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Abstract: In this paper, we introduce a new generalized differential operator using a new generalized
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1. Introduction and Motivation

Let A(a, k) denote the class of functions of the form

f(z) =az+ ianz” (a>0keN\{1} ={2,3,---}), (1)
n=k

which are analytic in the unit disk U = {z : |z| < 1}. Obviously, A(1,2) = A denotes the class of
functions f(z) normalized by f(0) = f/(0) — 1 = 0 which are analytic in U.
Set T (a, k) be the class of functions of the form

f(z) =az— é\aﬂz” (a>0ke N\{1} ={2,3,--- }).

which are analytic in U. It is easy to see that 7 (a,k) C A(a, k).
Let fi(z) € T (a,k)(i = 1,2) be given by

fiz) =az =} |ayl2"(i=1,2), @
n=k
then the quasi-Hadamard product (or convolution ) f; * f, is defined by
(Axf)(@:2) =a*z— ) |ana|lana|2".
n=k
For any real numbers p and g, we define the generalized quasi-Hadamard product f; A f, by

(LD R)pgiaz) = a2 =) lanalPlanal 2" = (£ A fi)(p.g;a,2). ©)
n=k
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Clearly, for p = q =1, (f1 & f2)(1,1;4,z) reduces to the above quasi-Hadamard product (f; *
f2)(a;z); fora =1, (f1 A f2)(p,q;1,z) reduces to the generalized Hadamard product (f1 A f2)(p, q;z)
defined by Jae Ho Choi and Yong Chan Kim [1];and forp =g =1,a =1, (f1 A f2)(1,1;1,z) reduces
to the quasi-Hadamard product (f; * f2)(z). Fora =1,p,q € N\{1}, (fi & f2)(p,4;1, z) reduces to the
quasi-Hadamard product (f1 * - -- f1 % fo * - - - f2)(z) (see [2], also see [3,4]).

—_— ——

In 1975, Schild and Silverfnan [5] stuliiied closure properties of the quasi-Hadamard product
(f1 * f2)(z) for a starlike function of order & and convex function of order a with negative coefficients
in A. In 1983, Owa [2] obtained closure properties of quasi-Hadamard product (f1 * fo * - - - * fi)(2)
and (fy* fa*---* fiux g1 * g2 - - - % g;)(2z) for the same function classes in .A. Later Kumar [4] improved
some results in 1987. In 1992, Srivastava and Owa [6] studied closure properties of quasi-Hadamard
product (fy * fo % - - - % fi)(z) for p-valent starlike function of order a and p-valent convex function of
order « class with negative coefficients in 4. In 1996, Jae Ho Choi and Yong Chan Kim [1] introduced
the generalized Hadamard product (f; A f)(p,4;z), and obtained the closure properties of (f; A
f2)(p, q;z) for a starlike function of order & and convex function of order a« with negative coefficients
in A. Since then, a lot of authors considered and studied closure properties and characteristics of
the quasi-Hadamard product (f * ) (z), (fi * fa* -« fin)(z) or (fi* fox -+ frux g1 * Qo *---g1)(z) for
some classes of normalized analytic functions and normalized meromorphic analytic functions, see,
for example, [7-15].

Although the closure properties of Hadamard product or quasi-Hadamard product have already
been studied in A, our focus is to introduce generalized quasi-Hadamard product, generalized
differential operators, and generalized function classes on non-normalized analytic functions, and to
discuss the closure properties on generalized analytic function classes.

Now by using the generalized quasi-Hadamard product (f1 A f2)(p, g;a,z), we introduce the
following differential operator D (m € N) as follows:

DYfiAfo) = (fi D fa),

DY (firfo)=D(AAf)=z(fidf),
D"(fi A f2) = D(D" Y (fi A f2)).

We define the generalized differential operator D} (1 > 0) as follows:

Dy (fi A fa) = (1= w)D"(fr A fo) + D" (fL A fo).

