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Abstract: The aim of this work is to extend the Mizoguchi-Takahashi fixed point result motivated by
the approach of Wardowski (2012) and provide some related fixed point results in (ordered) metric
spaces. An example is given to support the main results. Moreover, we provide an application on
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1. Introduction

Ran and Reurings [1] investigated fixed point results on partially ordered sets. This approach has
been recently considered by many authors, see [2–13]. Zaslavski [14] proved two fixed point results
for a class of contraction type mappings on a closed subset of a complete metric space. Given a metric
space (X, d). Following [15], denote by CB(X) (respectively, K(X)) the class of non-empty closed
bounded (respectively, non-empty compact) subsets of X. Let H be the Hausdorff-Pompeiu metric on
CB(X) induced by the metric d. It is given as

H(Υ1, Υ2) = max

{
sup

ς1∈Υ1

d(ς1, Υ2), sup
ς2∈Υ2

d(ς2, Υ1)

}
, (1)

for all Υ1, Υ2 ∈ CB(X).
An element θ ∈ X is said to be a fixed point of a multi-valued mapping T if θ ∈ Tθ. For fixed

point results dealing with the multi-valued case, see [16–19].
Let (X, d) be a complete metric space and T : X −→ K(X) be a multi-valued mapping such that

H(Tω, TΩ) ≤ α(d(ω, Ω))d(ω, Ω), (2)

for all ω 6= Ω ∈ X, where α : (0, ∞) −→ [0, 1) is a mapping such that for each t ∈ [0, ∞),
lim supr−→t+ α(r) < 1, then T has a fixed point, see [20].

Reich [20] stated a question of whether K(X) can be replaced by CB(X) in the above result.
Mizoguchi and Takahashi [21] gave a positive answer to the conjecture of Reich.

Theorem 1. Let (X, d) be a complete metric space and let T : X → CB(X) be a multi-valued mapping such
that

H(Tω, TΩ) ≤ α(d(ω, Ω))d(ω, Ω),
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for all ω, Ω ∈ X, where α : (0, ∞)→ [0, 1) verifies lim sup
t→r+

α(t) < 1, for each r ≥ 0. Then T has a fixed point

([21]).

Denote by Ψ the family of functions ψ : [0, ∞) −→ [0, ∞) so that

1. ψ(s) = 0 ⇔ s = 0;
2. ψ is nondecreasing and lower semi-continuous;
3. lim sup

κ−→0+

κ

ψ(κ)
< ∞.

Consider, (H): for any increasing sequence {ςn} in X with ςn → x as n→ ∞, we have ςn � x for
each n ≥ 0. Gordji and Ramezani [22] considered a variant of Theorem 1 for single-valued mappings.
Given a partial order � on a non-empty set X, we say that ω and Ω in X are comparable if ω � Ω or
Ω � ω.

Theorem 2. Let (X, d,�) be a complete partially ordered metric space. Let f : X −→ X be an increasing
mapping so that there is ς0 ∈ X with ς0 � f (ς0) ([22]). Suppose there is ψ ∈ Ψ so that

ψ(d( f ω, f Ω)) ≤ α(ψ(d(ω, Ω)))ψ(d(ω, Ω)) (3)

for all comparable ω, Ω ∈ X, where α : [0, ∞) −→ (0, 1) verifies lim sups−→t+ α(s) < 1, for any t ≥ 0. If
either f is continuous, or (H) holds, then there is a fixed point of f .

Definition 1 ([23]). Given a self-mapping f on X and α : X2 → [0, ∞). Such f is triangular α-admissible if

(T1) α(ω, Ω) ≥ 1 implies α( f ω, f Ω) ≥ 1, ω, Ω ∈ X,

(T2)

{
α(ω, ζ) ≥ 1
α(ζ, Ω) ≥ 1

implies α(ω, Ω) ≥ 1, ω, Ω, ζ ∈ X.

Example 1 ([23]). Let X = R. Take f Ω = 3
√

Ω and α(ω, Ω) = eω−Ω. Here, f is a triangular α-admissible
mapping.

Lemma 1 ([23]). Let f be a triangular α-admissible self-mapping on a non-empty set X. Assume that there is
ς0 ∈ X so that α(ς0, f ς0) ≥ 1. Take {ςn} as ςn = f nς0, then

α(ςp, ςq) ≥ 1 for all p, q ∈ N with p < q.

