )-1

1

vv

(a)

m(   ) -2 F (   )

m(   ) -3v

v v

(b)

Figure 2. Induced subgraphs of g(Γ) for the cases (a) F(Γ) > m(Γ)− 1 and (b) F(Γ) = m(Γ)− 1.

Corollary 1. Let G(Γ) be a graph associated with a numerical semigroup Γ such that the order of G(Γ) ≥ 4.
Then, G(Γ) is not a bipartite graph.

Corollary 2. Let G(Γ) be a graph associated with a numerical semigroup Γ such that the order of G(Γ) ≥ 4.
Then, gr(G(Γ)) = 3.

2.3. Cut-Point and Separability of G(Γ)

In this section, we investigate the case when G(Γ) has a cut-point. Moreover, we show that if Γ is
an irreducible numerical semi-group, then G(Γ) has no cut-point.

Proposition 5. Let G(Γ) be a graph associated with a numerical semi-group Γ such that the order of G(Γ) ≥ 3.
If F(Γ) = m(Γ)− 1, then vF(Γ) is the only cut-point of G(Γ).

Proof. If F(Γ) = m(Γ) − 1, then g(Γ) = {1, 2, . . . , m(Γ) − 1}. This gives that v1 is connected only
with vm(Γ)−1; therefore, G(Γ)− {vF} has at least two disconnected components. This implies that vF
is a cut-point. Moreover, for all i ∈ g(Γ)− {F(Γ)}, vi is connected by vF(Γ) by an edge. Therefore,
G(Γ)− {vi} is always a connected graph.

Remark 1. Note that even in the case of F(Γ) > m(Γ) − 1, G(Γ) can have the cut-point. For example if
Γ =< 4, 6, 7, 9 >, then F(Γ) = 5 > 4 = m(Γ), and G(Γ) is given in the following Figure 3.
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Figure 3. F(Γ) > m(Γ)− 1, but G(Γ) has a cut-point.

Proposition 6. Let G(Γ) be a graph associated with a symmetric or pseudo-symmetric numerical semigroup.
If F(Γ) > m(Γ), then G(Γ) has no cut-point.

Proof. As F(Γ) > m(Γ) and m(Γ) ∈ Γ, therefore F(Γ)−m(Γ) ∈ g(Γ).
If Γ is symmetric, then for any i ∈ g(Γ) and i 6= F(Γ)−m(Γ), we have:

F(Γ)−m(Γ) + i = F(Γ)− (m(Γ)− i).

If m(Γ) − i < 0, then clearly F(Γ) − m(Γ) + i ∈ Γ, and if m(Γ) − i > 0, then m(Γ) − i ∈ g(Γ)
and F(Γ)− m(Γ) + i ∈ Γ, because Γ is symmetric. Note that m(Γ)− i 6= F, because F(Γ) > m(Γ).
This gives that for any i, j ∈ g(Γ), i, j 6= F(Γ)−m(Γ), F(Γ), vertices vi, vj must have two different paths
of length two, vi − vF(Γ) − vj and vi − vF(Γ)−m(Γ) − vj.

Now, if Γ is pseudo-symmetric, then F(Γ)
2 ∈ g(Γ). If F(Γ)

2 < F(Γ)−m(Γ), then for any i ∈ g(Γ)
and i 6= F(Γ)−m(Γ), we write:

F(Γ)−m(Γ) + i = F(Γ)− (m(Γ)− i).

If m(Γ)− i < 0, then clearly F(Γ)− m(Γ) + i ∈ Γ, and if m(Γ)− i > 0, then m(Γ)− i ∈ g(Γ).
Assume F(Γ) − m(Γ) + i ∈ g(Γ), then either m(Γ) − i ∈ Γ or F(Γ) − m(Γ) + i = F(Γ)

2 . Note that

m(Γ)− i ∈ Γ is not possible because m(Γ)− i ∈ g(Γ) and F(Γ)−m(Γ) + i = F(Γ)
2 is also not possible

because F(Γ)
2 < F(Γ)−m(Γ). Therefore, the only possibility is F(Γ)−m(Γ) + i ∈ Γ. This gives that

for any i, j ∈ g(Γ), i, j 6= F(Γ)−m(Γ), F(Γ), vertices vi, vj must have two different paths of length two,
vi − vF(Γ) − vj and vi − vF(Γ)−m(Γ) − vj.

