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Abstract: Humans breathe air into the respiratory system through the trachea, but with all the
pollutants in our environment (both outside and inside), the air we breathe may not be clean. When
that is so, the respiratory system secretes mucus to trap dirt that is inhaled through the nostrils. The
respiratory tract contains hair-like structures in the epithelial tissue, called cilia: These wave back
and forth to help expel particles of dust, dirt, mucus, and contaminants from the body. Cilia are
found in this layer (a porous medium) and the fluid in this layer is called the periciliary layer (PCL).
This study aims to determine the velocity of the PCL fluid flow in motile cilia. Usually, fluids move
due to pressure changes, but in this study, the velocity of solids or of the cilia moves the PCL fluid.
Stokes-Brinkman equations are used to determine the velocity of PCL fluid flow when cilia form an
angle with the horizontal plane. The Beavers and Joseph boundary condition is applied in this study.
The asymptotic expansion method is adapted in order to determine the velocity of PCL from the
movement of the cilia.

Keywords: periciliary layer; moving solid phases; asymptotic expansion method;
Stokes–Brinkman equations

1. Introduction

The human body contains numerous cilia, which are omnipresent inside and outside of the body.
Cilia are hair-like organelles that provide locomotion to liquids throughout the body. This study
focuses on cilia inside the body, particularly in the respiratory system. The human respiratory system
is illustrated in Figure 1, with labeling of the nose, trachea, and lungs. We breathe in and out all the
time, and as we inhale, some dust and pathogens will enter the body. However, the human body has a
defense mechanism to protect against these foreign particles. In a closer look at the immune system,
a diagram representing a cross-section of the trachea is displayed in Figure 2, and Figure 3 shows a
close-up view of the trachea.

Figure 3 shows the platform of the innate immune system of the throat cells, which consists of
three layers: The air layer, the mucus layer, and the periciliary layer (PCL). Cilia are found in the PCL
layer. The function of the cilia is to filter out dust and other inhaled foreign particles. Cilia work as
a part of the immune system, protecting the body against pathogens in the air. Goblet cells (vital
component cells of the immune system) secrete mucus to trap the inhaled particles and cilia help to
transport these particles out of the body by cilia-generated flow. To calculate the mucus velocity, the
velocity of PCL fluid is measured to determine the bottom boundary of the mucus layer.
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Numerical studies on the PCL and mucus layers have been carried out by several researchers.
For example, Machemer [1] observed the ciliary system and found that frequency of peristomal cilia
decreases with increasing viscosity, which leads to an increase of the average wavelength from 10.7 at
1 cP to 14.3 at 40 cP. Smith et al. [2] developed a new model for the nodal flow, utilizing the regularized
stokeslet method. Fulford and Blake [3] studied a two-layer Newtonian fluid model for muco-ciliary
transportation in the lung, and discovered that the viscosity of the upper mucous layer is much greater
than the viscosity of the lower periciliary layer. Jayathilake et al. [4] developed a three-dimensional
numerical model to simulate human pulmonary cilia motion in the PCL using the immersed boundary
method combined with the projection method. Their numerical results indicated that the phase
differences of cilia—in both stream-wise and span-wise directions—resulted in the maximum PCL
velocity in the stream-wise direction.

Another approach on the study of the PCL and mucus layers is experimental study, which has
been examined by a number of researchers. For example, Serafini and Michaelson [5] determined ciliary
length and the percentage of ciliated cells from six mongrel dogs and ten humans. Matsui et al. [6]
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studied the movements of mucus and PCL liquid in airway surfaces, using conventional and confocal
microscopy of fluorescent microspheres photoactivated fluorescent dyes and well-differentiated human
tracheobronchial epithelial cell cultures that exhibited spontaneous, radial mucociliary transport. Their
findings showed that the entire PCL liquid was transported at approximately the same rate as mucus,
39 ± 24.7 and 39.8 ± 4.2 µm/s. Moreover, they found that the removal of the mucus layer reduced PCL
transport by >80%, 4.8 ± 0.6 µm/s, which is close to the value predicted by theoretical analyses of the
ciliary beat cycle. Therefore, it has been suggested that the movement of PCL liquid depends on the
transport of mucus.

Although the study of PCL and mucus layers, both numerical and experimental studies, has
been investigated extensively, these studies covered only movement, length, and direction of cilia; the
research on velocity of cilia in the PCL layer is limited. In general, the asymptotic expansion method is
used to examine the PCL fluid flow order to determine the velocity of PCL fluid. Cilia in the PCL layer
are shown in Figure 4; cilia making a 90◦ angle with the horizontal plane are displayed in Figure 4a,
while cilia at an angle of less than 90◦ are illustrated in Figure 4b. The domain Ω1 is the PCL with an
absence of cilia. The second domain, Ω2 is the PCL containing cilia.
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As the domain Ω2 contains both liquid and solid phases, it is considered to be a porous medium.
For the mathematical model used in the free fluid and the porous medium domains, some studies have
used Navier-Stokes in the free fluid layer and Darcy in the porous medium [7], or Stokes equation
in the free fluid layer and the Brinkman equation in the porous medium [8,9]. The Beavers-Joseph
condition has been widely used in many numerical studies as well as to compare solutions, especially
between a porous medium and a free fluid domain. For example, Francisco et al. [10] derived boundary
conditions that complete the statement of a two-domain approach for a one-dimensional momentum
transport in a system containing a porous medium and free fluid under a constant pressure gradient.
These boundary conditions involve a jump in both the velocity and the viscous stress and are thus
expressed in terms of jump coefficients.

