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Abstract: We present an application of the nonlinear steepest descent method to a three-component
coupled mKdV system associated with a 4 × 4 matrix spectral problem. An integrable coupled
mKdV hierarchy with three potentials is first generated. Based on the corresponding oscillatory
Riemann-Hilbert problem, the leading asympototics of the three-component mKdV system is then
evaluated by using the nonlinear steepest descent method.
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1. Introduction

Asymptotic analysis has become an important area in soliton theory and its basic approaches
are used to determine limiting behaviors of Cauchy problems of integrable systems. Significant work
on long-time asympototics of integrable systems was carried out by Manakov [1] and Ablowitz and
Newell [2]. Zakharov and Manakov [3] wrote down precise expressions, depending explicitly on initial
data, for the leading asymptotics for the nonlinear Schrödinger equation in the physically interesting
region x = O(t). A complete description was presented for the leading asymptotics of the Cauchy
problem of the Korteweg-de Vries (KdV) equation by Ablowitz and Segur [4]. The method of Zakharov
and Manakov starts an ansatz for the asymptotic form of the solution and utilizes some techniques
which are removed from the classical framework of Riemann-Hilbert (RH) problems. Segur and
Ablowitz [5] began with the similarity solution form to derive the leading two terms in each of the
asymptotic expansions for the amplitude and phase for the nonlinear Schrödinger equation, based
on conservation laws. However, all those results were presented, without applying the method of
stationary phase.

Its [6] used the stationary phase idea to conjugate the RH problem associated with the nonlinear
Schrödinger equation, up to small errors which decay as t → ∞, by an appropriate parametrix to
a model RH problem solvable by the technique from the theory of isomonodromic deformations.
Deift and Zhou [7] determined the long-time asymptotics of the mKdV equation, by manipulating
an associated oscillatory RH problem systematically and rigorously, in the spirit of the stationary
phase method. Their technique, further developed in [8,9] and also in [10], opens a nonlinear steepest
descent method to explore asymptotics of integrable systems through analyzing oscillatory RH
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problems associated with matrix spectral problems. A crucial ingredient of the Deift-Zhou approach
is the asymptotic analysis of singular integrals on contours by deformations. Applications have
been made for a few of integrable equations, including the KdV equation, the nonlinear Schrödinger
equation, the sine-Gordon equation, the derivative nonlinear Schrödinger equation, the Camassa-Holm
equation and the Kundu-Eckhaus equation (see, e.g., [11–18]). McLaughlin and Miller [19] generalized
the steepest descent method to the case when the jump matrix fails to be analytic and their method
is now called a nonlinear ∂̄ steepest descent method. One important factor in the nonlinear steepest
descent method is the order of involved spectral matrices in RH problems or equivalently the
inverse scattering theory. However, only 2× 2 spectral matrices and their RH problems have been
systematically considered (see, e.g., [20]), which lead to algebro-geometric solutions to integrable
systems expressed by hyperelliptic functions [21]. There are very few 3× 3 spectral matrices, whose
long-time asymptotics or RH problems are considered (see, e.g., [22,23]) and whose associated inverse
scattering transforms are solved (see, e.g., [24,25]). Associated trigonal curves exhibit much more
diverse asymptotic behaviors and algebro-geometric solutions than hyperelliptic curves [26,27].
There has been no application of the nonlinear steepest descent method to the 4th-order or higher-order
matrix spectral problems so far.

In this paper, we would like to present an application to a 4× 4 matrix spectral problem

− iφx = Uφ, U =


−k p1 p2 p3

−p∗1 k 0 0

−p∗2 0 k 0

−p∗3 0 0 k

 , (1)

where i denotes the unit imaginary number, k is the spectral parameter and the superscript ∗ denotes
the complex conjugate. This spectral problem generates a three-component coupled mKdV system

pj,t = −pj,xxx + 3(|p1|2 + |p2|2 + |p3|2)pj,x + 3(p∗1 p1,x + p∗2 p2,x + p∗3 p3,x)pj, 1 ≤ j ≤ 3, (2)

where
|pi|2 = pi p∗i , 1 ≤ j ≤ 3.

We will compute the leading asymptotics of this mKdV system by analyzing an associated oscillatory
RH problem. Symmetry constraints and RH problems have been made for an unreduced combined
mKdV system in [28,29]. It is worth noting that this mKdV system (2) has a slightly different matrix
spectral problem from the one for the multiple wave interaction equations [30].

Let |M| denote an equivalent matrix norm for a matrix M (may not be square):

|M| = [tr(M† M)]
1
2 , (3)

where M† stands for the Hermitian transpose of M, and

S3 = {( f1, f2, f3)| fi ∈ S , 1 ≤ i ≤ 3},

where S denotes the Schwartz space. The primary result of the paper can be stated as follows.

Theorem 1. Let p(x, t) = (p1(x, t), p2(x, t), p3(x, t)) solves the Cauchy problem of the three-component
coupled mKdV system (2) with initial data in S3. Suppose that γ(k) = (γ1(k), γ2(k), γ3(k)) is the reflection
coefficient vector in S3 associated with the initial data and it satisfies

γ∗(−k∗) = γ(k), sup
k∈R
|γ(k)| < 1.
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Then, in the physically interesting region x = O(t), the leading asymptotics of the solution for x < 0 is given by

p(x, t) = (p1(x, t), p2(x, t), p3(x, t))

= −i

√
eπνν

6tk0 sinh πν
(|γ1(k0)| cos ϕ1, |γ2(k0)| cos ϕ2, |γ3(k0)| cos ϕ3) + O(

ln t
t
), (4)

where 

k0 =

√
−x
12t

, ν = − 1
2π

ln(1− |γ(k0|2),

ϕj = ϕ0 + arg γj(k0), 1 ≤ j ≤ 3,

ϕ0 = −ν ln 192tk3
0 − 2iχ(k0) + 16tk3

0 +
π

4
+ arg Γ(iν),

χ(k0) =
1

2πi

∫ k0

−k0

ln
( 1− |γ(ξ)|2

1− |γ(k0)|2
) dξ

ξ − k0
,

(5)

Γ(·) being the Gamma function.

The rest of the paper is organized as follows. In Section 2, within the zero-curvature formulation,
we derive an integrable coupled hierarchy with three potentials and furnish its bi-Hamiltonian
structure, based on the 4× 4 matrix spectral problem (1) suited for the RH theory. In Section 3, taking
the three-component coupled mKdV system (2) as an example, we present an associated oscillatory
RH problem. In Section 4, we explore long-time asymptotics for the three-component coupled mKdV
system through manipulating the oscillatory RH problem by the nonlinear steepest descent method.
In the last section, we give a summary of our conclusions, together with some discussions.

2. An Integrable Three-Component Coupled mKdV Hierarchy

2.1. Zero Curvature Formulation

Let us first recall the zero curvature formulation to construct integrable hierarchies [31]. Let u be
a vector potential, k be a spectral parameter, and In stand for the n-th order identity matrix. Choose a
square spectral matrix U = U(u, k) from a given matrix loop algebra. Suppose that

W = W(u, k) =
∞

∑
m=0

Wmk−m =
∞

∑
m=0

Wm(u)k−m (6)

presents a solution to the corresponding stationary zero curvature equation

Wx = i[U, W]. (7)

By using the solution W, we define an infinite sequence of Lax matrices

V[r] = V[r](u, k) = (krW)+ + ∆r, r ≥ 0, (8)

where the subscript + denotes the operation of taking a polynomial part in k, and ∆r, r ≥ 0, are
appropriate modification terms, and then construct an integrable hierarchy

ut = Kr(u) = Kr(x, t, u, ux, · · · ), r ≥ 0, (9)

from an infinite sequence of zero curvature equations

Ut −V[r]
x + i[U, V[r]] = 0, r ≥ 0. (10)
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The two matrices U and V[r] here are called a Lax pair [32] of the r-th integrable system in the soliton
hierarchy (9). The zero curvature equations in (10) present the compatibility requirements of the spatial
and temporal matrix spectral problems{

−iφx = Uφ = U(u, k)φ,

−iφt = V[r]φ = V[r](u, k)φ, r ≥ 0,
(11)

with φ being the matrix eigenfunction.
To show the Liouville integrability of the soliton hierarchy (9), we usually furnish a bi-Hamiltonian

structure [33]:

ut = Kr = J1
δH̃r+1

δu
= J2

δH̃r

δu
, r ≥ 1, (12)

where J1 and J2 constitute a Hamiltonian pair and δ
δu is the variational derivative. The Hamiltonian

structures are normally achieved through the trace identity [31]:

δ

δu

∫
tr(W

∂U
∂k

)dx = k−γ′ ∂

∂k

[
kγ′ tr(W

∂U
∂u

)
]
, γ′ = − k

2
d
dk

ln |tr(W2)|, (13)

or more generally, the variational identity [34]:

δ

δu

∫
〈W,

∂U
∂k
〉dx = k−γ′ ∂

∂k

[
kγ′〈W,

∂U
∂u
〉
]
, γ′ = − k

2
d
dk

ln |〈W, W〉|, (14)

with 〈·, ·〉 being a symmetric and ad-invariant non-degenerate bilinear form on the underlying matrix
loop algebra [35]. The bi-Hamiltonian structure often guarantees the existence of infinitely many
commuting Lie symmetries {Kn}∞

n=0 and conserved quantities {H̃n}∞
n=0:

[Kn1 , Kn2 ] = K′n1
[Kn2 ]− K′n2

[Kn1 ] = 0, (15)

and

{H̃n1 , H̃n2}N =
∫ ( δH̃n1

δu

)T
N

δH̃n2

δu
dx = 0, (16)

where n1, n2 ≥ 0, N = J1 or J2, and K′ denotes the Gateaux derivative of K with respect to the
potential u:

K′(u)[S] =
∂

∂ε

∣∣∣
ε=0

K(u + εS, ux + εSx, · · · ).

Such Abelian algebras of symmetries and conserved quantities can be generated directly from
Lax pairs (see, e.g., [36,37]). We also know that for a system of evolution equations,

H̃ =
∫

H dx

is a conserved functional if and only if δH̃
δu is an adjoint symmetry [38], and thus, Hamiltonian

structures connect conserved functionals with adjoint symmetries and further symmetries. Pairs of
adjoint symmetries and symmetries actually correspond to conservation laws [39].