If f1 A f, is given by (3), then we can obtain that

D"(fi A f2)(p,q;0,2) = a°z = ) n"[ay1|P|ay|72"
n=k

and
[ee]

Dil(fi & f2)(pg;a,2) = @z = Y [1+ (n = 1)pln™|ay|P|an| 72",
n=k

Clearly, Di'(fi & f2)(p,q;0,2) = D"(fi & ), D3(fi & fo)(p.ga,2) = (A D f)(pg:a2).

Fora=p=q=1,f(z) =z— Y i |an|z", f2(z) = Z’lzigzk, D™(f1 A £2)(1,1;1,z) becomes Saldgean
operator (see [16]). Also, by specializing the parameters y, p, g, we obtain the following new operators:

[e9)

DZ“(fl A f)(1,1a,z) = D;,"(fl * fo)(a;z) = a’z — Z 1+ (n—1)uln™|ay1||an2|z"
n=k
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and

Dy (fi & f2)(1,1;a,z) =: D"(f1 * f2)(a;2z) = a’z — i n"ay 1||ana|z".

n=k
For two analytic functions f and g, the function f is subordinate to g in U (see [17]),
written as follows

f(z) <g(2),z€ U,

if there exists an analytic function w, with w(0) = 0 and |w(z)| < 1 such that

In particular, if the function g is univalent in U, then f(z) < g(z) is equivalent to f(0) = g(0) and

f(U) cg(U).

We define two generalization classes satisfying the following subordination condition.

Definition1. A > 0,2 > 0,A,B € R,|A| < 1,|B| < 1,A # B. A function f(z) € A(a,k) is in the class

Ox(a,k, A, B) if and only if
a(l+Az)
1+ Bz

For suitable choices A, a,k, A, B, the class Q (a, k, A, B) reduces the following subclasses.

(1 —A)@ +Af(z) <

(1) Qu(ak1-28,—1) = Qu(a,kB) = {f(z) € Aa,k) : (1= N LZ 1 ap(z) < LHZBE g 9y,
Obviously, Q5 (1,2, B) =: Qr(B) (see [18]);

2 Qu(L,2,A,B) = Qi(A,B) = {f(z) € A: 1 - V) HL +2f/(2) < £}

(3 Qolak A B) = R(a,k A B) = {f(z) € Ala,k): 1D < oAz,

(4 Oi(a,k,A,B) =: H(a,k, A B) ={f(z) € A(a,k) : f'(z) < 11:;;2)} Obviously, H(1,k, A, B) =
Pe(A,B) = {f(z) € A(Lk) : f'(z) < 124%,—1 < B < A < 1}(see [19]).

Definition 2. Let A > 0,a > 0,A,B € R,|A| < 1,|B| < 1,A # B. A function f(z) € A(a, k) is in the

class Jy(a, k, A, B) if and only if
a(1+ Az)

F(2)+ Az () < T

Clearly, we have the following equivalence:
f(z) € Jr(a,k, A,B) < zf'(z) € Q)(a,k, A, B). 4)

Let
TQ)\(ar kr A/ B) - T(ﬂ, k) ﬂ Q/\(a/ k/ AI B)r

TIr(a,k, A,B) =T (a,k)(Tr(ak, A,B).

Our object of this paper is to the closure properties of the generalized quasi-Hadamard
products, the generalized differential operators for the above generalized classes 7 Q,(a,k, A, B)
and 7 J x(a,k, A, B). Our results are new in this direction and they give birth to many corollaries.

2. Preliminary Results

Due to derive our main result, we need to talk about the following lemmas.
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Lemmal. A > 0,a > 0,A,B € R,|A| < 1,|B| <1,A # B. If the function f(z) = az+ Y, ; a,z" €
Al(a, k) satisfies

[1e

(14 (n = 1AJ(1 + [B|)|an| < alA - B, ©)

n=k

then f(z) € Q) (a,k, A, B).

