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Abstract: A generic family of optimal sixteenth-order multiple-root finders are theoretically
developed from general settings of weight functions under the known multiplicity. Special cases of
rational weight functions are considered and relevant coefficient relations are derived in such a way
that all the extraneous fixed points are purely imaginary. A number of schemes are constructed based
on the selection of desired free parameters among the coefficient relations. Numerical and dynamical
aspects on the convergence of such schemes are explored with tabulated computational results and
illustrated attractor basins. Overall conclusion is drawn along with future work on a different family
of optimal root-finders.
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1. Introduction

Many nonlinear equations governing real-world natural phenomena cannot be solved exactly by
virtue of their intrinsic complexities. It would be certainly an important matter to discuss methods
for approximating such solutions of the nonlinear equations. The most widely accepted method
under general circumstances is Newton’s method, which has quadratic convergence for a simple-root
and linear convergence for a multiple-root. Other higher-order root-finders have been developed by
many researchers [1–9] with optimal convergence satisfying Kung–Traub’s conjecture [10]. Several
authors [10–14] have proposed optimal sixteenth-order simple-root finders, although their applications
to real-life problems are limited due to the high degree of their algebraic complexities. Optimal
sixteenth-order multiple-root finders are hardly found in the literature to the best of our knowledge at
the time of writing this paper. It is not too much to emphasize the theoretical importance of developing
optimal sixteenth-order multiple root-finders as well as to apply them to numerically solve real-world
nonlinear problems.

In order to develop an optimal sixteenth-order multiple-root finders, we pursue a family of
iterative methods equipped with generic weight functions of the form:

yn = xn −m f (xn)
f ′(xn)

,

zn = yn −mQ f (s)
f (yn)
f ′(xn)

= xn −m
[
1 + sQ f (s)

] f (xn)
f ′(xn)

,

wn = zn −mK f (s, u) f (zn)
f ′(xn)

= xn −m
[
1 + sQ f (s) + suK f (s, u)

] f (xn)
f ′(xn)

,

xn+1 = wn −mJ f (s, u, v) f (wn)
f ′(xn)

= xn −m
[
1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v)

] f (xn)
f ′(xn)

,

(1)
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where s =
( f (yn)

f (xn)

)1/m, u =
( f (zn)

f (yn)

)1/m, v =
( f (wn)

f (zn)

)1/m; Q f : C→ C is analytic [15] in a neighborhood

of 0, K f : C2 → C holomorphic [16,17] in a neighborhood of (0, 0), and J f : C3 → C holomorphic
in a neighborhood of (0, 0, 0). Since s, u and v are respectively one-to-m multiple-valued functions,
their principal analytic branches [15] are considered. Hence, for instance, it is convenient to treat s
as a principal root given by s = exp[ 1

m Log( f (yn)
f (xn)

)], with Log( f (yn)
f (xn)

) = Log
∣∣ f (yn)

f (xn)

∣∣+ i Arg( f (yn)
f (xn)

) for

−π < Arg( f (yn)
f (xn)

) ≤ π; this convention of Arg(z) for z ∈ C agrees with that of Log[z] command of
Mathematica [18] to be employed later in numerical experiments.

The case for m = 1 has been recently developed by Geum–Kim–Neta [19]. Many other existing
cases for m = 1 are special cases of (1) with appropriate forms of weight functions Q f , K f , and J f ;
for example, the case developed in [10] uses the following weight functions:

Q f (s) = 1
(1−s)2 ,

K f (s, u) = 1+(1−u)s2

(1−s)2(1−u)(1−su)2 ,

J f (s, u, v) = −1+2su2(v−1)+s4(u−1)u2(v−1)(uv−1)+s2[uv−1−u3(v2−1)]
(1−s)2(u−1)(su−1)2(v−1)(uv−1)(suv−1)2 .

(2)

One goal of this paper is to construct a family of optimal sixteenth-order multiple-root finders by
characterizing the generic forms of weight functions Q f (s), K f (s, u), and J f (s, u, v). The other goal is
to investigate the convergence behavior by exploring their numerical behavior and dynamics through
basins of attractions [20] underlying the extraneous fixed points [21] when f (z) = (z− a)m(z− b)m is
applied. In view of the right side of final substep of (1), we can conveniently locate extraneous fixed
points from the roots of the weight function m[1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v)].

A motivation undertaking this research is to investigate the local and global characters on the
convergence of proposed family of methods (1). The local convergence of an iterative method for
solving nonlinear equations is usually guaranteed with an initial guess taken in a sufficiently close
neighborhood of the sought zero. On the other hand, effective information on its global convergence
is hardly achieved under general circumstances. We can obtain useful information on the global
convergence from attractor basins through which relevant dynamics is worth exploring. Especially
the dynamics underlying the extraneous fixed points (to be described in Section 3) would influence
the dynamical behavior of the iterative methods by the presence of possible attractive, indifferent,
repulsive, and other chaotic orbits. One way of reducing such influence is to control the location of the
extraneous fixed points. We prefer the location to be the imaginary axis that divides the entire complex
plane into two symmetrical half-planes. The dynamics underlying the extraneous fixed points on the
imaginary axis would be less influenced by the presence of the possible periodic or chaotic attractors.

The main theorem is presented in Section 2 with required constraints on weight functions, Q f ,
K f , and J f to achieve the convergence order of 16. Section 2 discusses special cases of rational
weight functions. Section 3 extensively investigates the purely imaginary extraneous fixed points and
investigates their stabilities. Section 4 presents numerical experiments as well as the relevant dynamics,
while Section 5 states the overall conclusions along with the short description of future work.

2. Methods and Special Cases

A main theorem on the convergence of (1) is established here with the error equation and
relationships among generic weight functions Q f (s), K f (s, u), and J f (s, u, v):

Theorem 1. Suppose that f : C → C has a multiple root α of multiplicity m ≥ 1 and is analytic in a

neighborhood of α. Let cj = m!
(m−1+j)!

f (m−1+j)(α)
f (m)(α)

for j = 2, 3, · · · . Let x0 be an initial guess selected in
a sufficiently small region containing α. Assume L f : C → C is analytic in a neighborhood of 0. Let

Qi = 1
i!

di

dsi Q f (s)
∣∣
(s=0) for 0 ≤ i ≤ 6. Let K f : C2 → C be holomorphic in a neighborhood of (0, 0).

Let J f : C3 → C be holomorphic in a neighborhood of (0, 0, 0). Let Kij = 1
i!j!

∂i+j

∂si∂uj K f (s, u)
∣∣
(s=0,u=0) for



Mathematics 2019, 7, 562 3 of 26

0 ≤ i ≤ 12 and 0 ≤ j ≤ 6. Let Jijk = 1
i!j!k!

∂i+j+k

∂si∂uj∂vj J f (s, u, v)
∣∣
(s=0,u=0,v=0) for 0 ≤ i ≤ 8, 0 ≤ j ≤ 4 and

0 ≤ k ≤ 2. If Q0 = 1, Q1 = 2, K00 = 1, K10 = 2, K01 = 1, K20 = 1 + Q2, K11 = 4, K30 = −4 + 2Q2 + Q3,
J000 = 1, J100 = 2, J200 = 1 + Q2, J010 = 1, J110 = 4, J300 = −4 + 2Q2 + Q3, J001 = 1, J020 = K02, J210 =

1 + K21, J400 = K40, J101 = 2, J120 = 2 + K12, J310 = −4 + K31 + 2Q2, J500 = K50, J011 = 2, J201 =

1 + Q2, J030 = −1 + K02 + K03, J220 = 1 + K21 + K22 − Q2, J410 = −3 + K40 + K41 + Q2 − Q4, J600 =

K60, J111 = 8, J301 = −4 + 2Q2 + Q3, J130 = −4 + 2K02 + K12 + K13, J320 = −6 + 2K21 + K31 + K32 −
2Q2 − Q3, J510 = 6 + 2K40 + K50 + K51 − 3Q3 − 2Q4 − Q5, J700 = K70 are fulfilled, then Scheme (1)
leads to an optimal class of sixteenth-order multiple-root finders possessing the following error equation: with
en = xn − α for n = 0, 1, 2, · · · ,

en+1 =
1

3456m15 c2(ρc2
2 − 2mc3)

[
β0c4

2 + β1c2
2c3 + 12m2(K02 − 1)c2

3 − 12m2c2c4
]
Ψ e16

n + O(e17
n ), (3)

where ρ = 9+m− 2Q2, β0 = (−431+ 12K40− 7m2 + 6m(−17+Q2)+ 102Q2− 24Q3− 12Q4 + 6K21ρ+

3K02ρ2), β1 = −12m(−17+ K21− 2m + Q2 + K02ρ), Ψ = ∆1c8
2 + ∆2c6

2c3 + ∆3c5
2c4 + ∆4c3

2c3c4 + ∆5c4
2 +

∆6c2
2 + ∆7c4

3 + ∆8c2c2
3c4,

∆1 = (−255124 + 144J800 − 144K80 − 122577m− 23941m2 − 2199m3 − 79m4 + 24K40(472 + 93m +

5m2)− 72(17 + m)Q3
2 − 576Q2

3 + Q3(48(−566 + 6K40 − 117m− 7m2)− 576Q4) + 24(−485 + 6K40 −
108m − 7m2)Q4 − 144Q2

4 + Q2
2(36(−87 + 14m + m2) + 288Q3 + 144Q4) + Q2(18(5300 + 1529m +

172m2 + 7m3 − 8K40(18 + m)) + 144(35 + m)Q3 + 72(29 + m)Q4) + 18ρ3σ + 6ρ(12J610 − 12(2K50 +

K60 + K61 − 2Q5 − Q6) + J211(−12K40 + σ2) + 2K21(−J002σ2 + σ3 + 6η0)) + ρ2(36J420 − 36J211K21 +

36J002K2
21 − 72K31 − 36J021K40 − 36K41 − 36K42 + 3J021σ2 + 6K02(−6J401 + 12J002K40 − J002σ2 + σ3)) +

12J401σ7 + J002σ2
7 + 9ρ4τ),

∆2 = m(144(Q3
2 − 2Q5 − Q6) + 288Q3(−K21 + (39 + 4m) − K02ρ) + 144Q2

2(−2K21 − (7 +

m) − K02ρ) + 144Q4(−K21 + 4(9 + m) − K02ρ) + Q2(144K21(58 + 5m) − 36(1529 − 8K40 + m(302 +

17m))− 288Q3 − 144Q4 + 144K02(38 + 3m)ρ)− 108ρ2σ + 6(40859− 24J610 + 48K50 + 24K60 + 24K61 +

