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Abstract: The article is devoted to infinitesimal transformations. We have obtained that LCK-manifolds
do not admit nontrivial infinitesimal projective transformations. Then we study infinitesimal
conformal transformations of LCK-manifolds. We have found the expression for the Lie derivative of
a Lee form. We have also obtained the system of partial differential equations for the transformations,
and explored its integrability conditions. Hence we have got the necessary and sufficient conditions
in order that the an LCK-manifold admits a group of conformal motions. We have also calculated
the number of parameters which the group depends on. We have proved that a group of
conformal motions admitted by an LCK-manifold is isomorphic to a homothetic group admitted by
corresponding Kählerian metric. We also established that an isometric group of an LCK-manifold is
isomorphic to some subgroup of the homothetic group of the coresponding local Kählerian metric.

Keywords: Hermitian manifold; locally conformal Kähler manifold; Lee form; diffeomorphism;
conformal transformation; Lie derivative
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1. Introduction

Kählerian manifolds, because of their properties, have been used for modeling of physical
processes for a long time, for instance in supersymmetric theories [1], in string theories (e.g., [2], p. 411).
A manifold is called locally conformal Kähler manifold (for brevity, LCK-manifolds) if its metric
is conformal to some local Kählerian metric in the neighborhood of each point of the manifold.
On the other hand, one knows that conformal mappings preserve the Petrov type of a manifold [3].
The LCK-manifolds are also used for physical modeling. For instance, in [4] authors offered
a‘Kaluza-Klein model with spontaneous compactification, using a generalized Hopf manifold.
Also, researchers use locally conformally Calabi-Yau manifolds to build M-theory models.
According to [5] a locally conformally Calabi-Yau manifold is an LCK-manifold with a Ricci-flat
metric. For example an eight-dimensional Hopf manifold admits a Ricci-flat metric, hence it may
be used in a model of eleven-dimensional Supergravity.

The objects under consideration in the article are the LCK-manifolds for which
dim(M) = n = 2m > 2. LCK-manifolds were explored by [6–8]. The book [9] is also worth noting
as one of the most distinguished in this area. Infinitesimal conformal transformations were
explored in [10,11]. Infinitesimal conformal transformations of complex manifolds were studied
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by Yano [12]. Transformations of LCK-manifolds were explored in [13]. The main goal of the article
is also to explore transformations of LCK-manifolds.

2. Locally Conformal Kähler Manifolds

A Hermitian manifold (M2m, J, g) is called a locally conformal Kähler manifold (LCK-manifold) if there
is an open cover U =

{
Uα

}
α∈A of M2m and a family {σα}α∈A of C∞ functions σα : Uα → R so that

each local metric
ĝα = e−2σα g|Uα

is Kählerian. An LCK-manifold is endowed with some form ω, called the Lee form, which can
be calculated as [14]

ω =
1

m− 1
δΩ ◦ J or ωi = −

2
n− 2

Jα
β,α Jβ

i , (1)

The form should be closed:
dω = 0.

One can compute covariant derivative of an almost complex structure with respect
to the Levi-Civita connection of (M2m, J, g) using the formula

Jk
i,j =

1
2
(
δk

j Jα
i ωα −ωk Jij − Jk

j ωi + Jk
αωαgij

)
. (2)

Here and below, we denote by comma covariant differentiation with respect to the Levi-Civita
connection of (Mn, J, g).

3. Infinitesimal Transformations of Manifolds

Definition 1. Transformation of a manifold Mn

xh = xh + εξh(x1, x2, . . . , xn), (3)

is called infinitesimal transformation of a manifold Mn. Vector ξ(x1, x2, . . . , xn) is often referred
to as a generator of transformation. An arbitrary small parameter ε is independent on xi.

The Lie derivative of a tensor of type (p, q) T
i1 ...ip
j1 ...jq with respect to a vector field ξ may be calculated

by using the formula ([15], p. 196):

Lξ T
i1 ...ip
j1 ...jq = T

i1 ...ip
j1 ...jq ,sξs + T

i1 ...ip
kj2 ...jq

ξk
,j1 + . . . + T

i1 ...ip
j1 ...k ξk

,jq − T
li2 ...ip
j1 ...jq ξ i1

,l − . . .− Ti1i2 ...l
j1 ...jq ξ

ip
,l . (4)

In particular, for a metric tensor gij we get

Lξ gij = ξi,j + ξ j,i (5)

If a manifold Mn is transformed then indices of the metric tensor g of the transformed Mn is

gij = gij + hijε, (6)

where hij = Lξ gij = ξi,j + ξ j,i, and ε is the arbitrary small parameter mentioned in the Definition 1 ([10],
p. 275). For the Christoffel symbols we have also ([16], p. 8) :

LξΓh
jk = ∇k∇jξ

h + ξmRh
jmk (7)
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Contracting (7) with ghi we get:

ξi,jk = ξαRα
kji + ghiLξ Γh

jk (8)

The item ghiLξΓh
jk depends on transformation type. We are interested primarily in the case when

a vector field ξ(x1, x2, . . . , xn) generates a transformation preserving the complex structure [12]:

Lξ Ji
j = Ji

j,kξk − Jα
j ξ i

,α + Ji
αξα

,j = 0. (9)

The field is called a contravariant analytic vector field, and the infinitesimal transformation
is referred to as a holomorphic one. It is worth noting that since exterior differentiation and the
Lie derivation with respect to ξ are commutative

dLξω = Lξ dω (10)

hence any infinitesimal transformation preserves the closeness property of a Lee form.