Now, if F(Γ)
2 > F(Γ) − m(Γ), then for any i ∈ g(Γ) and i 6= F(Γ)

2 , consider F(Γ)
2 + i ∈ g(Γ).

As F(Γ)−m(Γ) < F(Γ)
2 < F(Γ)

2 + i < F(Γ), therefore there exist some j ∈ g(Γ), j < m(Γ), j 6= F(Γ)
2 such

that F(Γ)− j = F(Γ)
2 + i. Then, either j ∈ Γ or F(Γ)− j = F(Γ)

2 . Clearly, j ∈ Γ is not possible because

j ∈ g(Γ), and also, F(Γ)− j = F(Γ)
2 is not possible because j 6= F(Γ)

2 . Therefore, the only possibility is
F(Γ)

2 + i ∈ Γ. This gives that for any i, j ∈ g(Γ), i, j 6= F(Γ)−m(Γ), F(Γ), vertices vi, vj must have two
different paths of length two, vi − vF(Γ) − vj and vi − v F(Γ)

2
− vj.

Corollary 3. Let G(Γ) be a graph associated with a symmetric or pseudo-symmetric numerical semigroup.
Then, G(Γ) is not separable.

2.4. Classification of G(Γ)

In this section, we provide the sufficient and necessary condition of G(Γ) to be a path graph on
three vertices. Moreover, we classify all graphs for the cases when the order of G(Γ) is equal to m(Γ)
or m(Γ) + 1.

Theorem 2. Let G(Γ) be a graph associated with a numerical semigroup Γ. Then, G(Γ) ' P3 if and only if
m(Γ) = 4 and F(Γ) = 3.
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Proof. If G(Γ) ' P3, then | g(Γ) |= 3, and there are two vertices of degree one and one vertex of
degree two. Note that m(Γ) = 2 and 3 is not possible, because if m(Γ) = 2, then G(Γ) ' K3, and
if m(Γ) = 3, then g(Γ) = {1, 2, F}, where F > 3; therefore, G(Γ) ' K3. Furthermore, m(Γ) ≥ 5 is
not possible, because the order of G(Γ) = 3. This implies that the only possibility is m(Γ) = 4 and
F(Γ) = 3. The other implication is obvious.

Corollary 4. Let G(Γ) be a graph associated with a numerical semigroup Γ. If the order of G(Γ) = 3, then
either G(Γ) ' K3 or G(Γ) ' P3.

Lemma 1. Let Γ be a pseudo-symmetric numerical semigroup. Then, there is no G(Γ) of order m(Γ) + 1.

Proof. If Γ is pseudo-symmetric and the order of G(Γ) is m(Γ) + 1, then m(Γ) + 1 = F(Γ)+2
2 . This gives

F(Γ) = 2m(Γ), which is not possible.

In the following proposition, [vi : v1, v2, . . . , vk] denote that the vertices v1, v2, . . . , vk are adjacent
to the vertex vi, and we call this the adjacency vector of vertex vi.

Proposition 7. Let G(Γ) be a graph associated with a symmetric or pseudo-symmetric numerical semigroup.
If the order of G(Γ) = m(Γ) or m(Γ) + 1, then G(Γ) can be computed as follows:

Proof. Case 1: If the order of G(Γ) = m(Γ), then g(Γ) = {1, 2, . . . , m(Γ)− 1, F(Γ)}, where F(Γ) =

2m(Γ)− 1, if Γ is symmetric, and F(Γ) = 2m(Γ)− 2, if Γ is pseudo-symmetric. Now, if m(Γ) is odd,
then the adjacency vectors for the vertices of graph G(Γ) are [vi : vm(Γ)−i, vm(Γ)−i+1, . . . , vm(Γ)−1, vF(Γ)],

for 1 ≤ i ≤ m(Γ)−1
2 and [vi : vi+1, vi+2, . . . , vm(Γ)−1, vF(Γ)], and for m(Γ)−1