24K40(−31 + J211 − 3m) + m(14864 + m(1933 + 88m)) − 2J211σ8) − 72ρ3τ − 24ρ2(J002σ2 − 6η0) −
24K21(1309 + m(267 + 14m) − J002σ8 + 6η0) + ρ(144J211K21 − 144J002K2

21 + 12(−12J420 + 12(2K31 +

J021K40 + K41 + K42)− J021σ4)− 12K02(1781 + m(360 + 19m)− 2J002σ4 + 12η0))),
∆3 = 12m2(6(63 + 5m)Q2− 48Q3− 24Q4 + 6(J211 + K21− 2J002K21)ρ− (1645− 12J401 + 12(−1 +

2J002)K40 + 372m + 23m2 − 2J002σ2) + 3ρ2σ5),
∆4 = 144m3(−3Q2 + (53− J211 + (−1 + 2J002)K21 + 6m− 2J002ρ2)− ρσ5),
∆5 = 72ρm3c5 + 12m2c2

3((−12K21(J211 − 4(10 + m)) + K02(4778 − 12J401 + m(990 + 52m)) +

3(−1929 + 4J401 + 4J420 − 8K31 + 8K40 − 4K41 − 4K42 − 476m − 31m2 + 2J211(43 + 5m) + J021(115 +

22m+m2)))− 6(−88+ 121J021 + 4J211 + 232K02 + 8K21 +(−10+ 13J021 + 22K02)m+ 2J002(51− 4K21 +

5m))Q2 + 12(1 + J002 + 3J021 + 6K02)Q2
2 + 18ρσ + 18ρ2τ + Q4(12(−2 + K02) + 12η1) + Q3(24(−2 +

K02) + 24η1)− J021η2 + η1((2165− 12K40 + m(510 + 31m)) + η2)),
∆6 = 72m3(2(−1 + J002)mc2

4 − 2mc3c5 + c3
3(2Q2(−1 + 6K02)− 2K02(49− J211 + 5m + 2J002ρ3) +

(85− 2J211 − 2J230 + 4K12 − 4K21 + 4J002(K21 − ρ2) + 2K22 + 2K23 + 11m + 2J021ρ3)− 4ρτ)),
∆7 = 144m4(−1 + J002 + J021 + J040− K03− K04 + (2− η1)K02 + J002K2

02), ∆8 = 144m4(−3 + η1 +

(1− 2J002)K02),
τ = J040 − J021K02 + J002K2

02 − K03 − K04, ρ2 = 17 + 2m−Q2, ρ3 = −26 + K21 − 3m + 3Q2, σ =

J230− J211K02− 2K12− J021K21 + 2J002K02K21−K22−K23, σ2 = 431+ 7m2− 6m(−17+ Q2)− 102Q2 +

24Q3 + 12Q4, σ3 = 472 + 5m2 + m(93− 6Q2)− 108Q2 + 12Q3 + 6Q4, σ4 = 890 + 13m2 − 231Q2 +

6Q2
2 − 3m(−69 + 7Q2) + 24Q3 + 12Q4, σ5 = J021 + K02 − 2J002K02, σ6 = −1255 + 6K40 − 288m −

17m2 + 363Q2 + 39mQ2 − 18Q2
2 − 12Q3 − 6Q4, σ7 = 431− 12K40 + 7m2 − 6m(−17 + Q2)− 102Q2 +

24Q3 + 12Q4, σ8 = 1349 + 19m2 + m(312− 36Q2) − 360Q2 + 12Q2
2 + 24Q3 + 12Q4, η0 = −J401 +

2J002K40, η1 = 2J002 + J021, η2 = 6K2
21 − 6K21(43 + 5m) + 2σ6K02.
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Proof. Since Scheme (1) employs five functional evaluations, namely, f ′(xn), f (xn), f (yn), f (zn),
and f (wn), optimality can be achieved if the corresponding convergence order is 16. In order to induce
the desired order of convergence, we begin by the 16th-order Taylor series expansion of f (xn) about α:

f (xn) =
f ′(α)
m!

em
n {1 +

17

∑
i=2

ci ei−1
n + O(e17

n )}. (4)

It follows that

f ′(xn) =
f ′(α)

(m− 1)!
em−1

n {1 +
16

∑
i=2

i
m + i− 1

m
ci ei−1

n + O(e16
n )}. (5)

For brevity of notation, we abbreviate en as e. Using Mathematica [18], we find:

yn = xn −m
f (xn)

f ′(xn)
= α +

c2

m
e2 +

(−(m + 1)c2
2 + 2mc3)

m2 e3 +
Y4

m3 e4 +
16

∑
i=5

Yi

mi−1 ei
n + O(e17), (6)

where Y4 = (1 + m)2c3
2 −m(4 + 3m)c2c3 + 3m2c4 and Yi = Yi(c2, c3, · · · , c16) for 5 ≤ i ≤ 16.

After a lengthy computation using the fact that f (yn) = f (xn)|en→(yn−α), we get:

s =
(

f (yn)

f (xn)

)1/m

=
c2

m
e +

(−(m + 2)c2
2 + 2mc3)

m2 e2 +
γ3

2m3 e3 +
15

∑
i=4

Ei ei + O(e16), (7)

where γ3 = (7 + 7m + 2m2)c3
2 − 2m(7 + 3m)c2c3 + 6m2c4, Ei = Ei(c2, c3, · · · , c16) for 4 ≤ i ≤ 15.

In the third substep of Scheme (1), wn = O(e8) can be achieved based on Kung–Traub’s conjecture.
To reflect the effect on wn from zn in the second substep, we need to expand zn up to eighth-order
terms; hence, we carry out a sixth-order Taylor expansion of Q f (s) about 0 by noting that s = O(e)

and f (yn)
f ′(xn)

= O(e2):

Q f (s) = Q0 + Q1s + Q2s2 + Q3s3 + Q4s4 + Q5s5 + Q6s6 + O(e7), (8)

where Qj =
1
j!

dj

dsj Q f (s) for 0 ≤ j ≤ 6. As a result, we come up with:

zn = xn −mQ f (s)
f (yn)

f ′(xn)
= α +

(1−Q0)

m
e2 +

µ3

m2 e3 +
16

∑
i=4

Wi ei + O(e17),

where µ3 = (−1+ m(Q0− 1) + 3Q0−Q1)c2
2− 2m(Q0− 1)c3 and Wi = Wi(c2, c3, · · · , c16, Q0, · · · , Q6)

for 4 ≤ i ≤ 16. Selecting Q0 = 1 and Q1 = 2 leads us to an expression:

zn = α +
c2(ρc2

2 − 2mc3)

m2 e4 +
16

∑
i=5

Wi ei + O(e17). (9)

By a lengthy computation using the fact that f (zn) = f (xn)|en→(zn−α), we deduce:

u =

(
f (zn)

f (yn)

)1/m

=
(ρc2

2 − 2mc3)

2m2 e2 +
δ3

3m3 e3 +
16

∑
i=4

Gi ei + O(e17), (10)

where δ3 = (49 + 2m2 + m(27 − 6Q2) − 18Q2 + 3Q3)c3
2 − 6mρc2c3 + 6m2c4 and Gi =

Gi(c2, c3, · · · , c16, Q2, · · · , Q6) for 4 ≤ i ≤ 16.
In the last substep of Scheme (1), xn+1 = O(e16) can be achieved based on Kung-Traub’s conjecture.

To reflect the effect on xn+1 from wn in the third substep, we need to expand wn up to sixteenth-order
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terms; hence, we carry out a 12th-order Taylor expansion of K f (s, u) about (0, 0) by noting that:

s = O(e), u = O(e2) and f (zn)
f ′(xn)

= O(e4) with Kij = 0 satisfying i + 2j > 12 for all 0 ≤ i ≤ 12, 0 ≤ j ≤ 6:

K f (s, u) = K00 + K10s + K20s2 + K30s3 + K40s4 + K50s5 + K60s6 + K70s7 + K80s8 + K90s9 + K100s10 + K110s11+

K120s12 + (K01 + K11s + K21s2 + K31s3 + K41s4 + K51s5 + K61s6 + K71s7 + K81s8 + K91s9 + K101s10)u+
(K02 + K12s + K22s2 + K32s3 + K42s4 + K52s5 + K62s6 + K72s7 + K82s8)u2+

(K03 + K13s + K23s2 + K33s3 + K43s4 + K53s5 + K63s6)u3+

(K04 + K14s + K24s2 + K34s3 + K44s4)u4 + (K05 + K15s + K25s2)u5 + K06u6 + O(e13).

(11)

Substituting zn, f (xn), f (yn), f (zn), f ′(xn), and K f (s, u) into the third substep of (1) leads us to:

wn = zn −mK f (s, u) · f (zn)

f ′(xn)
= α +

(1− K00)c2(ρc2
2 − 2mc3)

2m3 e4 +
16

∑
i=5

Γi ei + O(e17), (12)

where Γi = Γi(c2, c3, · · · , c16, Q2, · · · , Q6, Kj`), for 5 ≤ i ≤ 16, 0 ≤ j ≤ 12 and 0 ≤ ` ≤ 6. Thus K00 = 1
immediately annihilates the fourth-order term. Substituting K00 = 1 into Γ5 = 0 and solving for K10,
we find:

K10 = 2. (13)

Continuing the algebraic operations in this manner at the i-th (6 ≤ i ≤ 7) stage with known
values of Kj`, we solve Γi = 0 for remaining Kj` to find:

K20 = 1 + Q2, K01 = 1. (14)

Substituting K00 = 1, K10 = 2, K20 = 1 + Q2, K01 = 1 into (12) and simplifying we find:

v =

(
f (wn)

f (zn)

)1/m

= −
[
β0c4

2 + β1c2
2c3 + 12m2(K02 − 1)c2

3 − 12m2c2c4
]

12m4 e4 +
16

∑
i=5

Ti ei + O(e17), (15)

where β0 and β1 are described in (3) and Ti = Ti(c2, c3, · · · , c16, Q2, · · · , Q6) for 5 ≤ i ≤ 16.
To compute the last substep of Scheme (1), it is necessary to have an eighth-order Taylor expansion

of J f (s, u, v) about (0, 0, 0) due to the fact that f (wn)
f ′(xn)

= O(e8). It suffices to expand J f up to eighth-,

fourth-, and second-order terms in s, u, v in order, by noting that s = O(e), u = O(e2), v = O(e4) with
Jijk = 0 satisfying i + 2j + 4k > 8 for all 0 ≤ i ≤ 8, 0 ≤ j ≤ 4, 0 ≤ k ≤ 2:

J f (s, u, v) = J000 + J100s + J200s2 + J300s3 + J400s4 + J500s5 + J600s6 + J700s7 + J800s8 + (J010 + J110s + J210s2+

J310s3 + J410s4 + J510s5 + J610s6)u + (J020 + J120s + J220s2 + J320s3 + J420s4)u2 + (J030 + J130s + J230s2)u3+

J040u4 + (J001 + J101s + J201s2 + J301s3 + J401s4 + (J011 + J111s + J211s2)u + J021u2)v + J002v2.
(16)

Substituting wn, f (xn), f (yn), f (zn), f (wn), f ′(xn) and J f (s, u, v) in (1), we arrive at:

xn+1 = wn −mJ f (s, u, v) · f (wn)

f ′(xn)
= α + φe8 +

16

∑
i=9

Ωi ei + O(e17), (17)

where φ = 1
24m7 (1 − J000)c2(ρc2

2 − 2mc3)
[
β0c4

2 + β1c2
2c3 + 12m2(K02 − 1)c2

3 − 12m2c2c4
]

and
Ωi =Ωi(c2, c3, · · · , c16, Q2, · · · , Q6, Kδθ , Jjk`), for 9 ≤ i ≤ 16, 0 ≤ δ ≤ 12, 0 ≤ θ ≤ 6, 0 ≤ j ≤ 8,
0 ≤ k ≤ 4, 0 ≤ ` ≤ 2.