In this paper, we use the Stokes equation in the free fluid region and the Brinkman equation
in the porous medium in order to analytical study the Stoke–Brinkman equations. The asymptotic
expansion method has been widely used in a number of studies [11–13]. Chandesris and Jamet [14]
found the boundary condition at the interface between the porous medium and the free fluid
based on the Poiseuille flow over a permeable block. The problem was solved using the matched
asymptotic expansion method, therefore, both a heterogeneous transition zone and a homogeneous
zone between the two homogeneous regions (porous medium and free fluid) were considered. The two
homogeneous regions were described using volume averaged transport equation, with the assumption
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that this equation still holds in the heterogeneous transition zone by considering variable porosity
and permeability.

However, to the authors’ knowledge, no study to date has used asymptotic expansion related to
the velocity of the cilia in the model. The model used in the present study involves the velocity of
solid helping to move the PCL fluid. In this study, we provide the velocity of the PCL fluid by using
asymptotic expansion due to the movement of cilia where the Beaver–Joseph boundary condition is
employed at the free fluid/porous medium interface.

In Section 2, we write n-dimensional Stokes–Brinkman equations in one dimension by using
the indicial notation. The dimensionization of the governing equations is derived in Section 3. The
solutions of the Stokes–Brinkman equations are computed with the asymptotic expansion method in
Section 4. In Section 5, we determine the relation of the constants. We describe result and discussion in
Section 6, and in Section 7 we draw our conclusions.

2. Mathematical Model and Boundary Conditions

In this section, we introduce our governing equations: the n-dimensional Stokes–Brinkman
equations and the boundary conditions used in the PCL.

2.1. Stokes–Brinkman Equations

The n-dimensional Stokes–Brinkman equations were derived using an upscaling method, which
is a method that helps to change the equations from a microscopic scale to a macroscopic scale.
Then, we simplified the equations to one dimension by using an indicial notation. The macroscale
Stokes–Brinkman equations [12] and the continuity equation [12] in n dimension are

µk−1
·

(
εlvl

)
+∇p−

µ

εl
∆
(
εlvl

)
= ρg + µk−1

· εlvs +
µ

εl
∇ f , (1)

∇ ·

(
εlvl

)
= f , (2)

respectively, where the function f = −ε·l

(1−εl)
+ ∇ · εlvs; µ is a dynamic viscosity; k−1 is the inverse of

the permeability tensor; εl is the porosity; vl and vS are the velocities of the liquid and solid phases,
respectively; p is the pressure; ρ is the fluid density; g is gravity; and ε·l is the material time derivative of
the porosity with respect to the solid phase, ε·l = ∂εl

∂t + vs
· ∇εl. Equation (1) is the Brinkman equation.

Without the first and fifth terms in the equation, it is a Stokes equation. Thus, in general, Equation (1) is
called a Stokes–Brinkman equations. Applying the indicial notation to the Stokes–Brinkman equations
we obtain

µk−1
ij

(
εlvl

j
)
+ p,i −

µ

εl

(
εlvi

l
)
, j j

= ρgi + µkij
−1εlv j

s +
µ

εl
f,i, i = 1, 2, 3, . . . , n (3)

εlvl
i,i = f , i = 1, 2, 3, . . . , n (4)

where the repeat index indicates the summation. Substituting Equation (4) into the last term of
Equation (3), for the one-dimensional domain, we have

µk−1
11 ε

lv1
l + p,1 −

µ

εl

(
εlv1

l
)
,11

= ρg1 + µk−1
11

(
εlv1

s
)
+
µ

εl

(
εlv1,1

l
)
,1

(5)

Note that
(
εlv1,1

l
)
,1
=

(
εlv1

l
)
,11

. Simplifying Equation (5) yields

2µ

εl

(
εlv1

l
)
,11
− µk−1

11

(
εlv1

l
)
+ ρg1 = p,1 − µk−1

11

(
εlv1

s
)

(6)
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In this study, we assume that the solid velocity depends on only the Y direction; the fluid flow
along the x-axis; and the pressure depends on the X direction. As a result, Equation (6) becomes

2µ

εl

d2
(
εlv1

l
)

dy2 − µk−1
11

(
εlv1

l
)
+ ρg1 =

dp
dx
− µk−1

11

(
εlv1

s
)

(7)

Equation (7) is a Brinkman equation, which is used in the domain containing cilia.
In region Ω1, we use a Stokes equation,

2µ

εl

d2
(
εlv1

l
)

dy2 + ρg1 =
dp
dx
− µk−1

11

(
εlv1

s
)

(8)

The continuity equation applied in this region is

∂
(
εlvl

)
∂y

= 0 (9)

For the free fluid region, we use a Stokes equation in domain Ω1. The equation is actually the
Brinkman equation, without the permeability term.