2 < i < m(Γ) − 1 and
[vm(Γ)−1 : vF(Γ)]. If m(Γ) is even, then the adjacency vectors for the vertices of graph G(Γ) are

[vi : vm(Γ)−i, vm(Γ)−i+1, . . . , vm(Γ)−1, vF(Γ)], for 1 ≤ i < m(Γ)
2 and [vi : vi+1, vi+2, . . . , vm(Γ)−1, vF(Γ)], and

for m(Γ)
2 ≤ i < m(Γ)− 1 and [vm(Γ)−1 : vF(Γ)].
Case 2: If the order of G(Γ) = m(Γ), then there is no G(Γ), if Γ is pseudo-symmetric (see Lemma 1),

so the only possibility is that Γ is symmetric; therefore, g(Γ) = {1, 2, . . . , m(Γ)− 1, m(Γ) + 1, F(Γ)},
where F(Γ) = 2m(Γ) + 1. If m(Γ) is odd, then the adjacency vectors for the vertices of graph G(Γ) are
[vi : vm(Γ)−i, vm(Γ)−i+1, . . . , ̂vm(Γ)−j, . . . , vm(Γ)−1, vm(Γ)+1, vF(Γ)], for 1 ≤ i ≤ m(Γ)−1

2 , where ̂vm(Γ)−j is
a vertex excluded from the adjacency vector, if i− j = 1 and [vi : vi+1, vi+2, . . . , vm(Γ)−1, vm(Γ)+1, vF(Γ)],

and for m(Γ)−1
2 < i ≤ m− 1 and [vm(Γ)+1 : vF(Γ)]. Now, if m(Γ) is even, then the adjacency vectors

for the vertices of graph G(Γ) are [vi : vm(Γ)−i, vm(Γ)−i+1, . . . , ̂vm(Γ)−j, . . . , vm(Γ)−1, vm(Γ)+1, vF(Γ)],

for 1 ≤ i < m(Γ)
2 , where ̂vm(Γ)−j is a vertex excluded from the adjacency vector, if i − j = 1 and

[vi : vi+1, vi+2, . . . , v̂i+j, vm(Γ)−1, vm(Γ)+1, vF(Γ)], for m(Γ)
2 ≤ i ≤ m(Γ) − 1, where v̂i+j is a vertex

excluded from the adjacency vector, and if 2i + j− 1 = m(Γ) and [vm(Γ)+1 : vF(Γ)].

In Figure 4, we give the classification of graphs for | g(Γ) |= m(Γ) = 5 by using Proposition 7.
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(b) Γ is symmetric

Figure 4. | g(Γ) |= m(Γ) = 5.

Corollary 5. Let G(Γ) be a graph associated with a symmetric or pseudo-symmetric numerical semigroup.
If the order of G(Γ) = m(Γ) or m(Γ) + 1, then κv(G(Γ)), and the connectivity of G(Γ) is two or three.

Proof. If the order of G(Γ) = m(Γ), then from Proposition 7, it follows that deg(v1) = 2, which
is minimum. Therefore, κv(G(Γ)) ≤ 2, but from Proposition 6, it follows that κv(G(Γ)) = 2.

If the order of G(Γ) = m(Γ) + 1, then deg(v1) = 3, which is minimum, if m(Γ) 6= 4 and
deg(v2) = 2, which is minimum, and if m(Γ) = 4. Therefore, κv(G(Γ)) = 2 or 3.

3. Conclusions

In this article, graphs associated with a numerical semigroup have been studied, and it was
proven that these graphs are connected. We also studied some properties like girth, diameter, cut-point,
etc., of these graphs. A necessary and sufficient condition has been given for a graph associated with
the numerical semigroup to be complete. Furthermore, we presented the classification of these graphs
for some special cases.

Author Contributions: All the author contributed equally.