Since J000 = 1 makes φ = 0, we substitute J000 = 1 into Ω9 = 0 and solve for J100 to find:

J100 = 2. (18)



Mathematics 2019, 7, 562 6 of 26

Continuing the algebraic operations in the same manner at the i-th (10 ≤ i ≤ 15) stage with
known values of Jjk`, we solve Ωi = 0 for remaining Jjk` to find:



J200 = 1 + Q2, J010 = 1, J110 = 4, J300 = −4 + 2Q2 + Q3, J001 = 1, J020 = K02, J210 = 1 + K21,
J400 = K40, J101 = 2, J120 = 2 + K12, J310 = −4 + K31 + 2Q2, J500 = K50, J011 = 2, J201 = 1 + Q2,
J111 = 8, J030 = −1 + K02 + K03, J220 = 1 + K21 + K22 −Q2, J410 = −3 + K40 + K41 + Q2 −Q4,
J301 = −4 + 2Q2 + Q3, J130 = −4 + 2K02 + K12 + K13, J320 = −6 + 2K21 + K31 + K32 − 2Q2 −Q3,
J600 = K60, J510 = 6 + 2K40 + K50 + K51 − 3Q3 − 2Q4 −Q5, J700 = K70.

(19)

Upon substituting Relation (19) into Ω16, we finally obtain:

Ω16 =
1

3456m15 c2(ρc2
2 − 2mc3)

[
β0c4

2 + β1c2
2c3 + 12m2(K02 − 1)c2

3 − 12m2c2c4
]
Ψ, (20)

where ρ, β0, β1, and Ψ as described in (3). This completes the proof.

Remark 1. Theorem 1 clearly reflects the case for m = 1 with the same constraints on weight functions
Q f , K f , J f studied in [19].

Special Cases of Weight Functions

Theorem 1 enables us to obtain Q f (s), K f (s, u), and J f (s, u, v) by means of Taylor polynomials:



Q f (s) = 1 + 2s + Q2s2 + Q3s3 + Q4s4 + Q5s5 + Q6s6 + O(e7),

K f (s, u) = 1 + 2s + (1 + Q2)s2 + (2Q2 + Q3 − 4)s3 + K40s4 + K50s5 + K60s6 + K70s7 + K80s8

+K90s9 + K100s10 + K110s11 + K120s12 + (1 + 4s + K21s2 + K31s3 + K41s4 + K51s5 + K61s6

+K71s7 + K81s8 + K91s9 + K101s10)u + (K02 + K12s + K22s2 + K32s3 + K42s4 + K52s5

+K6s6 + K72s7 + K82s8)u2 + (K03 + K13s + K23s2 + K33s3 + K43s4 + K53s5 + K63s6)u3

+(K04 + K14s + K24s2 + K34s3 + K44s4)u4 + (K05 + K15s + K25s2)u5 + K06u6 + O(e13),

J f (s, u, v) = 1 + 2s + (1 + Q2)s2 + (2Q2 + Q3 − 4)s3 + K40s4 + K50s5 + K60s6 + K70s7 + J800s8

+(1 + 4s + (1 + K21)s2 + (K31 + 2Q2 − 4)s3 + (K40 + K41 − 3 + Q2 −Q4)s4 + (2K40 + K50 + K51 + 6
−3Q3 − 2Q4 −Q5)s5 + J610s6)u + (K02 + (2 + K12)s + (K21 + K22 −Q2 + 1)s2 + (2K21 + K31 + K32 − 6
−2Q2 −Q3)s3 + J420s4)u2 + (K02 + K03 − 1 + (2K02 + K12 + K13 − 4)s + J230s2)u3 + J040u4

+(1 + 2s + (1 + Q2)s2 + (2Q2 + Q3 − 4)s3 + J401s4 + (2 + 8s + J211s2)u + J021u2)v + J002v2 + O(e9),

(21)

where parameters Q2–Q6, K40, K50, K60, K70, K80, K90, K100, K110, K120, K21, K31, K41, K51, K61, K71, K81,
K91, K101, K02, K12, K22, K32, K42, K52, K62, K72, K82, K03, K13, K23, K33, K43, K53, K63, K04, K14, K24, K34, K44,
K05, K15, K25, K06 and J040, J002, J021, J211, J230, J401, J420, J610, J800 may be free.

Although various forms of weight functions Q f (s), K f (s, u) and J f (s, u, v) are available, in the
current study we limit ourselves to all three weight functions in the form of rational functions, leading
us to possible purely imaginary extraneous fixed points when f (z) = (z2 − 1)m is employed. In the
current study, we will consider two special cases described below:

The first case below will represent the best scheme, W3G7, studied in [19] only for m = 1.
Case 1: 

Q f (s) = 1
1−2s ,

K f (s, u) = Q f (s) ·
(s−1)2

1−2s−u+2s2u ,

J f (s, u, v) = K f (s, u) · 1+∑3
i=1 qisi+u ∑8

i=4 qisi−4+u2 ∑14
i=9 qisi−9+u3 ∑21

i=15 qisi−15

A1(s,u)+v·(∑25
i=22 risi−22+u(r26+r27s+λs2)

,

(22)
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where

q9 = q12 = q13 = q17 = q18 = q19 = q20 = r9 = r10 = r19 = r20 = 0,
q1 = −3055820263252−76497245λ

142682111242 , q2 = 56884034112404+44614515451λ
285364222484 ,

q3 = −45802209949332−44308526471λ
142682111242 , q4 = − 3(17778426888128+67929066997λ)

1426821112420 ,
q5 = 2(21034820227211+132665343294λ)

356705278105 , q6 = −1589080655012451+134087681464λ
142682111242 ,

q7 = 2(−780300304419180+71852971399λ)
71341055621 , q8 = 12288(−727219117761+128167952λ)

71341055621 ,
q10 = 2, q11 = 2(−741727036224277+126275739062λ)

71341055621 ,
q14 = − 8192(−3964538065856+615849113λ)

71341055621 , q15 = 8(−226231159891830+34083208621λ)
71341055621 ,

q16 = − 24(−908116719056544+136634733499λ)
356705278105 , q21 = 131072(−918470889768+136352293λ)

356705278105 ,
r1 = q1, r2 = q2, r3 = q3, r4 = q4, r5 = q5, r6 = q6 − 1, r7 = q7 − q1 − 2, r8 = q8 +

q3
2 ,

r11 = −29558910226378916+5256346708371λ
1426821112420 , r12 = −55018830261476−109759858153λ

142682111242 ,
r13 = 25(−75694849962572+11301475999λ)

71341055621 , r14 = − 4096(−1500792372416+228734011λ)
15508925135 ,

r15 = q15, r16 = 43641510974266076−6354680006961λ
713410556210 , r17 = − 2(−1060205894022116+202907726307λ)

71341055621 ,
r18 = 2(−2870055173156756+475573395275λ)

71341055621 , r21 = q21
2 , r22 = −1, r23 = −q1, r24 = −q2,

r25 = −q3, r26 = −1− q4, r27 = −2− q1 − q5, λ = 1353974063793787
212746858830 ,

(23)

and A1(s, u) = 1 + ∑3
i=1 risi + u ∑8

i=4 risi−4 + u2 ∑14
i=9 risi−9 + u3 ∑21

i=15 risi−15.
As a second case, we will consider the following set of weight functions:

Case 2: 
Q f (s) = 1

1−2s ,

K f (s, u) = Q f (s) ·
(s−1)2

1−2s−u+2s2u ,

J f (s, u, v) =
1+∑3

i=1 qisi+u ∑8
i=4 qisi−4+u2 ∑14

i=9 qisi−9+u3 ∑19
i=15 qisi−15

A0(s,u)+v·(∑23
i=20 risi−20+u ∑28

i=24 risi−24+r29u2)
,

(24)

where A0(s, u) = 1 + ∑3
i=1 risi + u ∑8

i=4 risi−4 + u2 ∑14
i=9 risi−9 + u3 ∑19

i=15 risi−15 and determination of the 48
coefficients qi, ri of J f is described below. Relationships were sought among all free parameters
of J f (s, u, v), giving us a simple governing equation for extraneous fixed points of the proposed family
of methods (1).

To this end, we first express s, u and v for f (z) = (z2 − 1)m as follows with t = z2:

s =
1
4
(1− 1

t
), u =

1
4
· (t− 1)2

(t + 1)2 , v =
(t− 1)4

4(1 + 6t + t2)2 . (25)

In order to obtain a simple form of J f (s, u, v), we needed to closely inspect how it is connected
with K f (s, u). When applying to f (z) = (z2 − 1)m, we find K f (s, u) with t = z2 as shown below:

K f (s, u) =
4t(1 + t)

t2 + 6t + 1
. (26)

Using the two selected weight functions Q f , K f , we continue to determine coefficients qi, ri of
J f yielding a simple governing equation for extraneous fixed points of the proposed methods when
f (z) = (z2 − 1)m is applied. As a result of tedious algebraic operations reflecting the 25 constraints
(with possible rank deficiency) given by (18) and (19), we find only 23 effective relations, as follows:

q1 = 1
4 (−8− r23), q2 = −3− 2q1, q3 = 2 + q1, q4 = −r24, q5 = 2q4 − r25,

q6 = 5 + 7q3
4 + 13q4

4 + 9q5
8 −

5q9
4 −

25q10
8 + 5q12

8 + r8
4 −

5r11
4 −

5r12
8 ,

q7 = − 4q3
5 + 4q4

5 + q5
5 −

2q6
5 −

2r8
5 , q8 = q4 +

q5
2 −

q7
2 , q9 = q15 − r15,

q10 = −2q4 − 2q15 + q16 − r16, q11 = −6 + q5
2 −

5q7
2 + q9 + 2q10 − r8 + r11,

r1 = −2 + q1, r2 = 2(1 + q2), r3 = 4q3, r4 = −1 + q4, r5 = 2− q3 − 2q4 + q5,
r6 = 1 + 2q3 − q4 − 2q5 + q6, r7 = −2 + 5q3 − 4q4 − 2q5 + 6q7 + 2r8, r9 = −q4 + q9,
r10 = −2− q5 − 2q9 + q10, r20 = −1, r21 = 4− q3, r22 = −4(1− q3).