Notice that we have two different and adjacent domains. Therefore, a boundary used at the
interface is special. In this work we applied the Beavers–Joseph boundary condition at the interface
between the free fluid region and the porous medium domain.

2.2. Boundary Conditions

No free fluid exists in the PCL when the cilia are perpendicular to the horizontal plane. Figure 5a
shows that the PCL has only domain Ω2. Figure 5b shows our domains Ω1 and Ω2; the boundary
condition between Ω1 and Ω2 is at yStoke at the tips of the cilia. Note that yStoke depends on the angle θ.
We used 3 boundary conditions in this study u = 0 at y = 0, u = G at y = h and yStoke Beavers–Joseph
boundary condition at yStoke.Mathematics 2019, 7, x FOR PEER REVIEW 6 of 17 
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Let u = εlv1
l. We now have the system of equations with the unknown u and boundary conditions;

u = 0 at y = 0 (10)

u = G at y = h (11)
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du
dy

∣∣∣∣∣
y=y+stoke

−
1
ϕp

du
dy

∣∣∣∣∣
y=y−stoke

=
β
√

K
u|y=ystoke

at y = yStoke (12)

where β is a dimensionless parameter of the order of one; εl is porosity of the porous medium; yStoke is
length of porous medium; and G is a function depending on X and the angle θ.

3. Dimensionless Stokes–Brinkman Equations

In this section, we normalize the Stokes–Brinkman equations by introducing the following
new variables.

y+ =
y
h

, U+(0) =
u

U0
, v+ =

vs
1

U0
, x+ =

x
h

, K+ =
k11

K0
, P+ = p

h
U0µ

and g+ =
g
g0

(13)

where h is the characteristic length; U0 is volumetric average velocity in the porous medium; K0 is
characteristic permeability; and g0 is characteristic gravity.

3.1. Dimensionless of Brinkman Equation

We normalize the Brinkman equation, of Equation (7) by substituting Equation (13) for Equation (7).
We then have

2
εl

d2U+(0)

dy+2 −
h2

K0K+
U+(0) +

h2ρg+g0

µU0
=

dP+

dx+
−

h2εlv+

K0K+
(14)

Equation (14) can be rewritten as

2M1
d2U+(0)

dy+2 −M2U+(0) + M3 =
dP+

dx+
−H

(
y+

)
, (15)

where M1 = 1
εl , M2 = h2

K0K+ , M3 =
h2ρg+g0
µU0

are constants and

H
(
y+

)
=

h2εlv+

K0K+
is a function of y+. (16)

3.2. Dimensionless Stokes Equation

We normalize the Stokes Equation (8) by substituting Equation (13) for Equation (8). We then obtain

2
εl

d2U+(0)

d(y+)2 =
dP+

dx+
−

h2ρg+g0

µU0
(17)

Equation (17) can be rewritten as

2M1
d2U+

dy+2 =
dP+

dx+
−M3 (18)

where M1 and M3 are the constants defined in Equation (16).

3.3. Dimensionless Boundary Conditions

In this section we normalize the boundary conditions at the free fluid/porous medium interface
used in our domain.

Substituting Equation (13) for Equation (12) we have

dU+(0)

dy+

∣∣∣∣∣∣
y+=

ystoke
h

−
1
ϕp

dU+(0)

dy+

∣∣∣∣∣∣
y+=

ystoke
h

=
hβ√
K+

p K0

U+(0)
∣∣∣
y+=

ystoke
h . (19)
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Next, we normalize the bottom and top boundary conditions by substituting Equation (13) for
Equation (10) and Equation (11), giving us

U+(0) = 0 at y+ = 0. (20)

U+(0) =
G
U0

at y+ = 1. (21)

respectively.
We have now normalized the Stokes–Brinkman equations and the boundary conditions.

Consequently, the system of equations used in the next sections and the boundary conditions are

2M1
d2U+(0)

dy+2 −M2U+(0) + M3 =
dP+

dx+
−H

(
y+

)
in Ω2 (22)

2M1
d2U+

dy+2 =
dP+

dx+
−M3 in Ω1 (23)

U+(0) = 0 at y+ = 0. (24)

U+(0) =
G
U0

at y+ = 1. (25)

dU+(0)

dy+

∣∣∣∣∣∣
y+=

ystoke
h

−
1
ϕp

dU+(0)

dy+

∣∣∣∣∣∣
y+=

ystoke
h

=
hβ√
K+

p K0

U+(0)
∣∣∣
y+=

ystoke
h

at y+ =
yStoke

h
. (26)

4. Asymptotic Expansion Method of the Stokes–Brinkman Equations

As mentioned in Section 2, we have two different domains where the domain Ω1, is the region
where y > yStoke and the region Ω2 is the layer where y < yStoke. In this section, we find the analytical
solution of the governing equations with the asymptotic expansion. Section 4.1 shows the result of the
Brinkman equation and Section 4.2 shows the result of the Stokes equation.