Funding: This work was supported by the National Key R and D Program of China (No. 2018YFB1005100,
2018YFB1005104), Specialized Fund for Science and Technology Platform and Talent Team Project of Guizhou
Province (No. QianKeHePingTaiRenCai [2016]5609) and Key Supported Disciplines of Guizhou Province
Computer Application Technology (No. QianXueWeiHeZi ZDXK [2016]20).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Afkhami, M.; Khashyarmanesh, K. The intersection graph of ideals of a lattice. Note Mat. 2014, 34, 135–143.
2. Akbari, S.; Tavallaee, H.A.; Ghezelahmad, S.K. Intersection graph of submodules of a module. J. Algebra

Appl. 2012, 11, 1–8. [CrossRef]
3. Anderson, D.D.; Badawi, A. The total graph of a commutative ring. J. Algebra 2008, 320, 2706–2719. [CrossRef]
4. Beck, I. Coloring of commutative rings. J. Algebra 1998, 116, 208–226. [CrossRef]
5. Ebrahimi Atani, S.; Dolati, S.; Khoramdel, M.; Sedghi, M. Total graph of a 0-distributive lattice. Categ. Gen.

Algebr. Struct. Appl. 2018, 9, 15–27.
6. Hashemi, E.; Alhevaz, A.; Yoonesian, E. On zero divisor graph of unique product monoid rings over

Noetherian reversible ring. Categ. Gen. Algebr. Struct. Appl. 2016, 4, 95–113.
7. Shen, R. Intersection graphs of subgroups of finite groups. Czechoslov. Math. J. 2010, 60, 945–950. [CrossRef]
8. Yaraneri, E. Intersection graph of a module. J. Algebra Appl. 2013, 12, 1–30. [CrossRef]
9. Brauer, A. On a problem of partitions. Am. J. Math. 1942, 64 , 299–312. [CrossRef]
10. Brauer, A. On a problem of Frobenius. J. Reine Angew. Math. 1962, 211, 215–220.
11. Johnson, S.M. A linear diophantine problem. Can. J. Math. 1960, 12, 390–398. [CrossRef]

http://dx.doi.org/10.1142/S0219498811005452
http://dx.doi.org/10.1016/j.jalgebra.2008.06.028
http://dx.doi.org/10.1016/0021-8693(88)90202-5
http://dx.doi.org/10.1007/s10587-010-0085-4
http://dx.doi.org/10.1142/S0219498812502180
http://dx.doi.org/10.2307/2371684
http://dx.doi.org/10.4153/CJM-1960-033-6


Mathematics 2019, 7, 557 8 of 8

12. Selmer, E.S. On a linear diophantine problem of Frobenius. J. Reine Angew. Math. 1977. [CrossRef]
13. Sylvester, J.J. Mathematical questions with their solutions. Educ. Times 1884, 41, 21.
14. Feng, G.L.; Rao, T.R.N. A simple approach for construction of algebraic-geometric codes from affine plane

curves. IEEE Trans. Inform. Theory 1994, 40, 1003–1112. [CrossRef]
15. Høholdt, T.; van Lint, J.H.; Pellikaan, R. Algebraic geometry codes. In Handbook of Coding Theory; Pless, V.S.,

Huffman, W.C., Brauldi, R.A., Eds.; North-Holland: Amsterdam, The Nertherlands, 1998; Volume 1,
pp. 871–961.

16. Kirfel, C.; Pellikaan, G.R. The minimum distance of codes in an Array coming from a telescopic semigroup.
IEEE Trans. Inform. Theory 1995, 41, 1720–1732. [CrossRef]

17. Robles-Pérez, A.M.; Rosales, J.C. A combinatorial problem and numerical semigroups. Ars Math. Contemp.
2018, 15, 323–336. [CrossRef]

18. Rosales, J.C.; Garcia-Sanchez, P.A. Numerical Semigroups. Note Mat. 2014, 34, 135–143.
19. Diestel, R. Graph Theory; Springer: New York, NY, USA, 1997.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1515/crll.1977.293-294.1
http://dx.doi.org/10.1109/18.335972
http://dx.doi.org/10.1109/18.476245
http://dx.doi.org/10.26493/1855-3974.989.d15
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results and Discussions
	Connectedness and Completeness of G()
	Diameter and Girth of G()
	Cut-Point and Separability of G()
	Classification of G()

	Conclusions
	References