In this paper, we obtain some fixed point theorems for triangular α-admissible
Mizoguchi-Takahashi type contractions. We also derive variant related theorems for nondecreasing
mappings in ordered metric spaces. Moreover, we provide an application for nonlinear differential
equations. These results generalize several comparable ones in the literature.

2. Main Results

Denote by Φ the set of the functions β : (0, ∞) −→ [0, 1) such that lim supω−→t+ β(ω) < 1, for
any t ≥ 0.

Denote by F the set of all functions F : (0, ∞)→ R so that:
(F1) F is strictly increasing and continuous;
(F2) F(t) = 0 ⇔ t = 1.

The functions ln(t) and − 1√
t
+ 1 are elements of F .
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Denote by Λ the family of functions ψ : [0, ∞) −→ [0, ∞) so that

1. ψ(s) = 0 ⇔ s = 0;
2. ψ is nondecreasing and continuous.

For ω, Ω ∈ X, consider

M(ω, Ω) = max{d(ω, Ω), d(ω, f ω), d(Ω, f ω)},

where d is a metric on X.
Take: (K): Whenever {ςn} is each sequence in X so that α(ςn, ςn+1) ≥ 1 for each integer n ≥ 0

and ςn → x as n→ +∞, we have α(ςn, x) ≥ 1 for each n ≥ 0.
Now, we give the main result of this study.

Theorem 3. Let f be a self-mapping on a complete metric space (X, d). Suppose that there is a function
α : X2 → [0, ∞) satisfying

F(α(ω, Ω)ψ(d( f ω, f Ω))) ≤ F(β(ψ(d(ω, Ω)))) + F(ψ(M(ω, Ω))) (4)

for all ω, Ω ∈ X with f ω 6= f Ω, where F ∈ F , β ∈ Φ and ψ ∈ Λ. Assume that f is triangular α-admissible
and there is ς0 ∈ X so that α(ς0, f ς0) ≥ 1. Then f has a fixed point if,

(a) either f is continuous, or;
(b) (K) holds.

Moreover, if for any two fixed points ω, Ω of f , we have α(ω, Ω) ≥ 1, then such a fixed point is unique.

Proof. Let ς0 ∈ X be such that α(ς0, f ς0) ≥ 1. Define {ςn} as ςn+1 = f ςn for each n ≥ 0.
As α(ς0, ς1) = α(ς0, f ς0) ≥ 1, then using the α-admissibility, one writes α(ς1, ς2) = α( f ς0, f ς1) ≥ 1.
Continuing in same direction, we have α(ςn, ςn+1) ≥ 1 for any n ≥ 0.
If ςn = ςn+1 for some n ≥ 0, then the proof is done. Now, assume that ςn 6= ςn+1 for each n ≥ 0, that
is,

d(ςn, ςn+1) > 0, (5)

for each n ≥ 0. Define δn := d(ςn, ςn+1). In view of (4), we obtain that

F(ψ(d(ςn+1, ςn+2))) ≤ F(α(ςn, ςn+1)ψ(d(ςn+1, ςn+2)))

= F(α(ςn, ςn+1)ψ(d( f ςn, f ςn+1)))

≤ F(β(ψ(d(ςn, ςn+1)))) + F(ψ(M(ςn, ςn+1))),

where

M(ςn, ςn+1) = max{d(ςn, ςn+1), d(ςn, f ςn), d(ςn+1, f ςn)} = d(ςn, ςn+1).

Therefore,
F(ψ(d(ςn+1, ςn+2))) ≤ F(β(ψ(d(ςn, ςn+1)))) + F(ψ(d(ςn, ςn+1))) (6)

for each n ≥ 0. Put tn := ψ(d(ςn, ςn+1)). Using (6), we have

F(tn+1) ≤ F(β(tn)) + F(tn), f or each n ≥ 0. (7)

Since β(tn) < 1 and F is strictly increasing, we get F(β(tn)) < F(1) = 0. Therefore, from (7), we have

F(tn+1) ≤ F(β(tn)) + F(tn) < F(tn), f or each n ≥ 0. (8)
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Since F is strictly increasing, we get tn+1 < tn and so there is r ≥ 0 such that, tn → r+.
Now, we show that r = 0. Suppose to the contrary r > 0. Passing to the limit throw (8),
F(r) ≤ F(lim supn→∞(β(tn))) + F(r) < F(r), which is a contradiction. Hence limn→∞ tn = r = 0.
Since {ψ(d(ςn, ςn+1))} is decreasing and ψ is increasing, so {d(ςn, ςn+1))} is decreasing. Then there is
u ≥ 0 so that {d(ςn, ςn+1)} converges to u. Since ψ is continuous, one writes