4.1. Asymptotic Expansion Method of the Brinkman Equation

Using the method of asymptotic expansion, we assume that

U+ = U+(0) + εU+(1) + ε2U+(2) + . . . (27)

In the case y+ < yStoke
h , we substitute Equation (27) for Equation (22), giving us

2M1
d2(U+(0) + εU+(1) + o

(
ε2

)
dy+2 −M2

(
U+(0) + εU+(1) + o

(
ε2

))
+ M3 =

dP+

dx+
−H

(
y+

)
(28)

Considering the zeroth-order of ε0; we obtain

2M1
d2U+(0)

dy+2 −M2U+(0) + M3 =
dP+

dx+
−H

(
y+

)
(29)

Since H(y+), the velocity of cilia, is a known source term in this work, we assume that it is a linear
function. That is

H
(
y+

)
=

h2εl

k11

(
c1y+ + c0

)
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where c0 and c1 are constants. Thus, Equation (29) becomes

2M1
d2U+(0)

dy+2 −M2U+(0) = −M3 +
dP+

dx+
−

h2εl

k11

(
c1y+ + c0

)
(30)

First, we find the general solution of the homogeneous Equation (30). Solving the homogeneous
part of the ordinary differential equation

2M1
d2U+(0)

dy+2 −M2U+(0) = 0. (31)

We obtain the general solution Uc
+(0) = w1e

√
h2εl

2K0K+
y+

+ w2e
−

√
h2εl

2K0K+
y+

. To find the particular
solution of Equation (30), we use the method of undetermined coefficients. Therefore, the solution of
the differential equation is

U+(0) = w1e

√
M2
2M1

y+
+ w2e

−

√
M2

2M1
y+

+
h2εl

M2k11
c1y+ +

M3

M2
−

dP+

M2dx+
+

h2εl

M2k11
c0. (32)

Let

J1 =

√
M2

2M1
, J2 =

dP+

M2dx+
, J3 =

h2εl

M2k11
, J4 =

M3

M2
, J5 =

dP+

M1dx+
, and J6 =

M3

M1
(33)

all of which are constants. Therefore Equation (32) can be rewritten as

U+(0) = w1eJ1 y+ + w2e−J1 y+ + J3c1y+ + J4 − J2 + J3c0. (34)

Applying Equation (24) to Equation (34), we have

w2 = J2 − J4 − J3c0 −w1 (35)

which yields

U+(0) = w1eJ1 y+
−w1e−J1 y+ + (J2 − J4 − J3c0)e−J1 y+ + J3c1y+ + J4 − J2 + J3c0. (37)

We now have the solution of the Brinkman equation.

4.2. Asymptotic Expansion Method of Stokes Equation

Similar to the previous section, we calculate the velocity of the PCL fluid in domain Ω1 using the
asymptotic expansion method with the Stokes Equation (23). We assume that

U+ = U+(0) + εU+(1) + ε2U+(2) + . . . (37)

In the case y+ > yStoke
h , we substitute Equation (37) for Equation (23). Therefore

2M1
d2(U+(0) + εU+(1) + o

(
ε2

)
dy+2 =

dP+

dx+
−M3. (38)

Considering the zeroth-order term of ε, ε0, we obtain

d2U+(0)

dy+2 = 1
2M1

dP+

dx+ −
M3

2M1

or d2U+(0)

dy+2 = 1
2 J5 −

1
2 J6.

(39)
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As we assume that dP+

dx+ is a constant, by integrating Equation (39) twice, we have

U+(0) =

(
1
2 J5 −

1
2 J6

)
y+2

2
+ w3y+ + w4 (40)

Applying the boundary condition (25) to Equation (40), we obtain

G
U0

=
( 1

2 J5−
1
2 J6)

2 + w3 + w4. Hence w4 = G
U0
−
( 1

2 J5−
1
2 J6)

2 −w3.

Then U+(0) =
( 1

2 J5−
1
2 J6)y+2

2 + w3y+ + G
U0
−
( 1

2 J5−
1
2 J6)

2 −w3.
(41)

We can find the solutions at and Ω2, yet the constants w1 and w3 of the Stokes–Brinkman equation
are unknown.

5. The Relation between the Constants

In this section, we determine the relation of the constants w1 and w3 with Beavers–Joseph boundary
condition. Substituting Equation (36) and Equation (41) for Equation (26), we obtain

( 1
2

J5 −
1
2

J6

) yStoke

h
+ w3 −

1
ϕp

w1 J1eJ1
yStoke

h −
1
ϕp

w1 J1e−J1
yStoke

h +
1
ϕp

J1(J2 − J4 − J3c0)e
−J1

yStoke
h −

1
ϕp

J3c1 =
hβ√
K+

p K0

U+
∣∣∣
y+=

ystoke
h ,

(42)

where U+
∣∣∣
y+=

ystoke
h

(on the right-hand side of Equation (42)) can be obtained from the PCL velocity in

Ω1Ω2, or both. However, the velocity hβ√
K+

p K0

U+
∣∣∣
y+=

ystoke
h

is a slip velocity [13,14]. Therefore, in this

work, we consider the case that U+
∣∣∣
y+=

ystoke
h

= U+
∣∣∣
y+=

ystoke
+

h

.