Proof. We assume that the inequality (5) holds true. According to Definition 1, the function f(z) €
Qx(a, k, A, B) if and only if there exists an analytic function w(z),w(0) = 0, |w(z)| < 1(z € U)
such that

a(1+ Aw(z))

F(Z):m (zel),

where
F(z)=(1- A)@ +Af'(2),

or equivalently
F(z)—a
aA — BF(z)

‘< 1(z e ), (6)

it suffices to show that
|F(z) —a| —|aA — BF(z)| < 0.

Therefore, if we let z € dU = {z : z is complex number and |z| = 1}, we find from (6) that

[F(z) —a| — |aA - BF(z)|
= i 1+ (n—1)A]ayz"|—|a(A—B) — i a(A—B)— i [1+ (n—1)A]Ba,z"
k n=k n=k

n=k

n=
(e )
2 [1+ (n = 1)A]|an||2|" — alA — B\+2 [1+ (n = 1)A]|B|[an||z|"
21+ (n —1)A](1+|B|)|an| —a]A - B| <0.

Hence, by the maximum modulus theorem, we have f(z) € Q,(a,k, A, B). Thus we complete the
proof of Lemma 1. O

Lemma 2. Let A > 0,a > 0, and the function f(z) = az — Y " ; |ax|z" € T (a,k).

(1) If-1<B<A<1,B<O0,then f(z) € TQx(ak, A,B) if and only if

i[lJr(n—l)A}(l—B)Mn\ <a(A-B). (7)
=k

=

(2) If-1<A<B<1,B>0,then f(z) € TQx(ak, A, B) ifand only if
Z [1+ (n—1)A](1+ B)|ay| < a(B— A).

The result is sharp for the function f(z) given by

_ a|lA — B| B
fz) = az - [1+(k—1)A](1+\B|)Zk (ke N\{1} = {2,3,---}).

Proof. Since 7 Q) (a,k, A,B) C Q,(a, k, A, B),according to Lemma 1 we only need to prove the ‘only if’
part of this Lemma.
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Now let us prove the necessity of case (1).
Let f(z) € TQx(a,k,A,B),—1 < B < A <1,B <0. Then it satisfies (6) or equivalently

£ [0+ (1 = DAl 2+
Q(A - B) + Z(;lo:k[l + (i’l — 1))\]B‘gn|zn71 <Lzel.
Since [R(z)| < |z],z € U, we have
Vi1 + (n = 1)A]|ay|2" !
8?{a(’q_B)‘FZZOk[l—i—(n—l))L]B|an|Zn—1 <lzel 8)

Choose values of z on the real axis so that (1 — A)@ + Af'(z) is real. Upon clearing the
denominator in (8) and letting z — 1~ through real values, we obtain (7).

Similar to the above proof for case (1), we can prove that case (2) is true. Thus we complete the
proof of Lemma 2. [J

Using arguments similar to those in the proof of Lemmas 1 and 2, we can prove the following
Lemmas 3 and 4.

Lemma3. Let A > 0,a > 0,A,B € R,|A| < 1,|B| <1,A # B. If the function f(z) = az+ Y, a,z" €
A(a, k) satisfies

Z 1+ (n—1)A](1+ |B|)|n|an| < alA —B],
n:
then f(z) € Jy(a,k, A,B).

Lemma 4. Let A > 0,a > 0, and the function f(z) = az —Y_)> 4 |an|z" € T (a,k).

(1) If-1<B<A<1,B<O0,then f(z) € TT\(a,k, A, B) if and only if

i [1+ (n—1)A)(1 — B)nla,| < a(A—B).
n=k

(2) If-1<A<B<1,B>0,then f(z) € TT(a,k, A,B) if and only if

Z [1+ (n—1)A](1+ B)n|ay| < a(B— A).

The result is sharp for the function f(z) given by

a|lA — B|

f(2) :”Z_k[1+(k—1)A](1+|B|)Zk (ke N\{1} = {2,3,---}).