(27)
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The three relations, J500 = K50, J600 = K60, and J700 = K70 give one relation r22 = −4(1− q3).

Due to 23 constraints in Relation (27), we find that 18 free parameters among 48 coefficients of
J f in (24) are available. We seek relationships among the free parameters yielding purely imaginary
extraneous fixed points of the proposed family of methods when f (z) = (z2 − 1)m is applied.

To this end, after substituting the 23 effective relations given by (27) into J f in (24) and by applying
to f (z) = (z2 − 1)m, we can construct H(z) = 1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v) in (1) and seek
its roots for extraneous fixed points with t = z2:

H(z) =
A · G(t)

t(1 + t)2(1 + 6t + t2) ·W(t)
, (28)

whereA is a constant factor, G(t) = ∑20
i=0 giti, with g0 = −q14, g1 = −16− 2q12− 4q13− 8q14− 16q15 +

10q16 − 4r8 + 4r11 + 2r12 − 1614 − 4r15 − 10r16 + 3r20 + 60r21 + 10r22, gi = gi(q12, r12, · · · , r25), for 2 ≤
i ≤ 20 and W(t) = ∑15

i=0 witi, with w0 = −r14, w1 = 16r8 + 4r13 − 5r14 + 4r25, wi =

wi(q12, r12, · · · , r25), for 2 ≤ i ≤ 15. The coefficients of both polynomials, G(t) and W(t), contain
at most 18 free parameters.

We first observe that partial expressions of H(z) with t = z2, namely, 1 + sQ f (s) = 1+3t
2(1+t) , 1 +

sQ f (s)+ suK f (s, u) = 1+21t+35t2+7t3

4(1+t)(1+6t+t2)
and the denominator of (28) contain factors t, (1+ 3t), (1+ t), (1+

6t + t2), (1 + 21t + 35t2 + 7t3) when f (z) = (z2 − 1)m is applied. With an observation of presence of
such factors, we seek a special subcase in which G(t) may contain all the interested factors as follows:

G(t) = t(1 + 3t)(1 + t)λ(1 + 6t + t2)β(1 + 21t + 35t2 + 7t3) · (1 + 10t + 5t2)(1 + 92t + 134t2 + 28t3 + t4) ·Φ(t), (29)

where Φ(t) is a polynomial of degree (9− (λ+ 2β)), with λ ∈ {0, 1, 2}, β ∈ {1, 2, 3} and 1 ≤ λ+ β ≤ 3;
two polynomial factors (1 + 10t + 5t2) and (1 + 92t + 134t2 + 28t3 + t4) were found in Case 3G of the
previous study done by Geum–Kim–Neta [19]. Notice that factors (1 + 6t + t2), (1 + 21t + 35t2 + 7t3),
(1 + 10t + 5t2) and (1 + 92t + 134t2 + 28t3 + t4) of G(t) are all negative, i.e., the corresponding
extraneous fixed points are all purely imaginary.

In fact, the degree of Φ(t) will be decreased by annihilating the relevant coefficients
containing free parameters to make all its roots negative. We take the 6 pairs of (λ, β) ∈
{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 1)} to form 6 subcases named as Case 2A–2F in order. The lengthy
algebraic process eventually leads us to additional constraints to each subcase described below:
Case 2A: (λ, β) = (0, 1)



q12

q15

r8

r11

r12

r13

r14

r15

r16

r18

r23

r24



=



−3 9 9 13
2

7
2 −13 0 0 −12 − 23

2 −13 −134
0 − 1

2 −
1
4 −

1
8 −

1
16 0 0 0 0 0 0 0

− 7
4

17
4 5 59

16 2 − 1
4

1
16 −

181
28 −

699
112 −

99
16 −

1807
224 −

1163
16

− 11
4 34 171

4
125

4
159
8 −3 3

4 −
291
7 −

274
7 −

75
2 −

629
14 −454

− 11
2 14 23

2
35
4

9
2 1 − 1

4 −
255
14 −

425
28 −14 − 821

56 −
693
4

7 −30−33− 49
2 −

29
2 1 − 1

2
297
7

537
14 37 1199

28
937
2

0 1 1 3
4

1
2 0 0 − 9

7 −
15
14 −1 − 27

28 − 27
2

1
2 −

21
4 −

23
4 −

67
16 −

21
8

1
4 −

1
16

165
28

599
112

79
16

1291
224

967
16

− 3
2 16 35

2
51
4 8 −1 1

4 −
241
14 −

439
28 −

29
2 −

947
56 −

707
4

2 −21−23− 67
4 −

21
2 0 −1 152

7
279
14

37
2

603
28

447
2

0 0 0 0 0 0 0 − 2
7 − 4

7 −1 − 12
7 0

0 0 0 0 0 0 0 − 2
7 −

1
14 0 1

28 − 1
2





q13

q16

q17

q18

q19

r17

r19

r25

r26

r27

r28

r29



+



−74
0
− 2207

56
− 1900

7
− 1355

14
1929

7
− 61

7
1987

56
− 1453

14
919
7
16
7
2
7



(30)

and q14 = 0. These 12 additional constraints q12, q15, r8, r11, r12, r13, r14, r15, r16, r18, r23, r24 are expressed
in terms of 12 parameters q13, q16, q17, q18, q19, r17, r19, r25, r26, r27, r28, r29 that are arbitrarily free for
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the purely imaginary extraneous fixed points. Those 12 free parameters are chosen at our disposal.
Then, using Relations (27) and (30), the desired form of J f (s, u, v) in (24) can be constructed.
Case 2B: (λ, β) = (0, 2)

q12

q15

r8

r11

r12

r13

r14

r15

r16

r18

r23

r24

r25

r26



=



−3 9 9 13
2

7
2 0 0 1

6 − 1
3 − 178

3
0 − 1

2 − 1
4 − 1

8 −
1

16 0 0 0 0 0
− 7

4
17
4 5 59

16 2 − 1
4

1
16 − 1

48 −
161
96 −

917
24

− 11
4 34 171

4
125
4

159
8 −3 3

4
5
6 − 25

6 − 668
3

− 11
2 14 23

2
35
4

9
2 1 − 1

4
1
6

61
24 − 317

6
7 −30 −33 − 49

2 −
29
2 1 − 1

2 0 7
4 217

0 1 1 3
4

1
2 0 0 0 1

4 −5
1
2 − 21

4 −
23
4 −

67
16 −

21
8

1
4 − 1

16 −
11
48

5
96

617
24

− 3
2 16 35

2
51
4 8 −1 1

4
2
3 − 5

24 −
455
6

2 −21 −23 − 67
4 −

21
2 0 −1 − 5

6
5

12
293
3

0 0 0 0 0 0 0 − 1
3 − 4

3 − 4
3

0 0 0 0 0 0 0 0 1
4 3

0 0 0 0 0 0 0 1
3 − 2

3 − 44
3

0 0 0 0 0 0 0 − 4
3 − 1

3
29
3





q13

q16

q17

q18

q19

r17

r19

r27

r28

r29



+



−10
0
− 87

8
−76

25
2

57
−1
43
8
− 33

2
23
0
4
−16
12



(31)

and q14 = 0. These 14 additional constraints are expressed in terms of 10 parameters
q13, q16, q17, q18, q19, r17, r19,r27, r28, r29 that are arbitrarily free for the purely imaginary extraneous
fixed points. Those 10 free parameters are chosen at our disposal. Then, using Relations (27) and (31),
the desired form of J f (s, u, v) in (24) can be constructed.
Case 2C: (λ, β) = (0, 3)

q12

q15

q16

r8

r11

r12

r13

r14

r15

r16

r18

r23

r24

r25

r26

r27



=



−3 0 − 1
4 −1 0 0 − 23

16 − 29
4

0 1
4

1
4

3
16 0 0 1

32 − 21
8

0 −1 − 3
4 − 1

2 0 0 − 1
16

21
4

− 7
4

3
4

1
2 − 1

8 − 1
4

1
16 − 15

8 − 33
2

− 11
4

35
4

23
4

23
8 −3 3

4 −9 −20
− 11

2 − 5
2 − 7

4 − 5
2 1 − 1

4
9
8

51
2

7 −3 −2 1
2 1 − 1

2
29
8

119
2

0 0 0 0 0 0 3
16

1
4

1
2 − 1

2 − 1
4 0 1

4 − 1
16

9
8 − 17

2
− 3

2
3
2

3
4 0 −1 1

4 − 27
8

55
2

2 −2 −1 0 0 −1 71
16 − 147

4
0 0 0 0 0 0 − 1

4 −11
0 0 0 0 0 0 1

4 3
0 0 0 0 0 0 − 7

4 −5
0 0 0 0 0 0 4 −29
0 0 0 0 0 0 − 13

4 29





q13

q17

q18

q19

r17

r19

r28

r29



+



− 57
4
− 1

8
1
4
−9
−100

19
2

99
2
− 3

4
13
− 77

2
201
4

13
4
−29
64
−39



(32)

and q14 = 0. These 16 additional constraints are expressed in terms of 8 parameters
q17, q18, q19, r17, r18, r19, r28, r29 that are arbitrarily free for the purely imaginary extraneous fixed points.
Those 8 free parameters are chosen at our disposal. Then, using Relations (27) and (32), the desired
form of J f (s, u, v) in (24) can be constructed.
Case 2D: (λ, β) = (1, 1), being identical with Case 2A.
Case 2E: (λ, β) = (1, 2), being identical with Case 2B.
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Case 2F: (λ, β) = (2, 1),