Substituting Equation (41) for the right-hand side of Equation (42) and simplifying, we have

w3 =
11− hβ√

K+
p K0

yStoke
h +

hβ√
K+

p K0




w1

(
1
ϕp

J1eJ1
yStoke

h + 1
ϕp

J1e−J1
yStoke

h

)
+

hβ√
K+

p K0

( 1
2 J5−

1
2 J6)

( yStoke
h

)2

2 +
hβ√

K+
p K0

G
U0

−
hβ√

K+
p K0

( 1
2 J5−

1
2 J6)

2 −

(
1
2 J5 −

1
2 J6

) yStoke
h −

1
ϕp

J1(J2 − J4 − J3c0)e−J1
yStoke

h + 1
ϕp

J3c1

. (43)

We now have the relation between the constants w1 and w3. Inserting Equation (42) into
Equation (41), we have the solution of the Stokes equation depending on w1. That is

U+(0) =
( 1

2 J5−
1
2 J6)y+2

2 +


11− hβ√

K+p K0

yStoke
h +

hβ√
K+p K0




w1

(
1
ϕp

J1eJ1
yStoke

h + 1
ϕp

J1e−J1
yStoke

h

)
+

hβ√
K+

p K0

( 1
2 J5−

1
2 J6)

( yStoke
h

)2

2 +
hβ√

K+
p K0

G
U0

−
hβ√

K+
p K0

( 1
2 J5−

1
2 J6)

2 −

(
1
2 J5 −

1
2 J6

) yStoke
h −

1
ϕp

J1(J2 − J4 − J3c0)e−J1
yStoke

h + 1
ϕp

J3c1


y+

+ G
U0
−

( 1
2 J5−

1
2 J6)

2 −


11− hβ√

K+p K0

yStoke
h +

hβ√
K+p K0




w1

(
1
ϕp

J1eJ1
yStoke

h + 1
ϕp

J1e−J1
yStoke

h

)
+

hβ√
K+

p K0

( 1
2 J5−

1
2 J6)

( yStoke
h

)2

2 +
hβ√

K+
p K0

G
U0

−
hβ√

K+
p K0

( 1
2 J5−

1
2 J6)

2 −

(
1
2 J5 −

1
2 J6

) yStoke
h −

1
ϕp

J1(J2 − J4 − J3c0)e−J1
yStoke

h + 1
ϕp

J3c1


.

(44)

We now obtain the general solution of the Stokes–Brinkman equations, depending only the constant
w1 with the asymptotic expansion method, in which the Beavers–Joseph condition is employed at the
free fluid/ porous medium interface.

6. Results and Discussion

The solutions of Stokes–Brinkman equations, Equation (36) and Equation (44), calculated in
Sections 4 and 5 are plotted on a graph and discussed in this section. To plot the graph, we assume that
the graphs θ between the cilia and the horizontal plane are 40◦, 50◦, 60◦, 70◦, 80◦, 90◦ where the cilia
have the highest velocity at θ = 90◦ during the forward stroke and stop beating at θ = 40◦. So, at
θ = 40◦ we do not need to calculate the velocity of the PCL. The variables used in Equation (44) are
given in Tables 1 and 2. The values of yStoke and Kp

+ are obtained from [4], and vs is the velocities of
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the solid, cilia, where the maximum velocity of motile cilia value is assumed at θ = 90◦ in descending
order of degree, terminating at θ = 40◦, h is the cilium height, U0 is one cycle of ciliary beat, and ϕp

and βwere obtained from [2]. We assume that the rate of pressure changes dP+

dx+ equals 1. The boundary
condition at the top of the free fluid domain equals 1. The variable w1 in Equation (44) equals 0 because
in this study we aim to verify if the solid velocities applied to the equation are valid, the solutions
correlate with the variable velocity employed, where the maximum velocity is assumed at θ = 90◦ and
decreases with decreasing angles.

Table 1. Variable of the experimental data in the solution of the Stoke–Brinkman equations.

Variable Value Unit

h 7.5 [µm]

ρ 992.2× 10−15
[
N/m2

]
µ 3× 10−6

[
ML−1T−2

]
g 9.81× 106 [µm]

U0 1.00 [µm]
β 1 [1]

v+ 1 [1]
dP+

dx+ 1 [1]
w1 0 [1]
G 1 [1]

Table 2. Values of variables used in Equation (44) used to plot Figure for each angle θ.

Variable 50◦ 60◦ 70◦ 80◦ 90◦

yStoke 0.7672 0.8638 0.9353 0.9818 1.0000
KP+ 0.0012 0.0015 0.0016 0.0017 0.0018
εl 0.6717 0.7099 0.7331 0.7439 0.7487
vs 0.0023 0.0024 0.0044 0.0049 0.0050

These solutions are the velocity of PCL fluid in the layer containing cilia with different angle θ
(50◦, 60◦, 70◦, 80◦, 90◦), respectively. It can be noted that the velocity decrease with decreasing angles
and bends sharply at the seam of the porous medium and the free fluid region. The asymptotic solution
U+(0) of the Stoke–Brinkman Equation (44) is shown in Figure 6 (the code is given in Appendix A here).
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The asymptotic expansion method is the tool for finding analytical approximate solutions to
complicated practical problems, for example, the problem in ordinary differential equations in terms of
regular perturbation and singular perturbation. We construct different asymptotic solutions inside and
outside the region of rapid change and match them together to determine a global solution. Other
methods used for finding exact and approximate solutions for linear and nonlinear partial differential
equations is the homotopy perturbation method which is only a special case of the homotopy analysis
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method. The basic ideas of the homotopy perturbation method is a coupling of the traditional
perturbation method and homotopy in topology deforms continuously the problem in hand to a simple
one which can be easily solved. The advantage of this method is that it can be applied to various
nonlinear problems, and the disadvantage is that we should suitably choose an initial guess, or infinite
iterations are required [15]. The asymptotic expansion method and the homotopy perturbation method
are principally based on a Taylor series with respect to an embedding parameter.