3. Main Results
Theorem 1. p > 1and the functions f;(z)(i = 1,2) defined by (2) belong to T Q,(a, k, A, B).

(1) If-1<B<A<1B<00<ac< [H(kflk]z(zAfB)k then 1D (f1 A f) (5, pl,a z) €
T Qx(a,k, A, B), where

a(1—B)A —[1+ (k—1)p)(A — B)k"

Dpl(A 5
a(1—B) — [1+ (k—1)|u(A— B)k" < B < min{A4,0}.
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(2) If—] <A<B<1B>00<ac< [1+(k71%i]l(ngA)km, then %D;n(fl AfZ)(%,p

-1
=ia,z) €
T Qn(a,k, A, B), where
a(1+B)A+[1+ (k- )V]( A"

max{A,0} < B < A0 B) — [+ (k= Du](B— Ak

Proof. (1) Suppose that -1 < B < A <1, B < 0. According to Lemma 2, we need to prove

2 [1+( n_l))\i((fq__%)[”(n_l)y]iﬂmﬁmn'ﬂp;l <1 ©)

Since fi(z) € TQx(a,k, A, B), by Lemma 2 we have

1

> [1+ (n—1)A](1—B) L
<nzk a(A—B) |“n,1|> <1

v [1+ (n ~1)AJ(1 ~ B) v
(,;c a(A—B) |ﬂn,z> <1

By the Holder inequality we get

and

= [14+ (n—1)Al(1 - B)
L a(A — B)

n=k

1 p1
|ana|?|ana| 7 <1

Hence the inequality (9) will be satisfied if

-~

1+ (n—1)u](1— B)n™ . 1-B
a(A—B) ~ A-B

(m,n € N,n > k)

or if
[a(1—B) — [1+ (n—1)p])(A— B)n"|B < a(1— B)A— [1+ (n— 1)u](A— B)n™ (m,n € N,n > k). (10)
Now define the functions F; (1) and Gy (1) by
Fi(n) =a(1—B) —[1+ (n—1)p](A - B)n"

and
Gi(n) =a(1-B)A—[1+ (n—1)u](A—B)n™

When0 < a < [H("*ll)ﬁ}éA*B)km , we obtain that F; (1) is a decreasing function of n(n € N,n > k)

and F; (n) < F;(k) < 0. Thus the inequality (10) will be satisfied if

Gi(n) _a(1—=B)A—[1+ (n—1)uj(A—B)n"
Fi(n) a(1—B) —[14 (n—1)u](A — B)n™

We see that the right hand side of (11) is a decreasing function of n(n € N, n > k). Therefore the
inequality (10) is satisfied for all n(n € N, n > k) if

5> Gy (k) _ a(l1—B)A—[1+4 (k—1)u](A— B)k"
~ F(k) a(1—B)—[1+ (k—1)u](A — B)k™

B>

(m,n € N,n > k). (11)

which evidently completes the proof of the case (1).
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(2) Suppose that -1 < A < B <1,B > 0. According to Lemma 2, we need to prove

i 1+ (n —1)AL]Z( +B)1+ (n—1)y]

1 nm 1 p-1
B—A) 7|ﬂn,1|”|ﬂn,2| P <L (12)

n=k
Similar to case (1), the inequality (12) will be satisfied if

[1+ (n—1)u](1+ B)n™ _1+B

= mn € N,n>k
a(B— A) _B—A( )

or if
[a(1+B) —[1+ (n —1)u](B— A)n™|B >a(l+B)A+[1+ (n—1)u](B— A)n™ (m,n € N,n >k). (13)
Now define the functions F,(1) and Gy (1) by
E(n)=a(1+B) —[1+ (n—1)u](B— A)n"

and
Gy(n)=a(l14+B)A+[1+ (n—1)u](B—A)n™.