When the underlying matrix loop algebra in the zero curvature formulation is simple,
semisimple and non-semisimple, the associated zero curvature equations generate classical integrable
hierarchies [40,41], a collection of different integrable hierarchies, and hierarchies of integrable
couplings [42], respectively. Integrable couplings require extra care in presenting lumps and solitons.
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2.2. Three-Component mKdV Hierarchy

Let us consider a 4× 4 matrix spectral problem

− iφx = Uφ = U(u, k)φ, U = (Ujl)4×4 =


−k p1 p2 p3

−p∗1 k 0 0

−p∗2 0 k 0

−p∗3 0 0 k

 , (17)

where k is a spectral parameter and u = pT = (p1, p2, p3)
T is a three-component potential. A special

case of p3 = 0 transforms (17) into the Manakov type spectral problem [43]. Since the leading matrix
diag(−1, 1, 1, 1) has a multiple eigenvalue, the spectral problem (17) is degenerate, which is different
from the case of multiple wave interaction equations [30].

To derive an associated integrable coupled mKdV hierarchy, we first solve the stationary zero
curvature Equation (7) corresponding to (17). We assume that a solution W is determined by

W =

[
a b

−b† d

]
, (18)

where a is a real scalar, b is a three-dimensional row, and d is a 3× 3 Hermitian matrix. It is direct to
observe that the stationary zero curvature Equation (7) becomes

ax = i(bp† − pb†),

bx = i(−2kb + pd− ap),

dx = i(b† p− p†b).

(19)

We search for a formal series solution as follows:

W =

[
a b

−b† d

]
=

∞

∑
m=0

Wmk−m, Wm = Wm(u) =

[
a[m] b[m]

−b[m]† d[m]

]
, m ≥ 0, (20)

with b[m] and d[m] being assumed to be

b[m] = (b[m]
1 , b[m]

2 , b[m]
3 ), d[m] = (d[m]

jl )3×3, m ≥ 0. (21)

Obviously, the system (19) is equivalent to the following recursion relations:

b[0] = 0, a[0]x = 0, d[0]x = 0, (22a)

b[m+1] =
1
2
(ib[m]

x + pd[m] − a[m]p), m ≥ 0, (22b)

a[m]
x = i(b[m]p† − pb[m]†), d[m]

x = i(b[m]† p− p†b[m]), m ≥ 1. (22c)

The three-component mKdV system (2) can correspond to the specific initial values:

a[0] = −6, d[0] = 2I3. (23)

Besides those initial values, we set all constants of integration in (22c) to be zero, that is, demand

Wm|u=0 = 0, m ≥ 1. (24)
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This way, with a[0] and d[0] given by (23), all matrices Wm, m ≥ 1, will be uniquely determined.
For instance, by a direct computation, (22) generates

b[1]j = 4pj, a[1] = 0, d[1]jl = 0; (25a)

b[2]j = 2ipj,x, a[2] = −2
3

∑
l=1
|pl |2, d[2]jl = 2pl p∗j ; (25b)

b[3]j = −pj,xx + 2(
3

∑
l=1
|pl |2)pj, (25c)

a[3] = i
3

∑
l=1

(pl p∗l,x − pl,x p∗l ), d[3]jl = i(pl,x p∗j − pl p∗j,x); (25d)

b[4]j = −1
2

i[pj,xxx − 3(
3

∑
l=1
|pl |2)pj,x − 3(

3

∑
l=1

pl,x p∗l )pj], (25e)

a[4] = −1
2
[3(

3

∑
l=1
|pl |2)2 −

3

∑
l=1

(pl p∗l,xx − pl,x p∗l,x + pl,xx p∗l )], (25f)

d[4]jl =
1
2
[3pl(

3

∑
l=1
|pl |2)p∗j − pl,xx p∗j + pl,x p∗j,x − pl p∗j,xx]; (25g)

where 1 ≤ j, l ≤ 3. Based on (22b) and (22c), we can obtain a recursion relation for b[m] and c[m] =

−b[m]†: [
c[m+1]

b[m+1]T

]
= Ψ

[
c[m]

b[m]T

]
, m ≥ 1, (26)

where Ψ is a 6× 6 matrix operator

Ψ = − i
2


(∂ +

3
∑

l=1
ql∂
−1 pl)I3 + q∂−1 p −q∂−1qT − (q∂−1qT)T

pT∂−1 p + (pT∂−1 p)T −(∂ +
3
∑

l=1
pl∂
−1ql)I3 − pT∂−1qT

, (27)

with q = −p†. Obviously, this tells

b[m+1]T =
i
2
{
[pT∂−1 p + (pT∂−1 p)T ]b[m]† + [(∂−

3

∑
l=1

pl∂
−1 p∗l )I3 − pT∂−1 p∗]b[m]T}, m ≥ 1. (28)

To generate an integrable coupled mKdV hierarchy with three components, we introduce, for all
integers r ≥ 0, the following Lax matrices

V[r] = V[r](u, λ) = (V[r]
jl )4×4 = (λrW)+ =

r

∑
s=0

Wsλr−s, r ≥ 0, (29)

where the modification terms are chosen as zero. The compatibility requirements of (11), i.e., the zero
curvature equations (10), lead to the integrable coupled mKdV hierarchy with three components:

ut = pT
t = Kr = −2ib[r+1]T , r ≥ 0. (30)

The first two nonlinear systems in the above integrable coupled mKdV hierarchy (30) are the
three-component coupled nonlinear Schrödinger system

pj,t = 2ipj,xx − 4i(|p1|2 + |p2|2 + |p3|2)pj, 1 ≤ j ≤ 3, (31)
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and the three-component coupled mKdV system (2). Under a reduction p3 = 0, the three-component
coupled system (31) is reduced to the Manakov system [43], for which a decomposition into
finite-dimensional integrable Hamiltonian systems was made in [44], whileas the three-component
coupled system (2) contains various examples of mKdV equations, for which there are diverse kinds
of integrable decompositions through symmetry constraints (see, e.g., [45,46]).

The three-component coupled mKdV hierarchy (30) with an extended six-component potential
u = (p, qT)T = (p,−p∗)T possesses a Hamiltonian structure [29,38], which can be computed
through applying the trace identity [31], or more generally, the variational identity [34]. A direct
computation tells

−i tr(W
∂U
∂k

) = −a + tr(d) =
∞

∑
m=0

(−a[m] + d[m]
11 + tr d[m]

22 )k−m,

and

−i tr(W
∂U
∂u

) =

[
c

bT

]
= ∑

m≥0
Gm−1k−m,

where W =

[
a b
c d

]
and c = −b†. Plugging these into the corresponding trace identity and

considering the case of m = 2 tell γ′ = 0, and thus

δH̃m

δu
= iGm−1, H̃m = − i

m

∫
(−a[m+1] + d[m+1]

11 + tr d[m+1]
22 ) dx, Gm−1 =

[
c[m]

b[m]T

]
, m ≥ 1, (32)

where c[m] = −b[m]†. A bi-Hamiltonian structure for the extended six-component coupled mKdV
systems, consisting of (30) and its conjugate compartment, then follows:

ut = Kr = J1Gr = J1
δH̃r+1

δu
= J2

δH̃r

δu
, r ≥ 1, (33)

where the Hamiltonian pair (J1, J2 = J1Ψ) is defined by

J1 =

[
0 −2I3

2I3 0

]
, (34a)

J2 = i


pT∂−1 p + (pT∂−1 p)T −(∂ +

3

∑
k=1

pk∂−1qk)I3 − pT∂−1qT

−(∂ +
3

∑
k=1

pk∂−1qk)I3 − q∂−1 p q∂−1qT + (q∂−1qT)T

, (34b)

where q = −p† again. Adjoint symmetry constraints (or equivalently symmetry constraints)
decompose a four-component nonlinear Schrödinger system with p3 = q3 = 0 into two commuting
finite-dimensional Liouville integrable Hamiltonian systems in [38]. In the next section, we will
concentrate on the three-component coupled mKdV system (2).

3. An Associated Oscillatory Riemann-Hilbert Problem

For a matrix M = M(k; x, t), we define

‖M‖p = ‖|M|‖p, (35)
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where |M| is the matrix norm of M given by (3) and ‖ f ‖p is theLp-norm of a function f of k. We assume
that as t→ ∞,

A(t) . B(t) means ∃ C, T > 0 such that |A(t)| ≤ CB(t), when t ≥ T. (36)

If the constant C depends on a few parameters α1, α2, · · · , αn, then we write A(t) .α1,α2,··· ,αn B(t),
but on some situations where the dependence of C on some parameters is not important, we will often
suppress those parameters for brevity.

For an oriented contour, we denote the left-hand side by + and the right-hand side by −, as one
travels on the contour in the direction of the arrow. A Riemann-Hilbert (RH) problem (Γ, J) on an
oriented contour Γ ⊂ C (open or closed) with a jump matrix J defined on Γ reads{

M+(k) = M−(k)J(k), k ∈ Γ,

M(k)→ J0, as k→ ∞,
(37)

where J0 is a given matrix determining a boundary condition at infinity, and M± are analytic in the ±
side regions and continuous to Γ from the ± sides, and M = M± in the ± side regions, respectively.

3.1. An Equivalent Matrix Spectral Problem

In the previous section, we have seen that the spectral problems of the three-component coupled
mKdV system (2) read

− iφx = Uφ = U(u, k)φ, −iφt = V[3]φ = V[3](u, k)φ, (38)

with the Lax pair being of the form

U(u, k) = kΛ + P, V[3](u, k) = k3Ω + Q, (39)

where u = pT = (p1, p2, p3)
T and

Λ = diag(−1, 1, 1, 1), Ω = diag(−6, 2, 2, 2). (40)

The other two matrices P and Q are given by

P =

[
0 p

−p† 0

]
, Q =

[
a[1]k2 + a[2]k + a[3] b[1]k2 + b[2]k + b[3]

−b[1]†k2 − b[2]†k− b[3]† d[1]k2 + d[2]k + d[3]

]
=

[
Q11 Q12

Q21 Q22

]
, (41)

where a[m], b[m], d[m], 1 ≤ m ≤ 3, are defined in (25), and thus{
Q11 = −2pp†k + i(pp†

x − px p†), Q12 = 4pk2 + 2ipxk− pxx + 2pp† p,

Q21 = −4p†k2 + 2ip†
xk + p†

xx − 2p† pp†, Q22 = 2p† pk + i(p† px − p†
x p).