Another method used to describe the samples with porous media, is the fractal derivative model.
This method is developed from fractal calculus for calculating the solution of problem phenomena in
porous media or hierarchical structures [16]. For instance, in a study by Wang, Shi, He, and Li [17],
to find an optimal hair length of a polar bear for thermal protection, which helps maintain a normal
body temperature, by using a fractal derivative model of one-dimensional heat conduction along the
hair. The basic ideas of the fractal calculus begin from Fourier’s law of thermal conduction, which
can be expressed as q = k ∆T

∆x , where q is the heat flux, k is the material’s conductivity, and ∆T
∆x is the

temperature gradient, but the asymptotic expansion method is adopted to determine the velocity of
ciliary motion that moves foreign particles out of the body.

While the asymptotic expansion method can be used to study the interface between the porous
media region and the free fluid region, the homotopy perturbation method and the fractal derivative
model are only adopted for the porous media domain. These three approaches are the tools for
finding analytical approximate solutions to the problem in ordinary differential equations or partial
differential equations. Another difference is that the asymptotic expansion method can be applied
to solve linear ordinary differential equations and perturbation equations. On the other hand, the
homotopy perturbation method and the fractal derivative model are used to derive the solutions to
nonlinear ordinary differential equations or partial differential equations.

7. Conclusions

In this article, we studied the fluid flow in the periciliary layer (PCL) of the respiratory tract using
the of asymptotic expansion method to determine the velocity of PCL fluid. The PCL is divided into
two domains: the free fluid and the porous medium domains. The free fluid domain is the upper
layer of the PCL from cilia are absent. The porous medium domain is the lower layer of PCL and
contains cilia. The Stokes equation is employed in the free fluid domain and the Brinkman equation is
applied in the porous medium. The Beavers–Joseph boundary condition is employed at the interface
between the porous medium and the free fluid region. We assume that the velocity of the PCL fluid at
the bottom of the porous medium domain (at y = 0) is zero and the velocity of the PCL fluid in the
porous medium depends on angle θ. The boundary condition at the top of the free fluid domain is
assumed to be a function of G, where G depends on X and the angle θ. The explicit formula of velocity
of PCL fluid U+(0) is obtained by applying asymptotic expansion to the Stokes–Brinkman equations.

Author Contributions: Conceptualization, S.P. and K.W.; methodology, S.P.; software, S.P.; validation, K.W.
and S.P.; formal analysis, S.P.; investigation, S.P.; resources, S.P.; data curation, K.W.; writing—original draft
preparation, S.P.; writing—review and editing, K.W.; visualization, S.P.; supervision, K.W.; project administration,
K.W.; funding acquisition, S.P.

Funding: This research received no external funding.

Acknowledgments: The authors would to thank Rachada Pongprairat and Krongkaew Mighanetara for advice
and support.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2019, 7, 567 12 of 15

Nomenclature

Variable Meaning Unit

µ a dynamic viscosity
[

L2

T

]
the inverse of the permeability
tensor

[
1
L2

]
εl a porosity [1]
vl the velocities of the liquid

[
L
T

]
vS the velocities of the solid

[
L
T

]
p pressure

[
M

LT2

]
ε·l

the material time derivative of the
porosity with respect to the solid
phase

[
L
T

]
h the characteristic length

[
L
T

]
U0

a volumetric average velocity in a
porous medium

[
L
T

]
K0 characteristic permeability

[
L2

]
g0 characteristic gravity

[
L

T2

]
g gravity

[
L

T2

]
where L = length, T = time and M = mass.

Appendix A

%==========================================================================
%================= This Program for Compute the Solutions =================
%==========================================================================
clear all;

clc;
format long;
%% Set Value
yStoke = [0.7672 0.8638 0.9353 0.9818 1.0];
K11 = [0.0012 0.0015 0.0016 0.0017 0.0018];
Eps = [0.6716 0.7099 0.7331 0.7439 0.7487];
c = [0 0.0023; 0 0.0024;0 0.0044; 0 0.0049; 0 0.0050];
c = c*10ˆ(5);
h = 7.5;
Rho = 992.2*10ˆ(-15);
Mu = 3*power(10,-6);
g = 9.81*10ˆ(6);
u0 = 0.05;
Beta = 1;
h = 7.5;
Kp = K11;
vPlus = 100;
dPplus = 10;
w1 = 0;
G = 1;
gram = [0 -0.05 0.06 0.16 -0.3];
% phiP = 1-6.*gram;
phiP = Eps;
angle = 50:10:90;
% Left and Right Boundary of Part 1 and 2
% Step Size of Y
noY = 50;
yy1 = [linspace(0,yStoke(1),noY); linspace(0,yStoke(2),noY);...