ψ(u) = lim
n−→∞

ψ(d(ςn, ςn+1)) = r = 0. (9)

Therefore, u = 0. We claim that {ςn} is a Cauchy sequence. If {ςn} is not Cauchy, then there are ε > 0
and subsequences {ςmi} and {ςni} of {ςn} so that

ni > mi > i, d(ςmi , ςni ) ≥ ε (10)

and
d(ςmi , ςni−1) < ε. (11)

Using (10), we get

ε ≤ d(ςmi , ςni ) ≤ d(ςmi , ςni−1) + d(ςni−1, ςni ) < ε + d(ςni−1, ςni ). (12)

As i→ ∞, we find

lim
i→∞

d(ςmi , ςni ) = ε. (13)

Also, we have

d(ςmi , ςni )− d(ςmi , ςmi+1)− d(ςni , ςni+1) ≤ d(ςmi+1, ςni+1)

≤ d(ςmi , ςmi+1) + d(ςmi , ςni ) + d(ςni , ςni+1).

As i→ ∞, we find

lim
i→∞

d(ςmi+1, ςni+1) = ε. (14)

The triangular α-admissibility yields that α(ςmi , ςni ) ≥ 1. By (4), we find

F(ψ(d(ςmi+1, ςni+1))) ≤ F(α(ςmi , ςni )ψ(d(ςmi+1, ςni+1)))

≤ F(β(ψ(d(ςmi , ςni ))) + F(ψ(M(ςmi , ςni )).
(15)

On the other hand,

d(ςmi , ςni ) ≤ M(ςmi , ςni )

= max{d(ςmi , ςni ), d(ςmi , ςmi+1), d(ςni , ςmi+1)}
≤ max{d(ςmi , ςni ), d(ςmi , ςmi+1), d(ςmi , ςni ) + d(ςmi , ςmi+1)}.

As i→ ∞, we find

lim
i→∞

M(ςmi , ςni ) = ε.

Taking the limit on both sides of (15), we have

F(ψ(ε)) ≤ F(lim supi→∞ β(ψ(d(ςmi , ςni ))) + F(ψ(ε)). (16)

Since d(ςmi , ςni ) → ε+ and ψ is increasing, thus ψ(d(ςmi , ςni )) → ψ(ε)+. So
lim supi→∞ β(ψ(d(ςmi , ςni )) < 1. Therefore, F(lim supi→∞ β(ψ(d(ςmi , ςni ))) < 0. Thus (16) leads
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to F(ψ(ε)) < F(ψ(ε)), a contradiction.
Thus, {ςn} is a Cauchy sequence in the complete metric space (X, d), hence there is x ∈ X so that

lim
n−→∞

ςn = x. (17)

Finally, we claim that f x = x.
If f is a continuous function, then obviously, f x = x.
Let condition (b) hold. To show that f x = x, we have two cases:
Case 1: There is N ∈ N so that f ςn 6= f x for each n ≥ N.
Case 2: There is a subsequence {ςni} of {ςn} so that f ςni = f x for each i ≥ 0.
In Case 1, if d(x, f x) 6= 0, we have

F(ψ(d(ςn+1, f x))) = F(ψ(d( f ςn, f x)))
≤ F(β(ψ(d(ςn, x))) + F(ψ(M(ςn, x)))
< F(ψ(M(ςn, x))).

(18)

This gives us
ψ(d(ςn+1, f x)) < ψ(M(ςn, x)) f or each n ≥ N. (19)

Also

lim
n−→∞

M(ςn, x) = lim
n−→∞

max{d(ςn, x), d(ςn, ςn+1), d(ςn+1, x)}

= 0.

Passing to the limit using (19), we obtain ψ(d(x, f x)) ≤ 0. Hence, d(x, f x) = 0.
In Case 2,

d(x, f x) = lim
n→∞

d(ςn+1, f x) = lim
n→∞

d( f ςn, f x) = 0.