(42)

As normal, for the spectral problems in (38), upon making the variable transformation

φ = ψEg, Eg = eikΛx+ik3Ωt, (43)

we can impose the canonical normalization condition:

ψ± → I4, when x, t→ ±∞. (44)
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The equivalent pair of matrix spectral problems reads

ψx = ik[Λ, ψ] + P̌ψ, (45)

ψt = ik3[Ω, ψ] + Q̌ψ, (46)

where P̌ = iP and Q̌ = iQ. Noting tr(P̌) = tr(Q̌) = 0, we have

det ψ = 1, (47)

by a generalized Liouville’s formula [47].
Applying the method of variation in parameters, and using the canonical normalization

condition (44), we can transform the x-part of (38) into the following Volterra integral equations
for ψ± [48]:

ψ−(k, x) = I4 +
∫ x

−∞
eikΛ(x−y)P̌(y)ψ−(k, y)eikΛ(y−x) dy, (48)

ψ+(k, x) = I4 −
∫ ∞

x
eikΛ(x−y)P̌(y)ψ+(λ, y)eikΛ(y−x) dy. (49)

Similarly, we can turn the t-part of (38) into the following Volterra integral equations:

ψ−(k, t) = I4 +
∫ t

−∞
eik3Ω(t−s)Q̌(s)ψ−(k, s)eik3Ω(s−t) ds, (50)

ψ+(k, t) = I4 −
∫ ∞

t
eik3Ω(t−s)Q̌(s)ψ+(k, s)eik3Ω(s−t) ds. (51)

Observing the structures of Λ and Ω, we can know that the first column of ψ− and the last three
columns of ψ+ consist of analytical functions in the upper half plane C+, and the first column of
ψ+ and the last three columns of ψ− consist of analytical functions in the lower half plane C− (also
see [29,49]). All this will help us formulate an associated RH problem for the three-component coupled
mKdV system (2).

3.2. An Oscillatory Riemann-Hilbert Problem

The scattering matrix S is determined by

ψ− = ψ+eikxΛ̂+ik3tΩ̂S(k), (52)

where eαM̂X = eαMXe−αM for a scalar α and two same order square matrices M and X. We also adopt
the simple expressions

M†(k∗) = (M(k))†, M−1(k∗) = (M(k∗))−1,

for a matrix M depending on k ∈ C. Because

U†(k∗) = TU(k∗)T−1, V[3]†(k∗) = TV[3](k∗)T−1, T = diag(1,−1,−1,−1), (53)

we have
ψ†(k∗) = Tψ−1(k∗)T−1, (54)

and
S†(k∗) = TS−1(k∗)T−1. (55)

Notice that det S(λ) = 1 due to det ψ± = 1. It then follows from det S = 1 and (55) that

S∗11(k
∗) = det[S22(k)], S†

21(k
∗) = S12(k)adj[S22(k)],
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where adj(M) is the adjoint matrix of M, and S is the block matrix

S = (Sjl)2×2,

with S22 being a 3× 3 matrix. Thus, the scattering matrix S can be written as

S(k) =

[
det[a†(k∗)] b(k)

adj[a†(k∗)]b†(k∗) a(k)

]
, (56)

where a is a 3× 3 matrix.
Introduce

M(k; x, t) =

 (
ψ−,L(k)

det[a†(k∗)] , ψ+,R(k)), k ∈ C+,

(ψ+,L(k), ψ−,R(k)a−1(k)), k ∈ C−,
(57)

where ψ±,L and ψ±,R denote the first column and the rest columns of ψ±. This matrix M solves an
associated oscillatory RH problem{

M+(k; x, t) = M−(k; x, t)J(k; x, t), k ∈ R,

M(k; x, t)→ I4, as k→ ∞,
(58)

where M±(k; x, t) = limε→0+ M(k± iε, x, t) and

J(k; x, t) =

[
1− γ(k)γ†(k∗) −e−2itθ(k)γ(k)

e2itθ(k)γ†(k∗) I3

]
, (59)

with
θ(k) = θ(k; x, t) =

kx
t
+ 4k3, γ(k) = b(k)a−1(k). (60)

In the above RH problem, we assume that the matrix a(k) is invertible, and so we will only analyze the
solitonless case. The behavior of the oscillatory factor

e2itθ(k)

depends on the increasing and decreasing of θ(k) and the signature of Re iθ(k) (see Figures 1 and 2).

Figure 1. Increasing and decreasing of θ.
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Figure 2. The signature table of Re iθ when x < 0.

In what follows, we assume that γ lies in S3 and satisfies

γ∗(−k∗) = γ(k), sup
k∈R
|γ(k)| < 1. (61)

The analysis on RH problems in [50] shows that the above RH problem (58) is equivalent to a Fredholm
integral equation of the second kind. For such Fredholm equations, the existences and uniqueness
of solutions can be guaranteed by the vanishing lemma [51]. A direct computation also shows [29]
that one can compute the potential p(x, t) through the solution M(k; x, t) to the RH problem (58)
as follows.

Theorem 2. Assume that γ lies in S3 and satisfies the conditions in (61). Then there exists a unique solution
M(k; x, t) to the Riemann-Hilbert problem (58), and the solution of the three-component coupled mKdV
system (2) is recovered via

p(x, t) = (p1(x, t), p2(x, t), p3(x, t)) = 2 lim
k→∞

(kM(k; , x, t))12, (62)

where we partition M into a block matrix M = (Mjl)2×2 with M22 being a 3× 3 matrix.

4. Long-Time Asymptotic Behavior

We will first deal with the Riemann-Hilbert (RH) problem (58) and then compute the long-time
aymptotics of the three-component coupled mKdV system (2) with the leading term, by using the
nonlinear steepest descent method [7]. We will be concentrated on the physically interesting region
| xt | ≤ C, where C is a positive constant.

4.1. Transformation of the RH Problem

Obviously, the jump matrix J has the following upper-lower and lower-upper factorizations:

J =

[
1 −e−2itθ(k)γ(k)

0 I3

] [
1 0

e2itθ(k)γ†(k∗) I3

]
, (63)
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and

J =

 1 0

e2itθ(k)γ†(k∗)
1−γ(k)γ†(k∗) I3

 [ 1− γ(k)γ†(k∗) 0

0 (I3 − γ†(k∗)γ(k))−1

]  1 −e2itθ(k)γ(k)
1−γ(k)γ†(k∗)

0 I3

 . (64)

We would like to introduce another RH problem to replace the upper-lower factorization with the
lower-upper factorization to make the analytic and decay properties of the two factorizations consistent.

We easily see that the stationary points of θ are±k0, where k0 =
√
−x
12t , by computing dθ

dk |k=±k0 = 0.
Let δ(k) solve the RH problem

δ+(k) = (I3 − γ†(k∗)γ(k))δ−(k), |k| < k0,

= δ−(k), |k| > k0,

δ(k)→ I3, as k→ ∞,

(65)

which implies a scalar RH problem
det δ+(k) = (1− |γ(k)|2)det δ−(k), |k| < k0,

= det δ−(k), |k| > k0,

det δ(k)→ 1, as k→ ∞,

(66)

noting that
det(I3 − γ†(k∗)γ(k)) = 1− γ(k))γ†(k∗) = 1− |γ(k)|2.

Due to (61), the jump matrix I3 − γ†(k∗)γ(k) is positive definite. Thus, it follows from the
vanishing lemma (see, e.g., [51]) that the RH problem (65) has a unique solution δ(k). In addition,
the Plemelj formula [51] gives the unique solution of the above scalar RH problem (66):

det δ(k) =
( k− k0

k + k0

)iν
eχ(k), (67)

where

ν = − 1
2π

ln(1− |γ(k0)|2), χ(k) =
1

2πi

∫ k0

−k0

ln
( 1− |γ(ξ)|2

1− |γ(k0)|2
) dξ

ξ − k
.

By the uniqueness, we obtain
δ(k) = (δ†(k∗))−1. (68)

It then follows that

|δ+(k)|2 =

{
3− |γ(k)|2, |k| < k0,

3, |k| > k0,
(69)

|δ−(k)|2 =

 3 + |γ(k)|2
1−|γ(k)|2 , |k| < k0,

3, |k| > k0,
(70)

and
|det δ+(k)|2 ≤ 1, |det δ−(k)|2 ≤ (1− sup

ζ∈R
|γ(ζ)|2)−1 < ∞. (71)

Therefore, by the maximum principle for analytic functions, we can have

|δ(k)| < ∞, |det δ(k)| < ∞, k ∈ C, (72)

from the canonical normalization condition of the above two RH problems.
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Let us now introduce

∆(k) =

[
det δ(k) 0

0 δ−1(k)

]
, k ∈ C, (73)

and a vector-valued spectral induced function

ρ(k) =

 −
γ(k)

1−γ(k)γ†(k∗) , |k| < k0,

γ(k), |k| ≥ k0.
(74)

Denote M∆ by
M∆(k; x, t) = M(k; x, t)∆−1, (75)

and reverse the orientation for |k| > k0 as shown in Figure 3.

Figure 3. The oriented contour on R.

Then, we see that M∆ presents the solution of the RH problem on R oriented as in Figure 3:{
M∆

+(k; x, t) = M∆
−(k; x, t)J∆(k; x, t), k ∈ R,

M∆(k; x, t)→ I4, as k→ ∞,
(76)

where the jump matrix is defined by

J∆(k; x, t) = ∆−(k)J(k; x, t)∆−1
+ (k)

=

 1 0

− e2itθ(k)δ−1
− (k)ρ†(k∗)

det δ−(k)
I3

 [ 1 e−2itθ(k)[det δ+(k)]ρ(k)δ+(k)

0 I3

]
. (77)

We will deform this RH problem to evaluate the asymptotics of the three-component coupled mKdV
system (2).

4.2. Decomposition of the Spectral Induced Function

To determine the required deformation, we first make a decomposition of the spectral induced
function ρ(k). By L, we denote the contour

L : {k = k0 + k0αe
3πi

4 : −∞ < α ≤
√

2} ∪ {k = −k0 + k0αe
πi
4 : −∞ < α ≤

√
2} (78)

and by Σ, denote the contour
Σ = L ∪ L∗ ∪R (79)
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with the orientation in Figure 4.