linspace(0,yStoke(3),noY); linspace(0,yStoke(4),noY);...
linspace(0,yStoke(5),noY)];

y1 = linspace(0,yStoke(5),noY+noY);
yy2 = [linspace(yStoke(1)+0.01,1,noY); linspace(yStoke(2)+0.01,1,noY);...

linspace(yStoke(3)+0.01,1,noY); linspace(yStoke(4)+0.01,1,noY)];
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y = [yy1(1:4,:) yy2; y1];
nData = length(yStoke);
% Color and Style Orders of line in each figure
Col = {’r’; ’g’; ’b’; ’y’; ’m’};
Style = {’-’; ’-’; ’-’; ’-’; ’-’};
% Parameter of part 1
M1 = 1./Eps;
M2 = (hˆ(2))./(K11);
M3 = ((hˆ(2))*Rho*g)/(Mu*u0);
J1 = sqrt(M2./(2*M1));
J2 = dPplus./M2;
J3 = (hˆ(2).*Eps)./(M2.*K11);
J4 = M3./M2;
%% Define and Compute the solutions
for i = 1 : nData

% Part 1
t1 = J2(i)-J4(i)-(J3(i)*c(i,1));
t2 = J3(i)*c(i,2);
% Computation of part 1
j = 1;
if i ~= nData

for y1p = 1 : noY
uu1(i,j) = w1*exp(J1(i)*yy1(i,y1p))-w1*exp(-J1(i)*yy1(i,y1p))...

+t1*exp(-J1(i)*yy1(i,y1p))+t2*yy1(i,y1p)-t1;
j = j+1;

end
else

for y1p = 1 : noY
uu1(i,j) = w1*exp(J1(i)*yy1(i,y1p))-w1*exp(-J1(i)*yy1(i,y1p))...

+t1*exp(-J1(i)*yy1(i,y1p))+t2*yy1(i,y1p)-t1;
j = j+1;

end
j = 1;
for y1p = 1 : 2*noY

u1(1,j) = w1*exp(J1(i)*y1(1,y1p))-w1*exp(-J1(i)*y1(1,y1p))...
+t1*exp(-J1(i)*y1(1,y1p))+t2*y1(1,y1p)-t1;

j = j+1;
end

end
% Part 2
f1 = exp(J1(i)*(yStoke (i)/h));
f2 = exp(-J1(i)*(yStoke (i)/h));
f3 = yStoke (i)/h;
f4 = G/u0;
f5 = ((1/2)*J2(i)-(1/2)*J4(i));
f6 = 1/phiP(i);
f7 = (h*Beta)/sqrt(Kp(i));
if i ~= nData

j = 1;
% Computation of part 2 : Case 3 eq 4.23
for y2p = 1 : noY

s4(i,j) = (1/(1-f7*f3+f7))*((w1*(f6*J1(i)*f1+f6*J1(i)*f2))...
+((f7*f5*f3ˆ2)/2)+f7*f4-((f7*f5)/2)...

-f5*f3-(f6*J1(i)*t1*f2)+(f6*J3(i)*c(i,2)));
uu4(i,j) = ((f5/2)*(yy2(i,y2p))ˆ2)+(s4(i,j)*yy2(i,y2p))...

+f4-(f5/2)-s4(i,j);
j = j+1;

end
nPlot2{i,1} = [num2str((10*i)+40),’\circ’];

end
nPlot1{i,1} = [num2str((10*i)+40),’\circ’];

end
UU2 = cat(2,uu1(1:4,:),uu2(1:4,:));
UU3 = cat(2,uu1(1:4,:),uu3(1:4,:));
UU4 = cat(2,uu1(1:4,:),uu4(1:4,:));
U2 = cat(1,UU2,u1);
U3 = cat(1,UU3,u1);
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U4 = cat(1,UU4,u1);
%% Plot Graph
% Plot Graph of each part
% part 1
figure();
plot(uu1(1,:),yy1(1,:),’r’,uu1(2,:),yy1(2,:),’g’,uu1(3,:),yy1(3,:),’b’...

,uu1(4,:),yy1(4,:),’y’,uu1(5,:),yy1(5,:),’m’);
% case 3
figure();
plot(uu4(1,:),yy2(1,:),’r’,uu4(2,:),yy2(2,:),’g’,uu4(3,:),yy2(3,:),’b’...

,uu4(4,:),yy2(4,:),’y’);
xlabel(’u’)
ylabel(’y’)
title(’The solution of u and y when yˆ{+} > y_{stoke} : case 3’)
legend(nPlot2,-1);
% Plot Graph of all degree
l = length(y);
% case 3
figure();
plot(U4(1,:),y(1,:),’r’,U4(2,:),y(2,:),’g’,U4(3,:),y(3,:),’b’...

,U4(4,:),y(4,:),’y’,U4(5,:),y(5,:),’m’)
xlabel(’u’)
ylabel(’y’)
% title([’The relation between u and y when yˆ{+} < y_ {stoke} ’...