We deduce that f x = x. To show the uniqueness of the fixed point, suppose that ω, Ω are two distinct
fixed points of f . By assumption, we have α(ω, Ω) ≥ 1. Using (4), we have

F(ψ(d(ω, Ω))) = F(ψ(d( f ω, f Ω))) ≤ F(α(ω, Ω)ψ(d( f ω, f Ω)))

≤ F(β(ψ(d(ω, Ω)))) + F(ψ(M(ω, Ω)))

= F(β(ψ(d(ω, Ω)))) + F(ψ(d(ω, Ω))).

From the above inequality, we get F(β(ψ(d(ω, Ω)))) ≥ 0, which implies that β(ψ(d(ω, Ω))) ≥ 1. It is
a contradiction. Thus, ω = Ω.

Let (X,�) be an ordered space. A subset W of X is called well ordered, whenever any two
elements ω, Ω ∈ X are comparable, that is, ω ≤ Ω or Ω ≤ ω. The following Theorem is a
straightforward result of Theorem 3 in ordered metric spaces.

Theorem 4. Let (X, d,�) be an ordered complete metric space. Let f : X → X be such that

F(ψ(d( f ω, f Ω))) ≤ F(β(ψ(d(ω, Ω)))) + F(ψ(M(ω, Ω))) (20)

for all ω, Ω ∈ X with ω � Ω and f ω 6= f Ω, where F ∈ F , β ∈ Φ and ψ ∈ Λ. Then f has a fixed point if

(i) f is nondecreasing with respect to �;
(ii) there is ς0 ∈ X so that ς0 � f ς0;

(iii) either f is continuous, or
(iii)′ (H) holds.
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Moreover, if Fix(f) (the set of fixed points of f ) is well ordered, then such a fixed point is unique.

Taking F(t) = ln(t) in Theorem 3, we have

Corollary 1. Let f be a self-mapping on a complete metric space (X, d). Given α : X2 → [0, ∞), let

(i) f is triangular α-admissible;
(ii) for all ω, Ω ∈ X such that d( f ω, f Ω) > 0, we have

α(ω, Ω)ψ(d( f ω, f Ω)) ≤ β(ψ(d(ω, Ω)))ψ(M(ω, Ω)) (21)

where β : [0, ∞)→ [0, 1) is the Mizogochi–Takahashi function and ψ ∈ Λ;
(iii) there is ς0 ∈ X so that α(ς0, f ς0) ≥ 1;
(iv) either f is continuous, or (K) holds.

Then f has a fixed point. Moreover, such a fixed point is unique provided that α(ω, Ω) ≥ 1 for all ω, Ω ∈
Fix( f ).

Proof. Taking ln in both sides of (21), we obtain

ln(α(ω, Ω)ψ(d( f ω, f Ω))) ≤ ln(β(ψ(d(ω, Ω)))) + ln(ψ(M(ω, Ω))). (22)

Putting F(t) = ln(t) in above inequality, we have (4). Thus, the result is followed from Theorem 3.

Corollary 2. Let (X,�) be a partially ordered set and suppose that there exists a metric d on X such that (X, d)
is complete. Let f : X −→ X be an increasing mapping such that there is ς0 ∈ X with ς0 � f ς0. Suppose that
there are ψ ∈ Ψ and β ∈ Φ such that

ψ(d( f ω, f Ω)) ≤ β(ψ(d(ω, Ω)))ψ(M(ω, Ω)) (23)

for all comparable ω, Ω ∈ X, where β : [0, ∞) −→ [0, 1) is such that lim sups−→t+ β(s) < 1, for each t ≥ 0.
Assume that either f is continuous, or (H) holds. Then f has a fixed point. Moreover, if Fix(f) is well ordered,
then such a fixed point is unique.

Proof. Taking ln in both sides of (23), we obtain

ln(ψ(d( f ω, f Ω))) ≤ ln(β(ψ(d(ω, Ω)))) + ln(ψ(M(ω, Ω))) (24)

for all comparable ω, Ω ∈ X. Putting F(t) = ln(t) in above inequality, we have (20). Thus the result is
followed from Theorem 4.

Remark 1. Theorems 3 and 4 are generalizations of the main result in [22] and the Mizogochi–Takahashi result
for self-mappings. In the following example, we show that these generalizations are real.

Example 2. Let X = {1, 2, 3}. We endow X with the metric d defined by d(1, 2) = 1
2 , d(2, 3) = 1

3 , d(1, 3) = 5
6 .