When 0 < a < [1+("_11)ﬂ§B_A)km , we obtain that F,(n) is a decreasing function of n(n € N,n > k)

and F,(n) < Fy(k) < 0. Thus the inequality (13) will be satisfied if

=~ _Gy(n) a(l+B)A+[14 (n—1)uJ(B—A)n™
B < F(n)  a(1+B)—[1+ (n—1)u](B— A)nm (m,n € N,n > k). (14)

We see that the right hand side of (14) is an increasing function of n(n € N,n > k). Therefore the
inequality (13) is satisfied for all n(n € N, n > k) if

=~ _Gy(k)  a(l+B)A+[1+ (n—1)u](B— A)k"
B < Fzz(k) ~ a(1+B)—[1+(mn—1)u](B—A)kn (m € N),

which evidently completes the proof of the case (2). Thus we complete the proof of Theorem 1. [

Theorem 2. Let [1+ (n —1)u]|A — B|n™ < [1+ (n—1)A](1 + |B|). If the functions f;(z)(i = 1,2) defined
by (2) belong to T Q,(a, k, A, B), then %D;?(fl * fo)(a;z) € TQx(a,k, A, B).
Proof. Suppose that -1 < B < A <1,B < 0. According to Lemma 2, we need to prove
(] nm
;;([1 +(n=1AJA = B)[1+ (n = V)] —|an1|an2| < a(A —B). (15)

Since f;(z) € TQx(a,k,A,B) (i =1,2), by using Lemma 2 we get

[ee)

Y[+ (n— DAL~ B)lay| < a(A - B) (16)
n=k

and -
Y [1+ (n—=1)A|(1 = B)|ayo| < a(A—B). (17)

n=k
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Therefore, by the Cauchy-Schwarz inequality, we obtain

§1+nf1 A1 = B)\/Janallanal < a(A— B). (18)

This implies that we only need to show that

(14 (0= DA = B)[1 4+ (1~ 0y lawal < [1+ (0= DA = B)ylanallanal (> K

\ |anlan2] < 1+ (n : — Dl (n > k). (19)

From (18), the inequality (19) is satisfied for all n(n € N, n > k) if

or, equivalently, that

(14 (n— Dl (A~ B)n" < [1+ (n— 1A](1 - B) (n > k).

Based on the given condition, we get (15).
Also applying Lemma 2 we can prove %D;’f (fi* f2)(a;z) € TQx(a,k, A B) for -1 < A< B<1,
B > 0. Thus we complete the proof of Theorem 2. [

Remark 1. (1) Setting y = 0 in Theorem 1, we can obtain the closure properties of %f)m( f1*f2) (% el 2 z)

~ p !
for T Qx(a, k, A, B); (2) Setting u = 0 in Theorem 2, we can obtain the closure properties of%D;’f (f1* f2)(a;2)
for TQx(a,k, A, B).

Example 1. Letp > 1,-1 < B < A < 1,B < 0,0 < a < 4=8_ If the functions f(z)(i = 1,2) defined
by (2) belong to T Q,(a,k, A, B), then -(fi Afz)(%,pT, ,Z ) € TQ/\(CI,k,A,B), where
a(1—B)A— (A - B)

a(1—B)— (A—B) <B< min{A,0}.

4. Corollaries and Consequences

On the one hand, by taking special values of parameters A, B, A, a, k we easily obtain the following
closure properties for some important subclasses in A(a, k).
Putting A =1—2B (0 < B < 1), B = —1, we obtain the closure properties for the subclass

a[l+ (1 —2B)z]

TQa(a,k,B) =T (a,k) () Qulak B) —{f()67—(‘1/@:(1_)‘)@+/\f’(z)< 1-z )

Corollary 1. p > 1,0 < B < 1 and the functions f;(z)(i = 1,2) defined by (2) belong to T Q,(a,k, B).
Ifo<a<[1+4 (k—1)u](1— B)k™, then %fo(fl Afz)(% pT ,z) € TQx(a,k,1—2B,B), where

a(1—p) —[1+ (k= DpJ(1 - k"
a—[1+4 (k=1)p](1 - p)k™

Corollary 2. Let 0 < B < 1,[1+ (n — 1)u](1 — B)n™ < [1+4 (n — 1)A]. If the functions f;(z)(i = 1,2)
defined by (2) belong to T Q,(a, k, B), then %DZ’ (f1* f2)(a;z) € TQa(a,k,B). Putting A = 0and A =1,
we obtain the closure properties for the subclasses