Figure 4. The oriented jump contour Σ.

Further let Lε denote the following part of the contour L:

Lε : {k = k0 + k0αe
3πi

4 : ε < α ≤
√

2} ∪ {k = −k0 + k0αe
πi
4 : ε < α ≤

√
2}, (80)

where 0 < ε <
√

2. We will focus on the contour Σ, though any other contour of the same shape as Σ,
which locates in the the region where Re iθ(k) is positive, will work.

Proposition 1. The vector-valued spectral induced function ρ(k) has the following decomposition on the
real axis:

ρ(k) = R(k) + h1(k) + h2(k), k ∈ R, (81)

where R(k) is a polynomial on |k| < k0 and a rational function on |k| ≥ k0, h2(k) has an analytic continuation
from R to L in the region where Re iθ(k) > 0, and h1, h2 and R have the estimates as t→ ∞:

|e−2itθ(k)h1(k)| .
1

(1 + |k|2)tl , k ∈ R, (82)

|e−2itθ(k)h2(k)| .
1

(1 + |k|2)tl , k ∈ L, (83)

|e−2itθ(k)R(k)| . e−16ε2k3
0t, k ∈ Lε, (84)

where l is an arbitrary positive integer. Taking the Hermitian conjugate

ρ†(k∗) = R†(k∗) + h†
1(k
∗) + h†

2(k
∗) (85)

yields the same estimates for e2itθ(k)h†
1(k
∗), e2itθ(k)h†

2(k
∗) and e2itθ(k)R†(k∗) on R, L∗ and L∗ε , respectively.

Proof. Throughout the proof, we use the differential notation d̄s = 1√
2π

ds for brevity, while dealing
with the Fourier transform. We only consider the physically interesting region x = O(t) and so k0

is bounded. Let r be a fixed positive integer.
(a) First, we consider the case of |k| < k0. In this case, we have ρ(k) = −γ(k)(1− γ(k)γ†(k∗))−1.

Splitting it into even and odd parts leads to

ρ(k) = He(k2) + kHo(k2), (86)
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where He and Ho are two vector functions in S3. By Taylor’s theorem with the integral form of the
remainder, we have

He(k2) =
r

∑
j=0

µe
j (k

2 − k2
0)

j +
1
r!

∫ k2

k2
0

H(r+1)
e (ξ)(k2 − ξ)rdξ, (87)

and

Ho(k2) =
r

∑
j=0

µo
j (k

2 − k2
0)

j +
1
r!

∫ k2

k2
0

H(r+1)
o (ξ)(k2 − ξ)rdξ. (88)

Set

R(k) = Rr(k) =
r

∑
j=0

µe
j (k

2 − k2
0)

j + k
r

∑
j=0

µo
j (k

2 − k2
0)

j. (89)

Then, we have
djρ(k)

dkj

∣∣∣
k=±k0

=
djR(k)

dkj

∣∣∣
k=±k0

, 0 ≤ j ≤ r, (90)

and the coefficients

µe
j (k

2
0) =

1
j!

dj He(w)

dwj

∣∣∣
w=k2

0

, µo
j (k

2
0) =

1
j!

dj Ho(w)

dwj

∣∣∣
w=k2

0

, 0 ≤ j ≤ r, (91)

decay rapidly as k0 → ∞.
We assume that r is of form

r = 4q + 1, q ∈ Z+, (92)

with an even number q. Express

ρ(k) = h(k) + R(k), |k| < k0. (93)

By the characteristic of R in (89), we have

djh(k)
dkj

∣∣∣
k=±k0

= 0, 0 ≤ j ≤ r. (94)

Based on this property, we will try to split h into two parts

h(k) = h1(k) + h2(k), (95)

where h1 is small and h2 has an analytic continuation from R to L in the region where Re iθ(k) > 0.
This way, we obtain the required splitting of ρ.

Let us introduce
α(k) = (k2 − k2

0)
q. (96)

We consider the Fourier transform with respect to θ. Because k 7→ θ(k) is one-to-one in |k| < k0 (see
Figure 1), we define{

(h/α)(k) = h(k(θ))/α(k(θ)), −8k3
0 = θ(k0) < θ < θ(−k0) = 8k3

0,

= 0, |θ| ≥ 8k3
0.

(97)

Based on (94), we have

(h/α)(θ) = O((k2(θ)− k2
0)

r+1−q), |θ| → 8k3
0, |θ| < 8k3

0; (98)
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and as dk/dθ = [12(k2(θ)− k2
0)]
−1, we see that

h/α ∈ H j(−∞ < θ < ∞), 0 ≤ j ≤ 3q + 2
2

, (99)

where the H js are Hilbert spaces. It follows from the Fourier inversion theorem that

(h/α)(k) =
∫ ∞

−∞
eisθ(k)(ĥ/α)(s)d̄s, |k| < k0, (100)

where ĥ/α is the Fourier transform

(ĥ/α)(s) = −
∫ k0

−k0

e−isθ(k)(h/α)(k)d̄θ(k), s ∈ R. (101)

By the formulae (86), (87), (88) and (93) we have

(h/α)(k) =
(k2 − k2

0)
3q+2

r!

(∫ 1

0
H(r+1)

e (k2
0 + w(k2 − k2

0))(1− w)rdw

+ k
∫ 1

0
H(r+1)

o (k2
0 + w(k2 − k2

0))(1− w)rdw
)

. (102)

Then, it follows that ∫ k0

−k0

∣∣∣( d
dθ

)j h
α
(k)
∣∣∣2|d̄θ(k)|

=
∫ k0

−k0

∣∣∣( 1
12(k2 − k2

0)

d
dk

)j h
α
(k)
∣∣∣2|12(k2 − k2

0)|d̄k

. 1, 0 ≤ j ≤ 3q + 2
2

, (103)

from which, by the Plancherel theorem, we know∫ ∞

−∞
(1 + s2)j|(ĥ/α)(s)|2ds . 1, 0 ≤ j ≤ 3q + 2

2
. (104)

Now make a splitting for h as follows:

h(k) = α(k)
∫ ∞

t
eisθ(k)(ĥ/α)(s)d̄s

+ α(k)
∫ t

−∞
eisθ(k)(ĥ/α)(s)d̄s

= h1(k) + h2(k). (105)

On one hand, based on (104) and noting |k| < k0, we have

|e−2itθ(k)h1(k)| ≤ |α(k)|
∫ ∞

t
|(ĥ/α)(s)|d̄s

≤ |α(k)|
(∫ ∞

t
(1 + s2)−pd̄s

) 1
2
(∫ ∞

t
(1 + s2)p|(ĥ/α)(s)|d̄s

) 1
2

≤ |α(k)|
(∫ ∞

t
s−2pd̄s

) 1
2
(∫ ∞

−∞
(1 + s2)p|(ĥ/α)(s)|d̄s

) 1
2

.
(∫ ∞

t
s−2pd̄s

) 1
2
=

1

tp− 1
2

, 1 ≤ p ≤ 3q + 2
2

. (106)
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On the other hand, we know that Re iθ(k) is positive in the hatched region in Figure 5, and thus
that h2(k) has an analytic continuation from R to the line segments in the upper half k-plane:

k(w) = k0 + k0we
3πi

4 , 0 ≤ w ≤
√

2, (107)

k(w) = −k0 + k0we
πi
4 , 0 ≤ w ≤

√
2. (108)

Figure 5. Part of Re iθ(k) > 0 in the upper half k-plane.

Let k be on the line segment (107). Then, we can have that

|e−2itθ(k)h2(k)| ≤ |k + k0|q(k0w)qe−t Re iθ(k)
∫ t

−∞
e(s−t)Re iθ(k)|(ĥ/α)(s)|d̄s

. k2q
0 wqe−t Re iθ(k)

(∫ t

−∞

d̄s
1 + s2

) 1
2
(∫ t

−∞
(1 + s2)|(ĥ/α)(s)|2d̄s

) 1
2

. k2q
0 wqe−t Re iθ(k), (109)

again based on (104). But

Re iθ(k) = 4k3
0w2(3− w√

2
) ≥ 8k3

0w2. (110)

Therefore, we have

|e−2itθ(k)h2(k)| . k2q
0 wqe−8tk3

0w2
= k

3q
2

0 t
q
2 wqe−8tk3

0w2
(

k0

t
)

q
2 . t−

q
2 . (111)

Similarly, we can show that the same estimate holds on the line segment (108).
Finally fix 0 < ε <

√
2. Then on the parts of the line segments (107) and (108) with ε < w ≤

√
2

away from ±k0, we have
|e−2itθ(k)R(k)| . e−16tk3

0w2
. e−16ε2τ , (112)

(by, e.g., (110) on the line segment (107) and R(k) is a polynomial), where τ = tk3
0.

(b) Second, we consider the case of |k| ≥ k0. We only consider the sub-case k ≥ k0, since the other
sub-case k ≤ −k0 is completely similar. In this case, we have

ρ(k) = γ(k), |k| ≥ k0. (113)

Once more, we use Taylor’s theorem to obtain

(k− i)r+6ρ(k) =
r

∑
j=0

µj(k− k0)
j +

1
r!

∫ k

k0

((· − i)r+6ρ(·))(r+1)(ξ)(k− ξ)rdξ. (114)
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Define

R(k) =
1

(k− i)r+6

r

∑
j=0

µj(k− k0)
j, (115)

and set
h(k) = ρ(k)− R(k). (116)

As before, we know that
djh(k)

dkj

∣∣∣
k=k0

= 0, 0 ≤ j ≤ r, (117)

and

µj = µj(k0) =
1
j!

dj

dkj

[
(k− i)r+6ρ(k)

]∣∣∣
k=k0

, 0 ≤ j ≤ r, (118)

decay rapidly as k0 → ∞.
Similarly, introduce

β(k) =
(k− k0)

q

(k− i)q+2 . (119)

Following the Fourier inversion theorem, we have

(h/β)(k) =
∫ ∞

−∞
eisθ(k)(ĥ/β)(s)d̄s, k ≥ k0, (120)

where ĥ/β is the Fourier transform

(ĥ/β)(s) =
∫ ∞

k0

e−isθ(k)(h/β)(k)d̄θ(k), s ∈ R. (121)

Based on the formulae (114), (116) and (119), we see that

(h/β)(k) =
(k− k0)

3q+2

(k− i)3q+5 g(k, k0), (122)

where

g(k, k0) =
1
r!