% ’and yˆ{+} > y_{stoke} : case 3’])
legend(nPlot1,4);
saveas(gcf,’CompareSolStokeCase3.fig’)

References

1. Machemer, H. Ciliary activity and the origin of metachrony in paramecium: Effects of increasd viscocity. J.
Exp. Biol. 1972, 57, 239–259. [PubMed]

2. Smith, D.J.; Smith, A.A.; Blake, J.R. Mathematical embryology: The fluid mechanics of nodal cilia. J. Eng.
Math. 2011, 70, 255–279. [CrossRef]

3. Fulford, G.R.; Blake, J.R. Muco–ciliary transport in the lung. J. Thero. Biol. 1986, 121, 381–402. [CrossRef]
4. Jayathilake, P.G.; Tan, Z.; Le, D.V.; Lee, H.P.; Khoo, B.C. Three-dimensional numerical simulations of human

pulmonary cilia in the periciliary liquid layer by the immersed boundary method. Comput. Fluids Sciencedirect.
2012, 67, 130–137. [CrossRef]

5. Serafini, S.M.; Michaelson, E.D. Length and distribution of cilia in human and canine airways. Bull. Eur.
Pysiopathol. Respir. 1977, 13, 551–559.

6. Matsui, H.; Randell, S.H.; Peretti, S.W.; Davis, C.W.; Boucher, R.C. Coordinated clearance of pericilary liquid
and mucus from airway surfaces. J. Clin. Investig. 1998, 102, 1125–1131. [CrossRef] [PubMed]

7. Neale, G.; Nader, W. Practical significance of Brinkman’s extension of Darcy’slaw: Coupled parallel flows
within a channel and a bounding porous medium. Can. J. Chem. Eng. 1974, 52, 475–478. [CrossRef]

8. Ochoa, J.A.; Whitaker, S. Momentum transfer at the boundary between a porous medium and a homogeneous
fluid—I. Theoretical development. Int. J. Heat Mass Transf. 1995, 38, 2635–2646. [CrossRef]

9. Ochoa, J.A.; Whitaker, S. Momentum transfer at the boundary between a porous medium and a homogeneous
fluid—II. Comparison with experiment. Int. J. Heat Mass Transfer 1995, 38, 2647–2655. [CrossRef]

10. Valdes-Parada, F.J.; Aguilar-Madera, C.G.; Ochoa-Tapia, J.A.; Goyeau, B. Velocity and stress jump conditions
between a porous medium and a fluid. Adv. Water Resour. 2013, 62, 327–339. [CrossRef]

11. Chamsri, K. Formulation of a well-posed Stoke-Brinkman Problem with a Permeability Tensor. J. Math. 2015,
1, 1–7.

12. Wuttanachamsri, K.; Schreyer, L. Effects of the Cilia movement on fluid Velocity for fixed Domain. submitted.
13. Sears, P.R.; Thomson, K.; Knowles, M.R.; Davis, C.W. Human Airway Ciliary Dynamics. Am. J. Physiol. Lung

Cell. Mol. Physiol. 2012, 704, L170–L183. [CrossRef] [PubMed]
14. Chandesris, M.; Jamet, D. Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Int. J.

Heat Mass Transf. 2006, 49, 2137–2150. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/5075893
http://dx.doi.org/10.1007/s10665-010-9383-y
http://dx.doi.org/10.1016/S0022-5193(86)80098-4
http://dx.doi.org/10.1016/j.compfluid.2012.07.016
http://dx.doi.org/10.1172/JCI2687
http://www.ncbi.nlm.nih.gov/pubmed/9739046
http://dx.doi.org/10.1002/cjce.5450520407
http://dx.doi.org/10.1016/0017-9310(94)00346-W
http://dx.doi.org/10.1016/0017-9310(94)00347-X
http://dx.doi.org/10.1016/j.advwatres.2013.08.008
http://dx.doi.org/10.1152/ajplung.00105.2012
http://www.ncbi.nlm.nih.gov/pubmed/23144323
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.12.010


Mathematics 2019, 7, 567 15 of 15

15. Homotopy Perturbation Method. Available online: www.shodhganga.inflibnet.ac.in/bitstream/10603/37622/

9/09_chapter%202.pdf (accessed on 15 May 2019).
16. He, J.-H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [CrossRef]
17. Fractal Calculus and Its Application to Explanation of Biomechanism of Polar Bear Hairs. Available online:

www.Worldsciencetific (accessed on 3 May 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

www.shodhganga.inflibnet.ac.in/bitstream/10603/37622/9/09_chapter%202.pdf
www.shodhganga.inflibnet.ac.in/bitstream/10603/37622/9/09_chapter%202.pdf
http://dx.doi.org/10.1016/j.rinp.2018.06.011
www.Worldsciencetific
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Model and Boundary Conditions 
	Stokes–Brinkman Equations 
	Boundary Conditions 

	Dimensionless Stokes–Brinkman Equations 
	Dimensionless of Brinkman Equation 
	Dimensionless Stokes Equation 
	Dimensionless Boundary Conditions 

	Asymptotic Expansion Method of the Stokes–Brinkman Equations 
	Asymptotic Expansion Method of the Brinkman Equation 
	Asymptotic Expansion Method of Stokes Equation 

	The Relation between the Constants 
	Results and Discussion 
	Conclusions 
	
	References