q12

q15

q16

r8

r11

r12

r13

r14

r15

r16

r18

r23

r24



=



−3 0 − 1
4 −1 0 0 −13 −12 − 23

2 −13 −134
0 1

4
1
4

3
16 0 0 0 0 0 0 0

0 −1 − 3
4 −

1
2 0 0 0 0 0 0 0

− 7
4

3
4

1
2 −

1
8 −

1
4

1
16 −

181
28 −

699
112 −

99
16 −

1807
224 −

1163
16

− 11
4

35
4

23
4

23
8 −3 3

4 − 291
7 −

274
7 −

75
2 −

629
14 −454

− 11
2 −

5
2 −

7
4 −

5
2 1 − 1

4 −
255
14 −

425
28 −14 − 821

56 − 693
4

7 −3 −2 1
2 1 − 1

2
297
7

537
14 37 1199

28
937
2

0 0 0 0 0 0 − 9
7 − 15

14 −1 − 27
28 − 27

2
1
2 − 1

2 −
1
4 0 1

4 −
1

16
165
28

599
112

79
16

1291
224

967
16

− 3
2

3
2

3
4 0 −1 1

4 − 241
14 −

439
28 −

29
2 −

947
56 − 707

4
2 −2 −1 0 0 −1 152

7
279
14

37
2

603
28

447
2

0 0 0 0 0 0 − 2
7 − 4

7 −1 − 12
7 0

0 0 0 0 0 0 − 2
7 − 1

14 0 1
28 − 1

2





q13

q17

q18

q19

r17

r19

r25

r26

r27

r28

r29



+



−74
0
0
− 2207

56
− 1900

7
− 1355

14
1929

7
− 61

7
1987
56
− 1453

14
919
7

16
7
2
7



(33)

and q14 = 0. These 13 additional constraints are expressed in terms of 11 parameters q13,q17, q18, q19,
r17, r19, r25, r26, r27, r28, r29 that are arbitrarily free for the purely imaginary extraneous fixed points.
Those 11 free parameters are chosen at our disposal. Then, using Relations (27) and (33), the desired
form of J f (s, u, v) in (24) can be constructed. After a process of careful factorization, we find the
expression for H(z) in (28) stated in the following lemma.

Proposition 1. The expression H(z) in (28) is identical in each subcase of 2A–2F and given by a unique
relation below:

H(z) = (1+3t)(1+10t+5t2)(1+92t+134t2+28t3+t4)
8(1+t)(1+6t+t2)(1+28t+70t2+28t3+t4)

, t = z2, (34)

despite the possibility of different coefficients in each subcase.

Proof. Let us write G(t) in (28) as G(t) = t(1 + 3t) · ψ1(t) · ψ2(t) ·Φ(t) · (1 + t)λ(1 + 6t + t2)β−1 with
ψ1(t) = (1 + 6t + t2)(1 + 21t + 35t2 + 7t3) and ψ2(t) = (1 + 10t + 5t2)(1 + 92t + 134t2 + 28t3 + t4).
Then after a lengthy process of a series of factorizations with the aid of Mathematica symbolic ability,
we find Φ(t) and W(t) in each subcase as follows.

(1) Case 2A: with λ = 0 and β = 1, we get{
Φ(t) = − 2

7 (1 + t) · Γ1(t),
W(t) = − 16

7 ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ1(t),
(35)

where Γ1(t) = −244 + 28q16 + 28q17 + 21q18 + 14q19 − 36r25 − 30r26 − 28r27 − 27r28 − 378r29 +

14t(−72+ 4q16 + 4q17 + 3q18 + 2q19− 4r25 + 2r27 + 4r28− 72r29)+ t2(1692− 476q16− 476q17− 357q18−
238q19 + 548r25 + 578r26 + 672r27 + 957r28 + 6006r29)+ 4t3(−2288+ 196q16 + 196q17 + 147q18 + 98q19−
148r25 − 100r26 − 42r27 − 6r28 − 1540r29)− 7t4(1636 + 68q16 + 68q17 + 51q18 + 34q19 + 4r25 + 22r26 +

36r27 + 55r28 + 386r29) + t5(−4176+ 56q16 + 56q17 + 42q18 + 28q19 + 648r25 + 400r26 + 140r27− 32r28 +

7168r29) + t6(−4332 + 28q16 + 28q17 + 21q18 + 14q19 − 484r25 − 394r26 − 392r27 − 545r28 − 2926r29).

(2) Case 2B: with λ = 0 and β = 2, we get{
Φ(t) = − 2

3 (1 + t) · Γ2(t),
W(t) = − 16

3 (1 + 6t + t2)ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ2(t),
(36)

where Γ2(t) = (1 + 6t + t2)(3(−4 + 4q16 + 4q17 + 3q18 + 2q19 + r28 − 20r29) + t(24− 48q16 − 48q17 −
36q18− 24q19 + 4r27 + 22r28 + 280r29) + 6t2(−32+ 12q16 + 12q17 + 9q18 + 6q19 + 2r27 + 6r28− 16r29)−
2t3(396 + 24q16 + 24q17 + 18q18 + 12q19 + 2r27 + 11r28 + 140r29) + 3t4(−188 + 4q16 + 4q17 + 3q18 +

2q19 − 4r27 − 13r28 + 52r29)).
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(3) Case 2C: with λ = 0 and β = 3, we get{
Φ(t) = 1

2 (1 + t) · Γ3(t),
W(t) = 4(1 + 6t + t2)2ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ3(t),

(37)

where Γ3(t) = (1 + 6t + t2)2(12− 3r28 + 2t(60 + r28 − 84r29)− 4r29 + t2(124 + r28 + 172r29)).

(4) Case 2D: with λ = 1 and β = 1, we get{
Φ(t) = − 2

7 · Γ1(t),
W(t) = − 16

7 ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ1(t).
(38)

(5) Case 2E: with λ = 1 and β = 2, we get{
Φ(t) = − 2

3 · Γ2(t),
W(t) = − 16

3 (1 + 6t + t2)ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ2(t),
(39)

(6) Case 2F: with λ = 2 and β = 1, we get{
Φ(t) = 2

7 · Γ4(t),
W(t) = 2

7 (1 + t)ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ4(t),
(40)

where Γ4(t) = 244 + 36r25 + 30r26 + 28r27 + 27r28 + 378r29 + t(764 + 20r25 − 30r26 − 56r27 − 83r28 +

630r29) − 2t2(1228 + 284r25 + 274r26 + 308r27 + 437r28 + 3318r29) + 2t3(5804 + 580r25 + 474r26 +

392r27 + 449r28 + 6398r29) − t4(156 + 1132r25 + 794r26 + 532r27 + 513r28 + 10094r29) + t5(4332 +

484r25 + 394r26 + 392r27 + 545r28 + 2926r29).
Substituting each pair of (Φ(t), W(t)) into (28) yields an identical Relation (34) as desired.

Remark 2. The factorization process in the above proposition yields the additional constraints given by (30)–(33)
for subcases 2A–2F, after a lengthy computation. Case 2D and Case 2E are found to be identical with Case 2A
and Case 2B, respectively, by direct computation.

In Table 1, we list free parameters selected for typical subcases of 2A–2F. Combining these selected
free parameters with Relations (27) and (30)–(33), we can construct special iterative schemes named
as W2A1, W2A2, · · · , W2F3, W2F4. Such schemes together with W3G7 for Case 1 shall be used in
Section 4 to display results on their numerical and dynamical aspects.

Table 1. Free parameters selected for typical subcases of 2A1–2F4.

SCN q13 q16 q17 q18 q19 r17 r19 r25 r26 r27 r28 r29

2A1 0 0 0 0 0 0 0 0 0 0 0 0
2A2 20 0 0 0 0 0 1012 4 2 -8 0 0
2A3 − 89

26 0 0 0 0 0 0 − 149
26 0 0 0 0

2A4 0 0 711
26 − 622

13
222
13 0 0 − 149

26 0 0 0 0
2B1 0 0 0 0 0 0 0 - - 0 0 0
2B2 0 0 0 0 0 0 96 - - −31 −1 − 1

4
2B3 −19 0 0 0 0 0 0 - - −18 0 0
2B4 0 0 45 −52 −12 0 0 - - −18 0 0
2C1 0 - 0 0 0 0 0 - - - 0 0
2C2 −34 - 0 0 0 174 0 - - - 4 0
2C3 0 - 0 0 0 0 280 - - - 4 0
2C4 − 39

4 - 375
4 − 627

4 0 0 0 - - - 0 0
2F1 0 - 0 0 0 −40 0 − 122

3
290
3 − 184

3 0 0
2F2 16 - 0 0 0 0 0 1 0 -10 0 0
2F3 138

7 - − 356
7

3963
14 0 0 0 0 0 0 0 0

2F4 0 - 0 0 0 −32 0 −33 78 −46 −4 0
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3. The Dynamics behind the Extraneous Fixed Points

The dynamics behind the extraneous fixed points [21] of iterative map (1) have been investigated
by Stewart [20], Amat et al. [22], Argyros–Magreñan [23], Chun et al. [24], Chicharro et al. [25],
Chun–Neta [26], Cordero et al. [27], Geum et al. [14,19,28–30], Rhee at al. [9], Magreñan [31],
Neta et al. [32,33], and Scott et al. [34].

We locate a root α of a given function f (x) as a fixed point ξ of the iterative map R f :

xn+1 = R f (xn), n = 0, 1, · · · , (41)

where R f is the iteration function associated with f . Typically, R f is written in the form: R f (xn) =

xn − f (xn)
f ′(xn)

H f (xn), where H f is a weight function whose zeros are other fixed points ξ 6= α called
extraneous fixed points of R f . The dynamics of R f might be influenced by presence of possible
attractive, indifferent, or repulsive, and other periodic or chaotic orbits underlying the extraneous
fixed points. For ease of analysis, we rewrite the iterative map (41) in a more specific form:

xn+1 = R f (xn) = xn −m
f (xn)

f ′(xn)
H f (xn), (42)

where H f (xn) = 1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v) can be regarded as a weight function in the
classical modified Newton’s method for a multiple root of integer multiplicity m. Notice that α is a
fixed point of R f , while ξ 6= α for which H f (ξ) = 0 are extraneous fixed points of R f .

The influence of extraneous fixed points on the convergence behavior was well demonstrated
for simple zeros via König functions and Schröder functions [21] applied to a class of functions
{ fk(x) = xk − 1, k ≥ 2}. The basins of attraction may be altered due to the trapped sequence {xn}
by the attractive extraneous fixed points of R f . An initial guess x0 chosen near a desired root may
converge to another unwanted remote root when repulsive or indifferent extraneous fixed points are
present. These aspects of the Schröder functions were observed when applied to the same class of
functions { fk(x) = xk − 1, k ≥ 2}.