Consider

α(ω, Ω) =

{
1, i f (ω, Ω) ∈ {(1, 1), (2, 2), (3, 3), (1, 3), (3, 2), (1, 2)},
0, otherwise.

Also, take f : X → X as

f =

(
1 2 3
3 2 2

)
.
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Here, f is triangular α-admissible. For ς0 = 1, we have f ς0 = 3 and α(ς0, f ς0) = α(1, 3) = 1. Choose
F(t) = − 1√

t
+ 1, β(t) = e−t and ψ(t) = t. Let ω, Ω ∈ X such that α(ω, Ω) ≥ 1 and d( f ω, f Ω) > 0. Here,

(ω, Ω) ∈ {(1, 2), (1, 3)}.
If (ω, Ω) = (1, 2), then d( f 1, f 2) = d(3, 2) = 1

3 . Now,

F(d( f 1, f 2)) = −1√
1
3

+ 1 = −0.732 ≤ −0.698 = −0.284− 0.414

= ( −1√
e−

1
2

+ 1) + ( −1√
1
2

+ 1)

= F(β(ψ(d(ω, Ω)))) + F(ψ(d(ω, Ω)))

≤ F(β(ψ(d(ω, Ω)))) + F(ψ(M(ω, Ω))).

If (ω, Ω) = (1, 3), then d( f 1, f 2) = d(3, 2) = 1
3 . Here,

F(ψ(d( f 1, f 2))) = −1√
1
3

+ 1 = −0.732 ≤ −0.673 = −0.578− 0.0954

= ( −1√
e−

5
6

+ 1) + ( −1√
5
6

+ 1)

= F(β(ψ(d(ω, Ω)))) + F(ψ(d(ω, Ω)))

≤ F(β(ψ(d(ω, Ω)))) + F(ψ(M(ω, Ω))).

Therefore, (4) holds for all ω, Ω with α(ω, Ω) ≥ 1 and d( f ω, f Ω) > 0. We see that all of the conditions of
Theorem 3 are satisfied, so f has a unique fixed point, which is, r = 2. Note that

ψ(d( f 1, f 2)) = d(3, 2) =
1
3
> 0.303 = (

1
2
)(e−

1
2 ) = β(ψ(d(1, 2)))ψ(d(1, 2)).

Therefore, we can not apply the Mizogochi–Takahashi type contraction [22].

Corollary 3. Let f be self-mapping on a complete metric space (X, d). Given α : X2 → [0, ∞), Let

(i) f is triangular α-admissible;
(ii) for all ω, Ω ∈ X with 1 ≤ α(ω, Ω) and d( f ω, f Ω) > 0,

d( f ω, f Ω) ≤ β(d(ω, Ω))d(ω, Ω)

(
√

β(d(ω, Ω)) +
√

d(ω, Ω)−
√

d(ω, Ω)β(d(ω, Ω)))2
; (25)

(iii) there is ς0 ∈ X so that α(ς0, f ς0) ≥ 1;
(iv) either f is continuous, or (K) holds.

Then f has a fixed point. Moreover, such a fixed point is unique, provided that α(r, s) ≥ 1 for all r, s ∈ Fix( f ).

Proof. It suffices to take F(t) = − 1√
t
+ 1 and ψ(t) = t in Theorem 3 and to use the fact d(ω, Ω) ≤

M(ω, Ω).

Corollary 4. Let f be self-mapping on a complete ordered metric space (X, d,�). Assume that

(i) for all ω, Ω ∈ X with ω � Ω and d( f ω, f Ω) > 0,

d( f ω, f Ω) ≤ β(d(ω, Ω))d(ω, Ω)

(
√

β(d(ω, Ω)) +
√

d(ω, Ω)−
√

d(ω, Ω)β(d(ω, Ω)))2
(26)

where β ∈ Φ;
(ii) there is ς0 ∈ X such that ς0 � f ς0;

(iii) either f is continuous, or (H) holds.

Then f has a fixed point. Moreover, if any two fixed points of f are comparable, then such a fixed point is unique.
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Proof. It follows by taking F(t) = − 1√
t
+ 1 and ψ(t) = t in Theorem 4 and using the inequality

d(ω, Ω) ≤ M(ω, Ω).

3. Application

Take I = [0, T] (T > 0). Let X = C(I,R) be the set of valued continuous functions defined on I.
Consider

d(ω, Ω) = sup
q∈I

(|ω(q)−Ω(q)|) = ||ω−Ω||∞,

which is a metric on X. We endow on X the partial order

r � s ⇐⇒ r(q) ≤ s(q), f or any q ∈ I.