∫ 1

0

(
(· − i)r+6ρ(·)

)(r+1)
(k0 + w(k− k0))(1− w)rdw, (123)

from which it follows that ∣∣∣djg(k, k0)

dkj

∣∣∣ . 1, k ≥ k0, j ≥ 0. (124)

Noting that ∣∣∣ k− k0

k + k0

∣∣∣ ≤ 1, k ≥ k0, (125)

we have ∫ ∞

k0

∣∣∣( d
dθ

)j( h
β

)
(k)
∣∣∣2d̄θ(k)

=
∫ ∞

k0

∣∣∣( 1
12(k2 − k2

0)

d
dk

)j( h
β

)
(k)
∣∣∣2[12(k2 − k2

0)]d̄k

.
∫ ∞

k0

∣∣∣ (k− k0)
3q+2−3j

(k− i)3q+5

∣∣∣2(k2 − k2
0)d̄k

. 1, 0 ≤ j <
3q + 2

3
. (126)
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By the Plancherel theorem,∫ ∞

−∞
(1 + s2)j|(ĥ/β(s)|2ds < ∞, 0 ≤ j <

3q + 2
3

. (127)

Again, we split

h(k) = β(k)
∫ ∞

t
eisθ(k)(ĥ/β)(s)d̄s

+ β(k)
∫ t

−∞
eisθ(k)(ĥ/β)(s)d̄s

= h1(k) + h2(k). (128)

On one hand, for k ≥ k0, similarly as in the previous example (106), we see that

|e−2itθ(k)h1(k)| .
1

|k− i|2tp− 1
2

, 0 ≤ p <
3q + 2

3
, (129)

upon noting ∣∣∣ k− k0

k− i

∣∣∣ ≤ 1, k ≥ k0.

On the other hand, h2(k) has an analytic continuation from R to the ray

k(w) = k0 + k0we−
πi
4 , w ≥ 0, (130)

in two parts of the lower half k-plane, where Re iθ(k) > 0, as shown in Figure 6.

Figure 6. Part of Re iθ(k) > 0 in the lower half k-plane.

Let k be on the ray (130). Similarly as in the previous case |k| < k0, we can show that

|e−2itθ(k)h2(k)| .
kq

0wqe−t Re iθ(k)

|k− i|q+2 . (131)

However, we have
Re iθ(k) ≥ 4k3

0w2(
w√

2
+ 3) ≥ 2

√
2 k3

0w3,
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and thus, we have

|e−2itθ(k)h2(k)| .
kq

0[((tk
3
0)

1
3 w)qe−2

√
2 tk3

0w3
]

|k− i|q+2(tk3
0)

q
3

.
1

|k− i|q+2t
q
3
≤ 1

|k− i|2t
q
3

, (132)

since k0 is bounded. This completes the proof of Proposition 1.

We are now ready to make a deformation of the RH problem (76).

4.3. Deformation of the RH Problem

Let us first explain what a deformation of a RH problem is. Suppose that we have a RH problem
(Γ, J) on an oriented contour Γ (see Figure 7):

Figure 7. Deformation of a RH problem.

{
M+(k) = M−(k)J(k), k ∈ Γ,

M(k)→ J0, as k→ ∞,
(133)

and that on a part (which could be the whole contour Γ) of Γ from k1 to k2 in the direction of Γ, denoted
by Γk1k2 , we have

J(k) = b−1
− (k)J1(k)b+(k), k ∈ Γk1k2 , (134)

where b± have invertible and analytic continuations to the ± sides of a region D (see Figure 7)
supported by k1 and k2, respectively. Define an extended oriented contour Γ′ (see Figure 7):

Γ′ = Γ ∪ ∂D, Γ = Γ1 ∪ Γ2 ∪ Γk1k2 , ∂D = B+ ∪ B−, (135)

and an extended jump matrix J′: 

J′(k) = J(k), k ∈ Γ \ Γk1k2 ,

J′(k) = J1(k), k ∈ Γk1k2 ,

J′(k) = b+(k), k ∈ B+,

J′(k) = b−1
− (k), k ∈ B−.

(136)
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Then the RH problem (133) on Γ is equivalent to the following RH problem on Γ′:{
M′+(k) = M′−(k)J′(k), k ∈ Γ′,

M′(k)→ J0, as k→ ∞,
(137)

and the relation between the two solutions reads
M′(k) = M(k), k ∈ C \ D,

M′(k) = M(k)b−1
+ (k), k ∈ D+,

M′(k) = M(k)b−1
− (k), k ∈ D−.

(138)

It is clear that one RH problem is solvable if and only if the other RH problem is solvable, and the
solution to the one problem gives the solution to the other problem automatically by (138). We call
(Γ′, J′) a deformation of the original RH problem (Γ, J). If D is not bounded, then we need to
require that b+(k) and b−(k) tend to the identity matrix as k → ∞, in order to keep the same
normalization condition.

We now deform the RH problem (76) from R to the augmented contour Σ. The first important
step is to observe that the jump matrix J∆(k; , x, t) can be rewritten as

J∆(k; x, t) = (b−)−1b+, b± = I4 ±ω±, k ∈ R, (139)

where

ω+ =

[
0 e−2itθ(k)[det δ+(k)]ρ(k)δ+(k)

0 0

]
, ω− =

 0 0

− e2itθ(k)δ−1
− (k)ρ†(k∗)

det δ−(k)
0

 . (140)

Moreover, noting the decomposition (81), we have

ω+ = ωo
+ + ωa

+

=

[
0 e−2itθ(k)[det δ+(k)]h1(k)δ+(k)

0 0

]
+

[
0 e−2itθ(k)[det δ+(k)][h2(k) + R(k)]δ+(k)

0 0

]
, (141)

ω− = ωo
− + ωa

− =

 0 0

− e2itθ(k)δ−1
− (k)h†

1(k
∗)

det δ−(k)
0

+

 0 0

− e2itθ(k)δ−1
− (k)[h†

2(k
∗)+R†(k∗)]

det δ−(k)
0

 , (142)

and thus, the decompositions for b±:

b+ = bo
+ba

+ = (I4 + ωo
+)(I4 + ωa

+)

=

[
1 e−2itθ(k)[det δ+(k)]h1(k)δ+(k)

0 I3

] [
1 e−2itθ(k)[det δ+(k)][h2(k) + R(k)]δ+(k)

0 I3

]
, (143)

b− = bo
−ba
− = (I4 −ωo

−)(I4 −ωa
−)

=

 1 0

e2itθ(k)δ−1
− (k)h†

1(k
∗)

det δ−(k)
I3

 1 0

e2itθ(k)δ−1
− (k)[h†

2(k
∗)+R†(k∗)]

det δ−(k)
I3

 . (144)

We can also state that
bo
± = ω±|ρ=h1 , ba

± = ω±|ρ=h2+R. (145)

It finally follows that the jump matrix J∆ has the following factorization:

J∆(k; x, t) = (ba
−)
−1[(bo

−)
−1bo

+]b
a
+, k ∈ R. (146)
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It is now standard to introduce

M](k; x, t) =


M∆(k; x, t), k ∈ Ω1 ∪Ω2,

M∆(k; x, t)(ba
−)
−1, k ∈ Ω3 ∪Ω4 ∪Ω5,

M∆(k; x, t)(ba
+)
−1, k ∈ Ω6 ∪Ω7 ∪Ω8,

(147)

and then the RH problem (76) on R becomes the following new RH problem on Σ: M]
+(k; x, t) = M]

−(k; x, t)J](k; x, t), k ∈ Σ,

M](k; x, t)→ I4, k→ ∞,
(148)

where

J] = (b]−)
−1b]+, b]+ =


bo
+, k ∈ R,

ba
+, k ∈ L,

I4, k ∈ L∗,

b]− =


bo
−, k ∈ R,

I4, k ∈ L,

ba
−, k ∈ L∗.

(149)

The canonical normalization condition in (148) can be verified, indeed. For example, (ba
+)
−1 converges

to I4 as k→ ∞ in Ω6 ∪Ω8, because we observe that for fixed x, t, by the definition of h2 in (128) and
the boundedness of det δ and δ in (72), we have

|e−2itθ(k)[det δ(k)]h2(k)δ(k)| . |β(k)|e−t Re iθ(k)
∫ t

−∞
e(s−t)Re iθ(k)|(ĥ/β)(s)|d̄s

≤ |k− k0|q
|k− i|q+2

∫ t

−∞
|(ĥ/β)(s)|d̄s .

1
|k− i|2 ;

and by the definition of R in (115) and the boundedness of det δ and δ in (72), we have

|e−2itθ(k)[det δ(k)]R(k)δ(k)| .
|∑r

j=0 µj(k− k0)
j|

|k− i|r+6 .
1

|k− i|6 ;

both of which converge to 0 as k→ ∞ in Ω6 ∪Ω8.
The above RH problem (148) can be solved by using the Cauchy operators as follows (see [52,53]).

Let us denote by C± the two Cauchy operators

(C± f )(k) =
∫

Σ

f (ξ)
ξ − k±

dξ

2πi
, k ∈ Σ, f ∈ L2(Σ) (150)

on Σ. As is well known, these two operators C± are bounded from L2(Σ) to L2(Σ), and satisfy
C+ − C− = 1. Define

Cω] f = C+( f ω]
−) + C−( f ω]

+) (151)

for a 4× 4 matrix-valued function f , where

ω]
± = ±(b]± − I4), ω] = ω]

+ + ω]
−. (152)

Assume that µ] = µ](k; x, t) ∈ L2(Σ) + L∞(Σ) solves the fundamental inverse equation

µ] = I4 + Cω]µ
]. (153)

Then, we can see that

M](k; x, t) = I4 +
∫

Σ

µ](k; x, t)ω](k; x, t)
ξ − k

dξ

2πi
, k ∈ C \ Σ, (154)
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presents the unique solution of the RH problem (148).

Theorem 3. The solution p(x, t) of the three-component coupled mKdV system (2) is expressed by

p(x, t) = (p1(x, t), p2(x, t), p3(x, t))

= 2 lim
k→∞

(kM](k; , x, t))12

= i(
∫

Σ
µ](ξ; x, t)ω](ξ)

dξ

π
)12

= i(
∫

Σ
((1− Cω])−1 I4)(ξ)ω

](ξ)
dξ

π
)12. (155)

Proof. This statement can be shown by Theorem 2, (75) and (147).