To simply treat dynamics underlying the extraneous fixed points of iterative map (42), we select a
member f (z) = (z2 − 1)m. By a similar approach made by Chun et al. [35] and Neta et al. [33,36], we
construct H f (xn) = s ·Q f (s) + s · u · K f (s, u) + s · u · v · J f (s, u, v) in (42). Applying f (z) = (z2 − 1)m

to H f , we find a rational function H(z) with t = z2:

H(z) =
N (t)
D(t) , (43)

where both D(t) and N (t) are co-prime polynomial functions of t. The underlying dynamics of the
iterative map (42) can be favorably investigated on the Riemann sphere [37] with possible fixed points
“0(zero)” and “∞”. As can be seen in Section 5, the relevant dynamics will be illustrated in a 6× 6
square region centered at the origin.

Indeed, the roots t ofN (t) provide the extraneous fixed points ξ of R f in Map (42) by the relation:

ξ =

{
t

1
2 , if t 6= 0,

0(double root), if t = 0.
(44)

Extraneous Fixed Points and their Stability

The following proposition describes the stability of the extraneous fixed points of (42).
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Proposition 2. Let f (z) = (z2 − 1)m. Then the extraneous fixed points ξ for Case 2 discussed earlier are all
found to be repulsive.

Proof. By direct computation of R′f (z) with f (z) = (z2 − 1)m, we write it as with t = z2:

R′f (z) =
Ψn(t)
Ψd(t)

,

where Ψn(t) = (−1 + t)15 and Ψd(t) = 16t(1 + t)2(1 + 6t + t2)2(1 + 28t + 70t2 + 28t3 + t4)2.
With the help of Mathematica, we are able to express Ψn(t) = 1

61509375 (1 + 3t)(1 + 10t + 5t2)(1 +

92t + 134t2 + 28t3 + t4) ·Qn(t)− 2097152 · Rn(t) and Ψd(t) = − 1
61509375 16(1 + 3t)(1 + 10t + 5t2)(1 +

92t + 134t2 + 28t3 + t4) · Qd(t) − 131072 · Rd(t), with Qn(t) and Qd(t) as six- and eight-degree
polynomials, while Rn(t) = (327, 923, 929, 643 + 34, 417, 198, 067, 010t + 446, 061, 306, 116, 505t2 +

1621107643125740t3 + 2, 036, 953, 856, 667, 405t4 + 892, 731, 761, 917, 554t5 + 108, 873, 731, 877, 775t6)

and Rd(t) = (327, 923, 929, 643 + 34417198067010t + 446, 061, 306, 116, 505t2 + 1621107643125740t3 +

2, 036, 953, 856, 667, 405t4 + 892, 731, 761, 917, 554t5 + 108, 873, 731, 877, 775t6). Further, we express
Rn(t) = (1 + 10t + 5t2)Qν(t) + Rν(t) and Rd(t) = (1 + 10t + 5t2)Qδ(t) + Rδ(t), with Rν(t) =

− 10,077,696
25 (36 + 341t) = Rδ(t). Now let t = ξ2, then

R′f (ξ) = 16

using the fact that (1 + 3t)(1 + 10t + 5t2)(1 + 92t + 134t2 + 28t3 + t4) = 0. Hence ξ for Case 2 are all
found to be repulsive.

Remark 3. Although not described here in detail due to limited space, by means of a similar proof as shown in
Proposition 2, extraneous fixed points ξ for Case 1 was found to be indifferent in [19].

If f (z) = p(z) is a generic polynomial other than (z2− 1)m, then theoretical analysis of the relevant
dynamics may not be feasible as a result of the highly increased algebraic complexity. Nevertheless,
we explore the dynamics of the iterative map (42) applied to f (z) = p(z), which is denoted by Rp as
follows:

zn+1 = Rp(zn) = zn −m
p(zn)

p′(zn)
Hp(zn). (45)

Basins of attraction for various polynomials are illustrated in Section 5 to observe the complicated
dynamics behind the fixed points or the extraneous fixed points. The letter W was conveniently
prefixed to each case number in Table 1 to symbolize a way of designating the numerical and dynamical
aspects of iterative map (42) .

4. Results and Discussion on Numerical and Dynamical Aspects

We first investigate numerical aspects of the local convergence of (1) with schemes W3G7 and
W2A1–W2F4 for various test functions; then we explore the dynamical aspects underlying extraneous
fixed points based on iterative map (45) applied to f (z) = (z2− 1)m, whose attractor basins give useful
information on the global convergence.

Results of numerical experiments are tabulated for all selected methods in Tables 2–4.
Computational experiments on dynamical aspects have been illustrated through attractor basins in
Figures 1–7. Both numerical and dynamical aspects have strongly confirmed the desired convergence.

Throughout the computational experiments with the aid of Mathematica, $MinPrecision = 400
has been assigned to maintain 400 digits of minimum number of precision. If α is not exact, then it is
given by an approximate value with 416 digits of precision higher than $MinPrecision.

Limited paper space allows us to list xn and α with up to 15 significant digits. We set error bound
ε = 1

2 × 10−360 to meet |xn − α| < ε. Due to the high-order of convergence and root multiplicity, close
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initial guesses have been selected to achieve a moderate number of accurate digits of the asymptotic
error constants.

Methods W3G7, W2A1, W2C2 and W2F2 successfully located desired zeros of test functions
F1 − F4: 

W3G7 : F1(x) = [cos (πx
2 ) + 2x2 − 3π]4, α ≈ 2.27312045629419, m = 4,

W2A1 : F2(x) = [cos (x2 + 1)− x log (x2 − π + 2) + 1]4 · (x2 + 1− π), α =
√

π − 1, m = 5,
W2C2 : F3(x) = [sin−1 (x2 − 1) + 3ex − 2x− 3]2, α ≈ 0.477696831914490, m = 2,
W2F2 : F4(x) = (x2 + 1)4 + log[1 + (x2 + 1)3], α = i, m = 3,
where log z(z ∈ C) is a principal analytic branch with − π < Im(log z) ≤ π.

(46)

We find that Table 2 ensures sixteenth-order convergence. The computational asymptotic
error constant |en|/|en−1|16 is in agreement with the theoretical one η = limn→∞ |en|/|en−1|16

up to 4 significant digits. The computational convergence order pn = log |en/η|/log |en−1| well
approaches 16.

Additional test functions in Table 3 confirm the convergence of Scheme (1). The errors |xn − α|
are listed in Table 4 for comparison among the listed methods W3G7 and W2A1–W2F4. In the current
experiments, W3G7 has slightly better convergence for f5 and slightly poor convergence for all other
test functions than the rest of the listed methods. No specific method performs better than the other
among methods W2A1–W2F4 of Case 2.

According to the definition of the asymptotic error constant η(ci, Q f , K f , J f ) = limn→∞ |R f (xn)− α|/
|xn − α|16, the convergence is dependent on iterative map R f (xn), f (x), x0, α and the weight functions
Q f , K f and J f . It is clear that no particular method always achieves better convergence than the others
for any test functions.

Table 2. Convergence of methods W3G7, W2A1, W2C2, W2F2 for test functions F1(x)− F4(x).

Method F n xn |F(xn)| |xn− α| |en/e16
n−1| η pn

0 2.2735 1.873 × 10−10 0.000379544
W3G7 F1 1 2.27312045629419 1.927× 10−233 6.798 × 10−60 0.00003666355445 0.00003666729357

2 2.27312045629419 0.0× 10−400 1.004× 10−237 16.00000

0 1.4634 1.93× 10−21 0.0000181404
W2A1 F2 1 1.46341814037882 3.487× 10−366 2.040 × 10−74 148.4148965 148.4575003

2 1.46341814037882 0.0× 10−400 0.0× 10−399 16.00000

0 0.4777 1.890 × 10−10 3.168 × 10−6

W2C2 F3 1 0.477696831914490 6.116 × 10−183 1.802 × 10−92 0.0001750002063 0.0001749999826
2 0.477696831914490 0.0 × 10−400 8.522 × 10−367 16.00000

0 0.99995i 1.000 × 10−12 0.00005
W2F2 F4 1 1.00000000000000 i 4.820× 10−215 1.391× 10−72 0.001037838436 0.001041219259

2 1.00000000000000 i 0.0 × 10−400 0.0× 10−400 16.00030

i =
√
−1, η = limn→∞

|en |
|en−1 |16 , pn =

log |en/η|
log |en−1 |

.

Table 3. Additional test functions fi(x) with zeros α and initial values x0 and multiplicities.

i fi(x) α x0 m

1 [4 + 3 sin x− 2x2]4 ≈ 1.85471014256339 1.86 4
2 [2x− Pi + x cos x]5 π

2 1.5707 5
3 [2x3 + 3e−x + 4 sin (x2)− 5]2 ≈ −0.402282449584416 −0.403 2
4 [

√
3x2 · cos πx

6 + 1
x3+1 −

1
28 ] · (x− 3)3 3 3.0005 4

5 (x− 1)2 + 1
12 − log[ 25

12 − 2x + x2] 1− i
√

3
6 0.99995− 0.28i 2

6 [x log x−
√

x + x3]3 1 1.0001 3

Here, log z (z ∈ C) represents a principal analytic branch with − π ≤ Im(log z) < π.

The proposed family of methods (1) has efficiency index EI [38], which is 161/5 ≈ 1.741101 and
larger than that of Newton’s method. In general, the local convergence of iterative methods (45) is
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guaranteed with good initial values x0 that are close to α. Selection of good initial values is a difficult
task, depending on precision digits, error bound, and the given function f (x).

Table 4. Comparison of |xn − α| among selected methods applied to various test functions.