IN

B < min{1 —28,0}.

a(l+ Az)
1+ Bz

TR(ak A B)=T(ak) (\H(akAB)={f(z) € T(ak): f(zz) - )
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and
a(l+ Az)

TH(ak A B) = T(a,k)ﬂ?—[(a,k,A,B) ={f(z) € T(ak): f'(z) < 17 B2

}.
Corollary 3. Let [1+ (n —1)u]|A — B|n™ < (14 |B|). If the functions f;(z)(i = 1,2) defined by (2) belong
to TR(a,k, A, B), then LDy (f1 = f2)(a;2) € TR(a,k, A, B).

Corollary 4. Let [1 + (n — 1)u]|A — B|n™ < n(1+ |B|). If the functions f;(z)(i = 1,2) defined by (2)
belong to T H(a,k, A, B), then %Dg‘(fl * fr)(a;z) € TH(a,k, A, B). Putting a = 1,k = 2, we obtain the
closure properties for the subclass

a(l1+ Az)

TOAAB)=T(1,2)( QA B) ={f(z) e T(1,2): (1 —/\)J@ +Af(z) < 11 B2

}.

Corollary 5. Let p > 1 and the functions f;(z)(i = 1,2) defined by (2) belong to T Q, (A, B). If-1<B<
A<1,B<0,(1+p)(A=B)2" — (1= B) >0, then D' (fi A fo)(%,5%:1,2) € TQA(A, B), where

a(l1-B)A—(14+pu)(A— B)2"
a(1—B) = (1+p)(A—B)2"

Corollary 6. Let [1+ (n —1)u]|A — B|2"™ < [1+4 (n —1)A](1 + |B|). If the functions f;(z)(i = 1,2)
defined by (2) belong to T Q) (A, B), then %D;’f(fl * fo)(a;z) € TO)(A, B).

<B< min{A,0}.

Example 2. Let p > 1,0 < B < 1. If fi(z) = z— Y7 0 |a,iz" € TOx(1-2B,-1),i = 1,2,
then (fL A5 f2)(3,2551,2) € TQx(1 — 28, B), where —1 < B < min{1— 2,0}

On the other hand, we can obtain the following closure properties for 77 (a,k, A, B) according
to (4) and Lemma 4.

Corollary 7. Let p > 1 and the functions f;(z)(i = 1,2) defined by (2) belong to T J »(a, k, A, B).

W f-1sB<AsLB=<00<ac< [H(kill)}i]éAfB)km, then 1D (f1 Afz)(%r%l;a,z) S
T J r(a,k, A, B), where

< B < min{A,0}.

a(1—B)A—[1+ (k—1)u](A— B)k"
a(1—B)— [1+ (k—1)]u(A — B)km

2 If-1<A<B<1LB>00<a< HEDHEAR oy 1pmis A f)(

-1
1+B pT;“/Z) €
TJTa(ak, A, E), where

1
p/

a(1+B)A+ 1+ (k—1)u)(B— A)k"
a(1+B) = [1+ (k=1)u](B — A)k™

max{A,0} < B <

Corollary 8. Let [1+ (n — 1)u]|A — Bln™ 1 < [1+ (n — 1)A](1 + |B|). If the functions f;(z)(i = 1,2)
defined by (2) belong to T J »(a,k, A, B), then %D’T(fl x fo)(a;z) € TT (a,k, A, B).

5. Conclusions

In this paper, we mainly study the closure properties of the generalized quasi-Hadamard
products, the generalized differential operator and its related special operators for 7 Q,(a,k, A, B)
and 7 J,(a, k, A, B) of analytic functions with negative and missing coefficients. Also, we give two
examples and six corollaries to illustrate our results obtained. In the future, we can consider to
extend some classical analytic function classes (such as starlike, convex, close-to-convex) in A(a, k),
and discuss the closure properties of the generalized quasi-Hadamard products.
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