4.4. Contour Truncation

Let Σ′ be the truncated contour Σ′ = Σ \ (R∪ Lε ∪ L∗ε ) with the orientation as in Figure 8. We will
reduce the RH problem (148) from Σ to Σ′, and estimate the difference between the two RH problems,
one on Σ and the other on Σ′.

Figure 8. The oriented contour Σ′ = Σ′A ∪ Σ′B.

Let ωe : Σ→ M(4,C) be a sum of three terms

ωe = ωa + ωb + ωc, (156)

where ωa = ω] � R is supported on R and is composed of the contributions to ω] from terms of type
h1(k) and h†

1(k
∗), ωb = ω] � L ∪ L∗ is supported on L ∪ L∗ and is composed of terms of type h2(k)

and h†
2(k
∗), and ωc = ω] � Lε ∪ L∗ε is supported on Lε ∪ L∗ε and is composed of terms of type R(k)

and R†(k∗).
Define

ω′ = ω] −ωe. (157)

Obviously ω′ = 0 on Σ \ Σ′, and hence ω′ is supported on Σ′ from terms of type R(k) and R†(k∗).

Lemma 1. For sufficiently small ε, we have

‖ωa‖L1(R)∩L2(R)∩L∞(R) . t−l , (158)

‖ωb‖L1(L∪L∗)∩L2(L∪L∗)∩L∞(L∪L∗) . t−l , (159)
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‖ωc‖L1(Lε∪L∗ε )∩L2(Lε∪L∗ε )∩L∞(Lε∪L∗ε ) . e−16ε2τ , (160)

‖ω′‖L2(Σ) .ε τ−
1
4 , ‖ω′‖L1(Σ) .ε τ−

1
2 , (161)

where τ = tk3
0.

Proof. The estimates (158), (159) and (160) can be derived, similarly to Proposition 1. Based on the
early definition of R(k), we can see that

|R(k)| . (1 + |k|6)−1

on the contour {k = k0 + k0αe
3πi

4 : −∞ < α ≤ ε}, where ε <
√

2. On this contour, by (110), we have

Re iθ(k) ≥ 8k3
0α2,

and then using (72), we find that

|e−2itθ(k)[det δ(k)]R(k)δ(k)| . e−16k3
0α2t(1 + |k|6)−1.

It then follows from a direct computation that the estimate (161) holds.

Similarly to Proposition 2.23 in [7], we can show the following estimate.

Proposition 2. In the physically interesting region x = O(t), as τ → ∞, there exists the inverse of the operator
1− Cω′ : L2(Σ)→ L2(Σ), which is uniformly bounded:

‖(1− Cω′)
−1‖L2(Σ) . 1. (162)

Corollary 1. In the physically interesting region x = O(t), as τ → ∞, there exists the inverse of the operator
1− Cω] : L2(Σ)→ L2(Σ), which is uniformly bounded:

‖(1− Cω])−1‖L2(Σ) . 1. (163)

Proof. Noting Cω] = Cω′ + Cωe , we have

‖Cω] − Cω′‖L2(Σ) = ‖Cωe‖L2(Σ) . ‖ωe‖L∞(Σ).

In addition, it follows from Lemma 1 that

‖ωe‖L∞(Σ) ≤ ‖ωa‖L∞(Σ) + ‖ωb‖L∞(Σ) + ‖ωc‖L∞(Σ) . τ−l ,

in the physically interesting region x = O(t) (where k0 is bounded and thus t = O(τ)). Therefore,
we have

‖Cω] − Cω′‖L2(Σ) . τ−l . (164)

Now first from 1 − Cω] = (1 − Cω′) − (Cω] − Cω′), we know, based on (164), that (1 −
Cω])−1 exists.

Second, the second resolvent identity tells

(1− Cω′)
−1(Cω] − Cω′)(1− Cω])−1 = (1− Cω′)

−1 − (1− Cω])−1. (165)

Again based on (164), we see from this identity that the estimate in the corollary is just a consequence
of Proposition 2.
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Theorem 4. As τ → ∞, we have∫
Σ

(
(1− Cω])−1 I4

)
(ξ)ω](ξ)dξ =

∫
Σ

(
(1− Cω′)

−1 I4
)
(ξ)ω′(ξ)dξ + O(τ−l). (166)

Proof. First, from (165), we can obtain(
(1− Cω])−1 I4

)
ω] =

(
(1− Cω′)

−1 I4
)
ω′ + ωe +

(
(1− Cω′)

−1(Cωe I4
)
ω]

+
(
(1− Cω′)

−1(Cω′ I4)
)
ωe

+
(
(1− Cω′)

−1Cωe(1− Cω])−1)(Cω] I4)ω
]. (167)

Second, it follows directly from Lemma 1 that

‖ω′‖L1(Σ) ≤ ‖ωa‖L1(Σ) + ‖ωb‖L1(L∪L∗) + ‖ωc‖L1(Lε∪L∗ε ) . τ−l ,

‖
(
(1− Cω′)

−1(Cωe I4)
)
ω]‖L1(Σ)

≤ ‖(1− Cω′)
−1‖L2(Σ)‖Cωe I4‖L2(Σ)‖ω]‖L2(Σ)

. ‖ωe‖L2(Σ)‖ω]‖L2(Σ)

. ‖ωe‖L2(Σ)(‖ωe‖L2(Σ) + ‖ω′‖L2(Σ)) . τ−l− 1
4 ,

‖
(
(1− Cω′)

−1(Cωe I4)
)
ωe‖L1(Σ)

≤ ‖(1− Cω′)
−1‖L2(Σ)‖Cω′ I4‖L2(Σ)‖ωe‖L2(Σ)

. ‖ω′‖L2(Σ)‖ωe‖L2(Σ) . τ−l− 1
4 ,

‖
(
(1− Cω′)

−1Cωe(1− Cω])−1)(Cω] I4)ω
]‖L1(Σ)

≤ ‖(1− Cω′)
−1‖L2(Σ)‖Cωe‖L2(Σ)‖(1− Cω])−1‖L2(Σ)‖Cω] I4‖L2(Σ)‖ω]‖L2(Σ)

. ‖ωe‖L∞(Σ)‖ω]‖2
L2(Σ) . τ−l− 1

2 .

This proves the theorem, together with (167).

Note that as k ∈ Σ \ Σ′, ω′(k) = 0, we can reduce Cω′ from L2(Σ) to L2(Σ′), and for simplicity’s
sake, we still denote this reduced operator by Cω′ . Then∫

Σ

(
(1− Cω′)

−1 I4
)
(ξ)ω′(ξ)dξ =

∫
Σ′

(
(1− Cω′)

−1 I4
)
(ξ)ω′(ξ)dξ,

and thus it follows from Theorems 3 and 4 that the following statement holds.

Theorem 5. As τ → ∞, we have

p(x, t) = i
(∫

Σ′

(
(1− Cω′)

−1 I4
)
(ξ)ω′(ξ)

dξ

π

)
12
+ O(τ−l). (168)

Let L′ = L \ Lε, which yields Σ′ = L′ ∪ L′∗, and denote µ′ = (1− Cω′)
−1 I4. Then, we see that

M′(k; x, t) = I4 +
∫

Σ′

µ′(k; x, t)ω′(k; x, t)
ξ − k

dξ

2πi
(169)

solves the following RH problem{
M′+(k; x, t) = M′−(k; x, t)J′(k; x, t), k ∈ Σ′,

M′(k; x, t)→ I4, as k→ ∞,
(170)
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where the jump matrix is defined by

J′ = (b′−)
−1b′+, b′± = I4 ±ω′±, ω′ = ω′+ + ω′−, (171)

ω′+(k) =

[
0 e−2iθ(k)[det δ(k)]R(k)δ(k)

0 0

]
, ω′−(k) = 0, k ∈ L′, (172)

ω′+(k) = 0, ω′−(k) =

 0 0

− e2iθ(k)δ−1(k)R†(k∗)
det δ(k) 0

 , k ∈ L′∗. (173)

4.5. Disconnecting Contour Components

Denote the contour Σ′ = Σ′A ∪ Σ′B (see Figure 8), and set

ω′± = ω′A± + ω′B±, (174)

where

ω′A±(k) =

{
ω′±, k ∈ Σ′A,

0, k ∈ Σ′B,
(175)

ω′B±(k) =

{
ω′±, k ∈ Σ′B,

0, k ∈ Σ′A.
(176)

Further define {
ω′A = ω′A+ + ω′A−,

ω′B = ω′B+ + ω′B−,
(177)

and thus
ω′ = ω′+ + ω′− = ω′A + ω′B. (178)

The two Cauchy operators Cω′A
and Cω′B

(see (150) for definition) are bounded operators fromL2(Σ′)→
L2(Σ′).

One can prove a similar lemma to Lemma 3.5 in [7].

Lemma 2. We have the estimates

‖Cω′A
Cω′B
‖L2(Σ′) = ‖Cω′B

Cω′A
‖L2(Σ′) .k0 τ−

1
2 ,

and
‖Cω′A

Cω′B
‖L∞(Σ′)→L2(Σ′), ‖Cω′B

Cω′A
‖L∞(Σ′)→L2(Σ′) .k0 τ−

3
4 .

Proposition 3. As τ → ∞, we have∫
Σ′

(
(1− Cω′)

−1 I4
)
(ξ)ω′(ξ)dξ =

∫
Σ′A

(
(1− Cω′A

)−1 I4
)
(ξ)ω′A(ξ)dξ

+
∫

Σ′B

(
(1− Cω′B

)−1 I4
)
(ξ)ω′B(ξ)dξ + O(

1
τ
). (179)

Proof. From the identity

(1− Cω′A
− Cω′B

)[1 + Cω′A
(1− Cω′A

)−1 + Cω′B
(1− Cω′B

)−1]

= 1− Cω′B
Cω′A

(1− Cω′A
)−1 − Cω′A

Cω′B
(1− Cω′B

)−1,
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it follows that

(1− Cω′){[1 + Cω′A
(1− Cω′A

)−1 + Cω′B
(1− Cω′B

)−1][1 + (1− E)−1]E}

= (1− Cω′)[1 + Cω′A
(1− Cω′A

)−1 + Cω′B
(1− Cω′B

)−1] + E = 1,

which implies that

(1− Cω′)
−1 = [1 + Cω′A

(1− Cω′A
)−1 + Cω′B

(1− Cω′B
)−1] + E.