We will resolve the following boundary value problem

r′(q) = f (q, r(q)), q ∈ [0, T], r(0) = r(T), (27)

where f : I ×R→ R is continuous.

Theorem 5. Assume that there is µ > 0 such that for all r, s ∈ X = C(I,R) with r � s, we have

| f (p, r(p)) + µr(p)− f (p, s(p))− µs(p))| ≤ µ|r(p)− s(p)|

[1 + ||r− s||
1
2
∞(e

||r−s||∞
2 − 1)]2

; (28)

for each p ∈ [0, T]. Then (27) has a solution in C(I,R).

Proof. First, Equation (27) is equivalent to the linear first-order equation

r′(q) + µr(q) = F(q, r(q)), q ∈ [0, T], r(0) = r(T), (29)

where F(q, r(q)) = f (q, r(q)) + µr(q). Also, the function q→ F(q, r(q)) is continuous. From (29), we
have

r(q) = r(0)e−µq +
∫ T

0
eµ(p−q)F(p, r(p))dp, q ∈ [0, T]. (30)

Choose q = T to have

r(T) = r(0)e−µT +
∫ T

0
eµ(p−T)F(p, r(p))dp.

Since r(0) = r(T), we get

r(0) =
1

eµT − 1

∫ T

0
eµpF(p, r(p))dp.

Substituting in (30), we obtain

r(q) =
∫ T

0
G(q, p)F(p, r(p))dp, q ∈ [0, T], (31)

where

G(q, p) =

 eµ(T+p−q)

eµT−1
, 0 ≤ p ≤ q ≤ T

eµ(p−q)

eµT−1
, 0 ≤ q ≤ p ≤ T.

Take f : C(I,R)→ C(I,R) as

f r(q) =
∫ T

0
G(q, p)F(p, r(p))dp, q ∈ [0, T].
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Now we show that
∫ T

0 G(q, p)dp = 1
µ . To see this, we have

∫ T

0
G(q, p)dp =

∫ q

0

eµ(T+p−q)

eµT − 1
dp +

∫ T

q

eµ(p−q)

eµT − 1
dp

=
eµ(T+p−q)

µ(eµT − 1)
|q0 +

eµ(p−q))

µ(eµT − 1)
|Tq

=
eµ(T) − eµ(T−q)

µ(eµT − 1)
+

eµ(T−q) − 1
µ(eµT − 1)

=
1
µ

.

From [24], f is nondecreasing and there is ς0 ∈ X so that ς0 � f ς0. Letting r, s ∈ X (with r � s) and
using (28), we have for every q ∈ [0, T],

| f r(q)− f s(q)| = |
∫ T

0
G(q, p)(F(p, r(p))− F(p, s(p))dp|

≤
∫ T

0
G(q, p)|F(p, r(p))− F(p, s(p)|dp

=
∫ T

0
G(q, p)| f (p, r(p)) + µr(p)− f (p, s(p))− µs(p)|dp

≤
∫ T

0
G(q, p)

µ|r(p)− s(p)|

[1 + ||r− s||
1
2
∞(e

||r−s||∞
2 − 1)]2

dp

≤ µ||r− s||∞
[1 + ||r− s||

1
2
∞(e

||r−s||∞
2 − 1)]2

(
∫ T

0
G(q, p)dp)

=
||r− s||∞

[1 + ||r− s||
1
2
∞(e

||r−s||∞
2 − 1)]2

=
||r− s||∞

[1 + ||r− s||
1
2
∞(e

||r−s||∞
2 − 1)]2

.

Taking the supremum to find that

d( f r, f s) = || f r− f s||∞

≤ ||r− s||∞
[1 + ||r− s||

1
2
∞(e

||r−s||∞
2 − 1)]2

=
e−||r−s||∞ ||r− s||∞

[e−
||r−s||∞

2 + ||r− s||
1
2
∞ − ||r− s||

1
2
∞e
−||r−s||∞

2 ]2

=
β(d(r, s))d(r, s)

(
√

β(d(r, s)) +
√

d(r, s)−
√

d(r, s)β(d(r, s)))2

where β(t) = e−t. Therefore, by Corollary 4, f has a fixed point. Hence, there is a solution for (31) (and
so for (27)).
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