Method |xn− α| f (x)
f1 f2 f3 f4 f5 f6

W3G7 |x1 − α| 1.77 × 10−40 * 1.62 × 10−57 4.89 × 10−51 1.50 × 10−61 5.76 × 10−7 1.19 × 10−62

|x2 − α| 1.02 × 10−159 1.13 × 10−225 1.24 × 10−201 3.27 × 10−245 1.08 × 10−95 2.40 × 10−247

W2A1 |x1 − α| 2.83 × 10−42 1.05 × 10−58 1.92 × 10−52 1.23 × 10−62 1.29 × 10−6 1.11 × 10−63

|x2 − α| 0.0 × 10−399 4.24 × 10−230 0.0 × 10−400 0.0 × 10−399 6.62 × 10−90 3.61 × 10−251

W2A2 |x1 − α| 1.63 × 10−41 2.33 × 10−58 1.45 × 10−51 1.05 × 10−61 1.32 × 10−6 2.34 × 10−63

|x2 − α| 0.0 × 10−399 1.11 × 10−228 0.0 × 10−400 0.0 × 10−399 2.53 × 10−89 7.39 × 10−250

W2A3 |x1 − α| 2.53 × 10−43 1.82 × 10−60 4.56 × 10−54 1.20 × 10−63 4.43 × 10−6 3.85 × 10−65

|x2 − α| 0.0 × 10−399 1.40 × 10−236 8.40 × 10−213 0.0 × 10−399 3.03 × 10−83 1.53 × 10−256

W2A4 |x1 − α| 1.24 × 10−42 1.35 × 10−59 1.53 × 10−52 8.38 × 10−63 1.58 × 10−4 1.12 × 10−64

|x2 − α| 1.70 × 10−125 5.96 × 10−424 5.22 × 10−155 8.16 × 10−187 3.34 × 10−57 2.79 × 10−424

W2B1 |x1 − α| 2.39 × 10−42 2.28 × 10−59 1.30 × 10−52 7.80 × 10−63 2.14 × 10−6 2.81 × 10−64

|x2 − α| 0.0 × 10−399 1.57 × 10−232 0.0 × 10−400 0.0 × 10−399 6.04 × 10−87 2.23 × 10−253

W2B2 |x1 − α| 4.44 × 10−42 2.73 × 10−59 3.03 × 10−52 1.79 × 10−62 4.30 × 10−6 3.29 × 10−64

|x2 − α| 0.0 × 10−399 6.69 × 10−232 0.0 × 10−400 0.0 × 10−399 6.01 × 10−82 7.78 × 10e−253

W2B3 |x1 − α| 9.85 × 10−43 3.11 × 10−61 4.26 × 10−53 3.01 × 10−63 4.46 × 10−6 3.26 × 10−65

|x2 − α| 0.0 × 10−399 1.17 × 10−239 0.0 × 10−400 0.0 × 10−399 3.06 × 10−83 7.91 × 10−257

W2B4 |x1 − α| 1.04 × 10−42 1.92 × 10−59 1.77 × 10−52 1.12 × 10−62 1.77 × 10−4 1.53 × 10−64

|x2 − α| 1.12 × 10−125 4.68 × 10−405 9.06 × 10−155 2.23 × 10−186 2.32 × 10−56 0.0 × 10−400

W2C1 |x1 − α| 4.87 × 10−42 4.27 × 10−59 2.95 × 10−52 1.50 × 10−62 1.08 × 10−6 5.14 × 10−64

|x2 − α| 0.0 × 10−399 0.0 × 10−399 0.0 × 10−400 0.0 × 10−399 2.41 × 10−91 2.22 × 10−191

W2C2 |x1 − α| 9.31 × 10−42 1.01 × 10−58 5.94 × 10−52 2.61 × 10−62 1.47 × 10−6 1.18 × 10−63

|x2 − α| 0.0 × 10−399 4.23 × 10−230 0.0 × 10−400 0.0 × 10−399 7.11 × 10−89 4.95 × 10−251

W2C3 |x1 − α| 9.17 × 10−42 8.88 × 10−59 6.85 × 10−52 4.30 × 10−62 4.36 × 10−6 9.66 × 10−64

|x2 − α| 0.0 × 10−399 7.84 × 10−230 0.0 × 10−400 0.0 × 10−399 2.11 × 10−81 6.05 × 10−251

W2C4 |x1 − α| 5.36 × 10−42 6.72 × 10−59 6.55 × 10−52 4.38 × 10−62 1.02 × 10−4 6.13 × 10−64

|x2 − α| 9.92 × 10−124 5.96 × 10−424 2.97 × 10−153 8.55 × 10−185 1.30 × 10−59 0.0 × 10−400

W2F1 |x1 − α| 4.36 × 10−42 8.67 × 10−60 2.55 × 10−52 1.29 × 10−62 4.34 × 10−6 1.60 × 10−64

|x2 − α| 0.0 × 10−399 7.12 × 10−234 0.0 × 10−400 0.0 × 10−399 4.57 × 10−82 4.61 × 10−254

W2F2 |x1 − α| 1.20 × 10−42 1.74 × 10−60 5.52 × 10−53 3.67 × 10−63 4.08 × 10−6 5.06 × 10−65

|x2 − α| 0.0 × 10−399 1.16 × 10−236 0.0 × 10−400 0.0 × 10−399 2.33 × 10−83 4.56 × 10−256

W2F3 |x1 − α| 1.08 × 10−41 1.54 × 10−58 1.55 × 10−51 1.14 × 10−61 8.67 × 10−5 1.396 × 10−63

|x2 − α| 1.41 × 10−424 5.27 × 10−172 8.47 × 10−424 0.0 × 10−399 1.66 × 10−60 5.22 × 10−188

W2F4 |x1 − α| 3.80 × 10−42 5.01 × 10−60 2.15 × 10−52 1.07 × 10−62 4.35 × 10−6 1.18 × 10−64

|x2 − α| 0.0 × 10−399 1.16 × 10−235 0.0 × 10−400 0.0 × 10−399 3.65 × 10−82 1.38 × 10−254

The global convergence with appropriate initial values x0 is effectively described by means of
a basin of attraction that is the set of initial values leading to long-time behavior approaching the
attractors under the iterative action of R f . Basins of attraction contain information about the region of
convergence. A method occupying a larger region of convergence is likely to be a more robust method.
A quantitative analysis will play the important role for measuring the region of convergence.

The basins of attraction, as well as the relevant statistical data, are constructed in a similar
manner shown in the work of Geum–Kim–Neta [19]. Because of the high order, we take a smaller
square [−1.5, 1.5]2 and use 601 × 601 initial points uniformly distributed in the domain. Maple
software has been used to perform the desired dynamics with convergence stopping criteria satisfying
|xn+1 − xn| < 10−6 within the maximum number of 40 iterations. An initial point is painted with a
color whose intensity measures the number of iterations converging to a root. The brighter color implies
the faster convergence. The black point means that its orbit did not converge within 40 iterations.

Despite the limited space, we will explore the dynamics of all listed maps W3G7 and W2A1–W2F4,
with applications to pk(z), (1 ≤ k ≤ 7) through the following seven examples. In each example,
we have shown dynamical planes for the convergence behavior of iterative map xn+1 = R f (xn) (42)
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with f (z) = pk(z) by illustrating the relevant basins of attraction through Figures 1–7 and displaying
relevant statistical data in Tables 5–7 with colored fonts indicating best results.

Example 1. As a first example, we have taken a quadratic polynomial raised to the power of two with all real
roots:

p1(z) = (z2 − 1)2. (47)

Clearly the roots are ±1. Basins of attraction for W3G7, W2A1–W2F4 are given in Figure 1. Consulting
Tables 5–7, we find that the methods W2B2 and W2F4 use the least number (2.71) of iterations per point on
average (ANIP) followed by W2F1 with 2.72 ANIP, W2C3 with 2.73 and W2B1 with 2.74. The fastest method
is W2A2 with 969.374 s followed closely by W2A3 with 990.341 s. The slowest is W2A4 with 4446.528 s.
Method W2C4 has the lowest number of black points (601) and W2A4 has the highest number (78843). We will
not include W2A4 in the coming examples.

Table 5. Average number of iterations per point for each example (1–7).

Map
Example

1: m = 2 2: m = 3 3: m = 3 4: m = 4 5: m = 3 6: m = 3 7: m = 3 Average

W3G7 2.94 3.48 3.83 3.93 3.95 3.97 6.77 4.12
W2A1 2.84 3.50 3.70 4.04 6.84 3.74 5.49 4.31
W2A2 2.76 3.15 3.52 3.84 3.62 3.66 4.84 3.63
W2A3 2.78 3.21 3.61 3.89 3.70 3.74 4.98 3.70
W2A4 11.40 - - - - - - -
W2B1 2.74 3.25 3.70 3.88 3.67 3.72 5.01 3.71
W2B2 2.95 3.42 3.66 4.01 3.75 3.77 5.15 3.82
W2B3 2.78 3.28 3.64 3.89 3.69 4.65 5.13 3.86
W2B4 3.29 3.91 4.99 - - - - -
W2C1 2.88 3.66 3.87 4.08 3.89 5.45 6.25 4.30
W2C2 2.93 3.68 3.95 4.15 6.70 4.67 5.75 4.55
W2C3 2.73 3.22 3.53 3.98 3.60 3.62 4.94 3.66
W2C4 3.14 3.81 4.96 - - - - -
W2F1 2.72 3.24 3.55 3.84 3.49 3.57 5.41 3.69
W2F2 2.81 3.28 3.80 4.06 5.02 4.50 5.29 4.10
W2F3 2.91 3.54 4.36 4.41 - - - -
W2F4 2.71 3.19 3.50 3.86 3.42 3.53 5.52 3.68

Example 2. As a second example, we have taken the same quadratic polynomial now raised to the power of
three:

p2(z) = (z2 − 1)3. (48)

The basins for the best methods are plotted in Figure 2. This is an example to demonstrate the effect of
raising the multiplicity from two to three. In one case, namely W3G7, we also have m = 5 with CPU time of
4128.379 s. Based on the figure we see that W2B4, W2C4 and W2F3 were chaotic. The worst are W2B4, W2C4
and W2F3. In terms of ANIP, the best was W2A2 (3.15) followed by W2F4 (3.19) and the worst was W2B4
(3.91). The fastest was W2B3 using (2397.111 s) followed by W2F1 using 2407.158 s and the slowest was W2C4
(4690.295 s) preceded by W3G7 (2983.035 s). Four methods have the highest number of black points (617).
Those were W2A1, W2B4, W2C1 and W2F2. The lowest number was 601 for W2A2, W2C2, W2C4 and W2F1.

Comparing the CPU time for the cases m = 2 and m = 3 of W3G7, we find it is about doubled. But when
increasing from three to five, we only needed about 50% more.



Mathematics 2019, 7, 562 17 of 26

(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2A4 (6) W2B1 (7) W2B2 (8) W2B3

(9) W2B4 (10) W2C1 (11) W2C2 (12) W2C3

(13) W2C4 (14) W2F1 (15) W2F2 (16) W2F3

(17) W2F4

Figure 1. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2A4 (left), W2B1 (center left), W2B2 (center right) and W2B3 (right). The third
row for W2B4 (left), W2C1 (center left), W2C2 (center right) and W2C3 (right). The third row for W2C4
(left), W2F1 (center left), W2F2 (center right), and W2F3 (right). The bottom row for W2F4 (center),
for the roots of the polynomial equation (z2 − 1)2.
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(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2B4

(9) W2C1 (10) W2C2 (11) W2C3 (12) W2C4

(13) W2F1 (14) W2F2 (15) W2F3 (16) W2F4

(17) W3G7m5

Figure 2. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2B4 (right). The third
row for W2C1 (left), W2C2 (center left), W2C3 (center right) and W2C4 (right). The fourth row for
W2F1 (left), W2F2 (center left), W2F3 (center right), and W2F4 (right). The bottom row for W3G7m5
(center), for the roots of the polynomial equation (z2 − 1)k, k ∈ {3, 5}.