In the above computation, we denote

E = Cω′B
Cω′A

(1− Cω′A
)−1 + Cω′A

Cω′B
(1− Cω′B

)−1

for simplicity’s sake. Note that if an operator T is bounded and the inverse of 1− T exists, then
(1− T)−1 is also bounded. Further, based on the two Lemmas, Lemmas 1 and 2, and one proposition,
Proposition 2, we can derive the estimate (179).

Now, from Theorem 5 and Proposition 3, we see that the following result holds.

Theorem 6. As τ → ∞, we have

p(x, t) =i
(∫

Σ′A

(
(1− Cω′A

)−1 I4
)
(ξ)ω′A(ξ)

dξ

π

)
12

+ i
(∫

Σ′B

(
(1− Cω′B

)−1 I4
)
(ξ)ω′B(ξ)

dξ

π

)
12

+ O(
1
τ
). (180)

4.6. Rescaling and Reduction of the Disconnected RH Problem

Extend the two contours Σ′A and Σ′B to the following two contours Σ̂′A = {k = −k0 + k0αe±
πi
4 : α ∈ R},

Σ̂′B = {k = k0 + k0αe±
πi
4 : α ∈ R},

(181)

and define ω̂′A, ω̂′B on Σ̂′A, Σ̂′B as {
ω̂′A = ω̂′A+ + ω̂′A−,

ω̂′B = ω̂′B+ + ω̂′B−,
(182)

respectively, where

ω̂′A± =

{
ω′A±(k), k ∈ Σ′A,

0, k ∈ Σ̂′A \ Σ′A,
(183)

ω̂′B± =

{
ω′B±(k), k ∈ Σ′B,

0, k ∈ Σ̂′B \ Σ′B.
(184)

Let ΣA and ΣB denote the contours

{k = k0αe±
πi
4 : α ∈ R}

oriented outward as in Σ′A, Σ̂′A and inward as in Σ′B, Σ̂′B, respectively (see Figure 9).
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Figure 9. Oriented contours ΣA and ΣB (reoriented).

Motivated by the method of stationary phase, define the scaling transformations

NA : L2(Σ̂′A)→ L2(ΣA), f 7→ NA f , (NA f )(k) = f (
k√

48tk0
− k0), (185)

NB : L2(Σ̂′B)→ L2(ΣB), f 7→ NB f , (NB f )(k) = f (
k√

48tk0
+ k0), (186)

and denote
ωA = NAω̂′A, ωB = NBω̂′B. (187)

A direct change-of-variable argument tells that

Cω̂′A
= N−1

A CωA NA, Cω̂′B
= N−1

B CωB NB, (188)

where CωA (or CωB ) is a bounded operator from L2(ΣA) (or L2(ΣB) into L2(ΣA) (or L2(ΣB)).
On the part

LA = {k = αk0
√

48tk0 e−
3πi

4 : −ε < α < ∞} (189)

of the contour ΣA, we have

ωA = ωA+ =

[
0 NAs1

0 0

]
, (190)

and on the conjugate part L∗A, we have

ωA = ωA− =

[
0 0

NAs2 0

]
, (191)

where

s1(k) = e−2itθ(k)[det δ(k)]R(k)δ(k), s2(k) =
e2itθ(k)δ−1(k)R†(k∗)

det δ(k)
. (192)

Lemma 3. As t→ ∞, we have the estimates

|(NA δ̃)(k)| . t−l+1, k ∈ LA, (193)
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where δ̃(k) = e−2itθ(k)[R(k)δ(k)− (det δ(k))R(k)], and

|(NA δ̂)(k)| . t−l+1, k ∈ L∗A, (194)

where δ̂(k) = e2itθ(k)[δ−1(k)R†(k∗)− (det δ)−1(k)R†(k∗)].

Proof. We only prove the estimate (193) and the proof of the other estimate is completely similar.
From (65) and (66), we see that δ̃ solves the following RH problem

δ̃+(k) = δ̃−(k)(1− |γ(k)|2) + e−2itθ(k) f (k), |k| < k0,

δ̃+(k) = δ̃−(k), |k| > k0,

δ̃(k)→ 0, as k→ ∞,

(195)

where
f (k) = R(k)(|γ(k)|2 I3 − γ†(k∗)γ(k))δ(k). (196)

The solution of this vector RH problem is given by

δ̃(k) = X(k)
∫ k0

−k0

e−2itθ(ξ) f (ξ)
X+(ξ)(ξ − k)

dξ

2πi
, (197)

with

X(k) = e
1

2πi
∫ k0
−k0

ln(1−|γ(ξ)|2)
ξ−k dξ

.

Noting that

R|γ|2 I3 − Rγ†γ = (R− ρ)|γ|2 I3 − (R− ρ)γ†γ = (h1 + h2)|γ|2 I3 − (h1 + h2)γ
†γ,

we can have f (k) = O((k2 − k2
0)

l+1) when k → ±k0, upon noting the definition of h = h1 + h2, and
decompose f (k) into two parts: f (k) = f1(k) + f2(k), where f1(k) satisfies

|e−2itθ(k) f1(k)| .
1

(1 + |k|2)tl , k ∈ R, (198)

and f2(k) has an analytical continuation from R to Lt (see Figure 10):

Figure 10. The oriented contour Lt.



Mathematics 2019, 7, 573 30 of 38

Lt ={k = k0 + k0αe
3πi

4 : 0 ≤ α ≤
√

2(1− 1
2t
)}

∪ {k =
k0

t
− k0 + k0αe

πi
4 : 0 ≤ α ≤

√
2(1− 1

2t
)} (199)

and satisfies
|e−2itθ(k) f2(k)| .

1
(1 + |k|2)tl , k ∈ Lt. (200)

Let k ∈ LA, and we decompose

(NA δ̃)(k) = X(
k√

48tk0
− k0)

∫ k0
t −k0

−k0

e−2itθ(ξ) f (ξ)
X+(ξ)(ξ + k0 − k√

48tk0
)

dξ

2πi

+X(
k√

48tk0
− k0)

∫ k0

k0
t −k0

e−2itθ(ξ) f1(ξ)

X+(ξ)(ξ + k0 − k√
48tk0

)

dξ

2πi

+X(
k√

48tk0
− k0)

∫ k0

k0
t −k0

e−2itθ(ξ) f2(ξ)

X+(ξ)(ξ + k0 − k√
48tk0

)

dξ

2πi

= T1 + T2 + T3.

As t→ ∞, for the first and second terms, we can have

|T1| .
∫ k0

t −k0

−k0

| f (ξ)|
|ξ + k0 − k√

48tk0
|
dξ

.
∫ k0

t −k0

−k0

|ξ + k0|l+1

|ξ + k0 − k√
48tk0
|
dξ

=
∫ k0

t

0

ηl+1

|η − k√
48tk0
|
dη

. t−l
∫ k0

t

0

η

|η − k√
48tk0
|
dη

 . t−lt−
5
2 . t−l+1, if k 6= 0,

= t−l k0
t . t−l+1, if k = 0,

|T2| .
∫ k0

k0
t −k0

|e−2itθ(ξ) f1(ξ)|
|ξ + k0 − k√

48tk0
|
dξ ≤ t−l

√
2 t

k0
(2k0 −

k0

t
) . t−l+1,

which are due to f (k) = O((k + k0)
l+1) and

|ξ + k0 −
k√

48tk0
| ≥ k0√

2 t
, ξ ∈ (

k0

t
− k0, k0), k ∈ LA,

respectively. By using Cauchy’s Theorem, we can have a similar estimate |T3| . t−l+1 through
integrating along the contour Lt in C+ instead of the interval ( k0

t − k0, k0) on R. Now, the estimate (193)
is a consequence of those three estimates. The proof is finished.

Express
JAo

= (I4 −ωAo−)
−1(I4 + ωAo+), (201)
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where

ωAo = ωAo+ =



 0 (δA)
2(−k)−2νie

ik2
2 γ(−k0)

0 0

 , k ∈ Σ4
A,

 0 −(δA)
2(−k)−2νie

ik2
2

γ(−k0)
1−|γ(−k0)|2

0 0

 , k ∈ Σ2
A,

(202)

ωAo = ωAo− =



 0 0

−(δA)
−2(−k)2νie−

ik2
2 γ†(−k0) 0

 , k ∈ Σ3
A,

 0 0

(δA)
−2(−k)2νie−

ik2
2

γ†(−k0)
1−|γ(−k0)|2

0

 , k ∈ Σ1
A,

(203)

with
δA = eχ(−k0)−8τi(192τ)

νi
2 . (204)

Based on (193), (194) and Lemma 3.35 in [7], we can obtain

‖ωA −ωAo‖L∞(ΣA)∩L1(ΣA)∩L2(ΣA)
.k0

ln t√
t

. (205)

Therefore, we have ∫
Σ′A

(
(1− Cω′A

)−1 I4
)
(ξ)ω′A(ξ)dξ

=
∫

Σ̂′A

(
(1− Cω′A

)−1 I4
)
(ξ)ω̂′A(ξ)dξ

=
∫

Σ̂′A

(
N−1

A (1− Cω′A
)−1NA I4

)
(ξ)ω̂′A(ξ)dξ

=
∫

Σ̂′A

(
(1− Cω′A

)−1 I4
)
((ξ + k0)

√
48tk0)NAω̂′A((ξ + k0)

√
48tk0)dξ

=
1√

48tk0

∫
ΣA

(
(1− CωA)

−1 I4
)
(ξ)ωA(ξ)dξ

=
1√

48tk0

∫
ΣA

(
(1− CωAo )

−1 I4
)
(ξ)ωAo (ξ)dξ + O(

ln t
t
).

Together with a similar argument for B, we can obtain

p(x, t) = i
1√

48tk0

(∫
ΣA

(
(1− CωAo )

−1 I4
)
(ξ)ωAo (ξ)

dξ

π

)
12

+ i
1√

48tk0

(∫
ΣB

(
(1− CωBo )

−1 I4
)
(ξ)ωBo (ξ)

dξ

π

)
12
+ O(

ln t
t
). (206)

For k ∈ C \ ΣA, we set

MAo
(k) = I4 +

∫
ΣA

(
(1− CωAo )

−1 I4
)
(ξ)ωAo (ξ)

ξ − k
dξ

2πi
, (207)

which solves the following RH problem{
MAo

+ (k; x, t) = MAo
− (k; x, t)JAo

(k; x, t), k ∈ ΣA,

MAo
(k; x, t)→ I4, as k→ ∞.

(208)
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Particularly, from an asymptotic expansion

MAo
(k) = I4 +

MAo

1
k

+ O(k−2), k→ ∞,

we get

MAo

1 = −
∫

ΣA

(
(1− CωAo )

−1 I4
)
(ξ)ωAo (ξ)

dξ

2πi
.

An analogous RH problem for Bo on ΣB reads{
MBo

+ (k; x, t) = MBo
− (k; x, t)JBo

(k; x, t), k ∈ ΣB,

MBo
(k; x, t)→ I4, as k→ ∞,

(209)

and its solution is given by

MBo
(k) = I4 +

∫
ΣB

(
(1− CωBo )

−1 I4
)
(ξ)ωBo (ξ)

ξ − k
dξ

2πi
. (210)

The above jump matrix is defined by

JBo
= (I4 −ωBo−)

−1(I4 + ωBo+), (211)

where

ωBo = ωBo+ =



 0 (δB)
2k2νie−

ik2
2 γ(k0)

0 0

 , k ∈ Σ1
B,

 0 −(δB)
2k2νie−

ik2
2

γ(k0)
1−|γ(k0)|2

0 0

 , k ∈ Σ3
B,

(212)

ωBo = ωBo− =



 0 0

−(δB)
−2k−2νie

ik2
2 γ†(k0) 0

 , k ∈ Σ2
B,

 0 0

(δB)
−2k−2νie

ik2
2

γ†(k0)
1−|γ(k0)|2

0

 , k ∈ Σ4
B,

(213)

with
δB = eχ(k0)+8τi(192τ)−

νi
2 . (214)

Based on (201)–(204) and (211)–(214), we can show that

JAo
(k) = (JBo

)∗(−k∗).

By uniqueness,
MAo

(k) = (MBo
)∗(−k∗)

and thus, we have
MAo

1 = −(MBo

1 )∗.

Now from (206), we obtain

p(x, t) =
1√

12tk0
(MAo

1 − (MAo

1 )∗)12 + O(
ln t

t
). (215)
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4.7. The Model RH Problem and Its Solution

To determine (MAo
)12 explicitly, we solve a model RH problem

Φ+(k) = Φ−(k)v(k0), v(k0) = (−k)−iνΛ̂e
1
4 ik2Λ̂(δA)

Λ̂ JAo
. (216)

The solution to this RH problem is given by

Φ(k) = G(k)(−k)iνΛe−
1
4 ik2Λ, G(k) = (δA)

Λ̂ MAo
= (δA)

Λ MAo
(k)(δA)

−Λ, (217)

where (δA)
Λ = diag((δA)

−1, δA I3) and (δA)
−Λ = ((δA)

Λ)−1.
Since the jump matrix v(k0) does not depend on k along each ray of ΣA, we have

dΦ+(k)
dk

=
dΦ−(k)

dk
v(k0). (218)

Together with (216), this implies that dΦ(k)
dk Φ−1(k) has no jump discontinuity along any of the four rays.

Directly from the solution, we obtain

dΦ(k)
dk

Φ−1(k) =
dG(k)

dk
G−1(k)− 1

2
ikG(k)ΛG−1(k) +

iν
k

G(k)ΛG−1(k)

= O(
1
k
)− 1

2
ikΛ +

1
2

iδΛ
A [Λ, MAo

1 ]δ−Λ
A .

It then follows from Liouville’s theorem that

dΦ(k)
dk

+
1
2

ikΛΦ(k) = ηΦ(k), (219)

where

η =
1
2

iδΛ
A [Λ, MAo

1 ]δ−Λ
A =

[
0 η12

η21 0

]
. (220)

Particularly, we have
(MAo

1 )12 = iδ2
Aη12. (221)

We partition Φ(k) into the following form

Φ(k) =

[
Φ11(k) Φ12(k)

Φ21(k) Φ22(k)

]
, (222)

where Φ11(k) is a scalar and Φ22(k) is a 3× 3 matrix. From the differential Equation (219) for Φ,
we obtain

d2Φ11(k)
dk2 =

(
η12η21 +

i
2
− k2

4
)
Φ11(k),

η12Φ21(k) =
dΦ11(k)

dk
− i

2
kΦ11(k),

d2η12Φ22(k)
dk2 =

(
η12η21 −

i
2
− k2

4
)
η12Φ22(k),

Φ12(k) =
1

η12η21

(dη12Φ22(k)
dk

+
i
2

kη12Φ22(k)
)
,

where
η12η21 = ν > 0 (223)
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provided that γ(k0) 6= 0 (note that the case of γ(k0) = 0 is, of course, trivial).
As is well known, the following Weber’s equation

d2g(ζ)
dζ2 + (a +

1
2
− ζ2

4
)g(ζ) = 0

has a general solution
g(ζ) = c1Da(ζ) + c2Da(−ζ),

where c1, c2 are arbitrary constants and Da(ζ) denotes the standard (entire) parabolic-cylinder function
which satisfies

dDa(ζ)

dζ
+

ζ

2
Da(ζ)− aDa−1(ζ) = 0, (224)

Da(±ζ) =
Γ(a + 1)e

iπa
2

√
2π

D−a−1(±iζ) +
Γ(a + 1)e−

iπa
2

√
2π

D−a−1(∓iζ), (225)

Γ(·) being the Gamma function. From the textbook [54] (see pp. 347–349), we know that as ζ → ∞,

Da(ζ) =


ζae−

ζ2
4
(
1 + O(ζ−2)

)
, | arg ζ| < 3π

4 ,(
ζae−

ζ2
4 −

√
2π

Γ(−a)eaπiζ−a−1e
ζ2
4
)(

1 + O(ζ−2)
)
, π

4 < arg ζ < 5π
4 ,(

ζae−
ζ2
4 −

√
2π

Γ(−a)e−aπiζ−a−1e
ζ2
4
)(

1 + O(ζ−2)
)
, − 5π

4 < arg ζ < −π
4 .

(226)

Denote a = −iη12η21 and then

η12η21 ±
i
2
= ±i(±a +

1
2
).

Thus we find
Φ11(k) = d1D−a(e−

πi
4 k) + d2D−a(e

3πi
4 k),

η12Φ22(k) = d3Da(e
πi
4 k) + d4Da(e−

3πi
4 k),

where d1 and d2 are constants, and d3 and d4 are row vectors of constants. Note that as arg k ∈ ( 3π
4 , 7π

4 )

and k→ ∞,

Φ11(k)(−k)νie−
ik2
4 → 1,

Φ22(k)(−k)−νie
ik2
4 → I3.

Thus, for arg k ∈ ( 3π
4 , 5π

4 ), we have

Φ11(k) = e
πν
4 D−a(e

3πi
4 k), η12Φ22(k) = η12e

πν
4 Da(e−

3πi
4 k),

and further,

η12Φ21 = ae
π(ν−i)

4 D−a−1(e
3πi

4 k), Φ12 = −η12e
π(ν+3i)

4 Da−1(e−
3πi

4 k).

For arg k ∈ ( 5π
4 , 7π

4 ), we have

Φ11(k) = e
πν
4 D−a(e

3πi
4 k), η12Φ22(k) = η12e−

3πν
4 Da(e

πi
4 k),

and further,

η12Φ21 = ae
π(ν−i)

4 D−a−1(e
3πi

4 k), Φ12 = −η12e−
π(i+3ν)

4 Da−1(e
πi
4 k).
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Along the ray arg k = 5π
4 , we have

Φ+(k) = Φ−(k)

[
1 γ(−k0)

0 I3

]
,

from which it follows that

η12e−
π(i+3ν)

4 Da−1(e
πi
4 k) = −e

πν
4 D−a(e

3πi
4 k)γ(−k0) + η12e

π(ν+3i)
4 Da−1(e−

3πi
4 k). (227)

In addition, based on (225), we obtain

D−a(e
3πi

4 k) =
Γ(−a + 1)√

2π
e

πai
2 Da−1(e

πi
4 k) +

Γ(−a + 1)√
2π

e−
πai
2 Da−1(e−

3πi
4 k). (228)

Upon plugging (228) into (227), separating the coefficients of the two independent special
functions presents

η12 = −Γ(−a + 1)√
2π

e
πν
2 + πi

4 γ(−k0) = −
νΓ(−iν)√

2π
e

πν
2 −

πi
4 γ(−k0). (229)

Finally, we conclude that (4) is a consequence of (215), (221) and (229).

5. Concluding Remarks

The paper is dedicated to determination of long-time asymptotics of the three-component coupled
mKdV system, based on an associated Riemann-Hilbert (RH) problem. The crucial step is to deform
the associated RH problem to the one which is solvable explicitly, and estimate small errors between
solutions to different deformed RH problems. This is an example of applications of the nonlinear
steepest descent method to asymptotics in the case of 4× 4 matrix spectral problems.

The nonlinear steepest descent method is powerful in exploring long-time asymptotics for
integrable systems and even nonlocal integrable systems (see also, e.g., [55]). Moreover, it has been
generalized to determine asymptotics of initial-boundary value problems of integrable systems on
the half-line (see, e.g., [56–58]), and asymptotics of integrable systems whose RH problems possess
rational phases (see, e.g., [16]) or non-analytic jumps (see, e.g., [19]).

There are various other approaches in the field of integrable systems, which include the Hirota
direct method [59], the generalized bilinear technique [60], the Wronskian technique [61,62] and
the Darboux transformation [63]. Connections between different approaches would be interesting.
About coupled mKdV equations, there are many other studies such as integrable couplings [64],
super hierarchies [65] and fractional analogous equations [66,67], and an important topic for further
study is long-time asymptotics of those generalized integrable counterparts via the nonlinear steepest
descent method. It is hoped that our result could be helpful in computing limiting behaviors of
solutions incorporating features of other exact solutions, such as lumps [68,69], from the perspective of
steepest descent based on RH problems.
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