Example 3. In our third example, we have taken a cubic polynomial raised to the power of three:

p3(z) = (3z3 + 4z2 − 10)3. (49)
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Basins of attraction are given in Figure 3. It is clear that W2B4, W2C4 and W2F3 were too chaotic and
they should be eliminated from further consideration. In terms of ANIP, the best was W2F4 (3.50) followed by
W2A2 (3.52), W2C3 (3.53) and W2F1 (3.55) and the worst were W2B4 and W2C4 with 4.99 and 4.96 ANIP,
respectively. The fastest was W2C3 using 2768.362 s and the slowest was W2B3 (7193.034 s). There were 13
methods with only one black point and one with two points. The highest number of black points was 101 for
W2F2.

Table 6. CPU time (in seconds) required for each example(1–7) using a Dell Multiplex-990.

Map
Example

1: m = 2 2: m = 3 3: m = 3 4: m = 4 5: m = 3 6: m = 3 7: m = 3 Average

W3G7 1254.077 2983.035 3677.848 3720.670 3944.937 3901.679 4087.102 3367.050
W2A1 1079.667 2694.537 3528.149 3119.911 5896.635 2938.747 3526.840 3254.927
W2A2 969.374 2471.727 3287.081 2956.702 3218.223 2891.478 2981.179 2682.252
W2A3 990.341 2843.789 2859.093 2999.712 3002.146 3074.811 3155.307 2703.600
W2A4 4446.528 - - - - - - -
W2B1 1084.752 2634.826 3295.162 3051.941 2835.755 3238.363 3272.667 2773.352
W2B2 1075.393 2429.996 3130.223 3051.192 2929.106 3581.456 3155.619 2764.712
W2B3 1180.366 2397.111 7193.034 3000.383 2970.711 3739.766 3139.084 3374.351
W2B4 1274.653 2932.008 4872.972 - - - - -
W2C1 1132.069 2685.355 3242.637 3287.066 3147.663 4080.019 4802.662 3196.782
W2C2 1112.162 2881.697 3189.706 3873.037 5211.619 3665.773 3950.896 3412.127
W2C3 1052.570 2421.026 2768.362 3014.033 2778.518 2914.941 3953.346 2700.399
W2C4 2051.710 4690.295 7193.034 - - - - -
W2F1 1071.540 2407.158 2909.965 3472.317 2832.230 3490.896 3246.584 2775.813
W2F2 1015.051 2438.483 3031.802 3061.270 3703.152 3737.394 3324.537 2901.670
W2F3 1272.188 2596.200 3603.655 4130.158 - - - -
W2F4 1216.839 2620.052 3589.177 3233.168 3534.312 3521.660 3934.845 3092.865

Table 7. Number of points requiring 40 iterations for each example (1–7).

Map
Example

1: m = 2 2: m = 3 3: m = 3 4: m = 4 5: m = 3 6: m = 3 7: m = 3 Average

W3G7 677 605 1 250 40 1265 33,072 5130.000
W2A1 657 617 1 166 34,396 1201 18,939 7996.714
W2A2 697 601 1 162 1 1201 15,385 2578.286
W2A3 675 605 55 152 9 1221 14,711 2489.714
W2A4 78,843 - - - - - - -
W2B1 679 613 1 204 9 1201 13,946 2379.000
W2B2 635 609 1 116 1 1217 15,995 2653.429
W2B3 679 613 1 146 3 10,645 16,342 4061.286
W2B4 659 617 2 - - - - -
W2C1 689 617 1 400 20 18,157 24,239 6303.286
W2C2 669 601 1 174 17,843 1265 18,382 5562.143
W2C3 659 609 1 184 1 1201 14,863 2502.571
W2C4 601 601 1 - - - - -
W2F1 681 601 1 126 10 1225 18,772 3059.429
W2F2 679 617 101 614 3515 1593 17,469 3512.571
W2F3 663 605 1 78 - - - -
W2F4 645 605 1 130 12 1217 20,020 3232.857
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(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2B4

(9) W2C1 (10) W2C2 (11) W2C3 (12) W2C4

(13) W2F1 (14) W2F2 (15) W2F3 (16) W2F4

Figure 3. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2B4 (right). The third
row for W2C1 (left), W2C2 (center left), W2C3 (center right) and W2C4 (right). The bottom row for
W2F1 (left), W2F2 (center left), W2F3 (center right), and W2F4 (right), for the roots of the polynomial
equation (3z3 + 4z2 − 10)3.

Example 4. As a fourth example, we have taken a different cubic polynomial raised to the power of four:

p4(z) = (z3 − z)4. (50)

The basins are given in Figure 4. We now see that W2F3 is the worst. In terms of ANIP, W2A2 and W2F1
were the best (3.84 each) and the worst was W2F3 (4.41). The fastest was W2A2 (2956.702 s) and the slowest
was W2F3 (4130.158 s). The lowest number of black points (78) was for method W2F3 and the highest number
(614) for W2F2. We did not include W2F3 in the rest of the experiments.
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(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2C1

(9) W2C2 (10) W2C3 (11) W2F1 (12) W2F2

(13) W2F3 (14) W2F4

Figure 4. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2C1 (right). The third
row for W2C2 (left), W2C3 (center left), W2F1 (center right) and W2F2 (right). The bottom row for
W2F3 (left) and W2F4 (right), for the roots of the polynomial equation (z3 − z)4.

Example 5. As a fifth example, we have taken a quintic polynomial raised to the power of three:

p3(z) = (z5 − 1)3. (51)

The basins for the best methods left are plotted in Figure 5. The worst were W2A1 and W2C2. In terms of
ANIP, the best was W2F4 (3.42) followed by W2F1 (3.49) and the worst were W2A1 (6.84) and W2C2 (6.70).
The fastest was W2C3 using 2778.518 s followed by W2F1 using 2832.23 s and W2B1 using 2835.755 s.
The slowest was W2A1 using 5896.635 s. There were three methods with one black point (W2A2, W2B2 and
W2C3) and four others with 10 or less such points, namely W2B3 (3), W2A3 and W2B1 (9) and W2F1 (10).
The highest number was for W2A1 (34,396) preceded by W2C2 with 17,843 black points.
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(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2C1

(9) W2C2 (10) W2C3 (11) W2F1 (12) W2F2

(13) W2F4

Figure 5. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2C1 (right). The third
row for W2C2 (left), W2C3 (center left), W2F1 (center right) and W2F2 (right). The bottom row for
W2F4 (center), for the roots of the polynomial equation (z5 − 1)3.

Example 6. As a sixth example, we have taken a quartic polynomial raised to the power of three:

p6(z) = (z4 − 1)3. (52)

The basins for the best methods left are plotted in Figure 6. It seems that most of the methods left were good
except W2B3 and W2C1. Based on Table 5 we find that W2F4 has the lowest ANIP (3.53) followed by W2F1
(3.57). The fastest method was W2A2 (2891.478 s) followed by W2C3 (2914.941 s). The slowest was W2C1
(4080.019 s) preceded by W3G7 using 3901.679 s. The lowest number of black points was for W2A1, W2A2,
W2B1 and W2C3 (1201) and the highest number was for W2C1 with 18,157 black points.
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(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2C1

(9) W2C2 (10) W2C3 (11) W2F1 (12) W2F2

(13) W2F4

Figure 6. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2C1 (right). The third
row for W2C2 (left), W2C3 (center left), W2F1 (center right) and W2F2 (right). The bottom row for
W2F4 (center), for the roots of the polynomial equation (z4 − 1)3.

Example 7. As a seventh example, we have taken a non-polynomial equation having ±i as its triple roots:

p6(z) = (z + i)3(ez−i − 1)3, with i =
√
−1. (53)

The basins for the best methods left are plotted in Figure 7. It seems that most of the methods left have a
larger basin for the root −i, i.e., the boundary does not match the real line exactly. Based on Table 5 we find that
W2A2 has the lowest ANIP (4.84) followed by W2C3 (4.94) and W2A3 (4.98). The fastest method was W2A2
(2981.179 seconds) followed by W2B3 (3139.084 s), W2A3 (3155.307 s) and W2B2 (3155.619 s). The slowest
was W2C1 (4802.662 s). The lowest number of black points was for W2B1 (13,946) and the highest number was
for W3G7 with 33,072 black points. In general all methods had higher number of black points compared to the
polynomial examples.
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We now average all these results across the seven examples to try and pick the best method.
W2A2 had the lowest ANIP (3.63), followed by W2C3 with 3.66, W2F4 with 3.68 and W2F1 with 3.69.
The fastest method was W2A2 (2682.252 seconds), followed by W2C3 (2700.399 s) and W2A3 using
2703.600 s of CPU. W2B1 has the lowest number of black points on average (2379), followed by W2A3
(2490 black points). The highest number of black points was for W2A1.

Based on these seven examples we see that W2F4 has four examples with the lowest ANIP, W2A2
had three examples and W2F1 has one example. On average, though, W2A2 had the lowest ANIP.
W2A2 was the fastest in four examples and on average. W2C3 was the fastest in two examples and
W2B3 in one example. In terms of black points, W2A2, W2B1 and W2B3 had the lowest number in
three examples and W2F1 in two examples. On average W2B1 has the lowest number. Thus, we
recommend W2A2, since it is in the top in all categories.

(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2C1

(9) W2C2 (10) W2C3 (11) W2F1 (12) W2F2

(13) W2F4

Figure 7. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2C1 (right). The third
row for W2C2 (left), W2C3 (center left), W2F1 (center right) and W2F2 (right). The bottom row for
W2F4 (center), for the roots of the non-polynomial equation (z + i)3(ez−i − 1)3.
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5. Conclusions

Both numerical and dynamical aspects of iterative map (1) support the main theorem well through
a number of test equations and examples. The W2C2 and W2B3 methods were observed to occupy
relatively slower CPU time. Such dynamical aspects would be greatly strengthened if we could include
a study of parameter planes with reference to appropriate parameters in Table 1.

The proposed family of methods (1) employing generic weight functions favorably cover most of
optimal sixteenth-order multiple-root finders with a number of feasible weight functions. The dynamics
behind the purely imaginary extraneous fixed points will choose best members of the family with
improved convergence behavior. However, due to the high order of convergence, the algebraic
difficulty might arise resolving its increased complexity. The current work is limited to univariate
nonlinear equations; its extension to multivariate ones becomes another task.
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