3.1. Projective Transformations and LCK-Manifolds

If a transformation (3) does not change geodesics of a manifold, it is called a projective
transformation. Mikeš and Radulovich in [7] proved that LCK-manifolds (n > 2) do not admit nontrivial
finite geodesic mappings onto Hermitian manifolds if a preserving complex structure is required.
We have to explore whether nontrivial projective transformations preserving a complex structure are
admitted on LCK-manifolds. Hence let us suppose that such transformation is admitted. Then

Lξ Γh
ij = ψiδ

h
j + ψjδ

h
i ,

where ψ is a scalar whose gradient ψi = ∂iψ and a vector ξ generates the transformation.
Then combining (8) and its conditions of integrability, we obtain:

ξi,j = ξij;
ψ,i = ψi;
ξi,jk = ξαRα

kji + ψkgij + ψjgik

ψij =
1

n−1

(
ξαRαi,j + ξα

,iRαj + ξα
,jRαi + ξαRβ

ijα,β

)
Also the equation

hij,k = 2ψkgij + ψigjk + ψjgik (11)

is satisfied ([10], p. 275). Since the metric gij is Hermitian, we get:

Jt
i gtj + Jt

j gti = 0. (12)

Also, since deformed metric gij is Hermitian and the complex structure is preserved, hence on the

deformed manifold Mn, the identity
Jt
i gtj + Jt

j gti = 0. (13)

is satisfied. Taking into account (6) and (12), from (13) we obtain:

Jt
i htj + Jt

j hti = 0. (14)

Differentiating covariantly (14) with respect to the Levi-Civita connection which is compatible
with a metric gij, we get:

Jt
i,khtj + Jt

i htj,k + Jt
j,khti + Jt

j hti,k = 0.
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Then we use (2) and (11):

1
2
(
δt

k Jα
i ωα −ωt Jik − Jt

kωi + Jt
αωαgik

)
htj + Jt

i
(
2ψkgtj + ψtgjk + ψjgtk

)
+

1
2
(
δt

k Jα
j ωα −ωt Jjk − Jt

kωj + Jt
αωαgjk

)
hti + Jt

j
(
2ψkgti + ψtgik + ψigtk

)
= 0.

Then, let us regroup the items:

(
ψj −

1
2

ωthtj
)

Jik +
(
ψi −

1
2

ωthti
)

Jjk

−1
2

hsj Js
kωi −

1
2

hsi Js
kωj +

(
Jt
j ψt +

1
2

htj Jt
sωs)gik

+
(

Jt
i ψt +

1
2

hti Jt
sωs)gjk +

1
2

hkj Js
i ωs +

1
2

hki Js
j ωs = 0.

(15)

Using symmetrization of (15), and taking into account that according to (12) and (14), the sum
of the first four items in left hand side of (15) is equal to zero, we get

(
Jt
j ψt +

1
2

htj Jt
sωs)gik +

(
Jt
i ψt +

1
2

hti Jt
sωs)gjk

+
(

Jt
kψt +

1
2

htk Jt
sωs)gij +

1
2

Js
i ωshkj +

1
2

Js
j ωshki +

1
2

Js
kωshij = 0,

or, for brevity
χjgik + χigjk + χkgij + θjhki + θihjk + θkhij = 0, (16)

where χi =
(

Jt
i ψt +

1
2 hti Jt

sωs), θi =
1
2 Js

i ωs. If dim(Mn) > 2 then it is possible to choose a vector ηi

that ηiχi = ηiθi = 0. Contracting (16) with ηi, we get:

χjηk + χkηj + θjhkiη
i + θkhijη

i = 0. (17)

Contracting (17) with η j produces:

χk||η||2 + θkhijη
iη j = 0. (18)

It follows from (18) that χk = αθk. Hence,

θj(αgik + hik) + θk(αgij + hij) + θi(αgjk + hjk) = 0. (19)

It follows from (19) that one of the equations holds, namely θi = 0, or αgjk + hjk = 0, where α

is a certain function of the variables x1, x2, . . . , xn. In the former case we have that the manifold Mn

is Kählerian since ωi = 0 and the transformation is trivial because ψi = 0. In the latter case the equation
hjk = −αgjk means that the transformation is a conformal one. But one knows that if a transformation
is simultaneously conformal and projective then it is a trivial one. Hence we obtain the theorem.

Theorem 1. An LCK-manifold Mn, dim(Mn) > 2 does not admit nontrivial projective transformations
with respect to the Levi-Civita connection preserving its complex structure.

Note that the technique we use proving the theorem is very similar to the one offered in [7].

3.2. Conformal Infinitesimal Transformations of Locally Conformal Kähler Manifolds

Infinitesimal transformations are called conformal if the equations hold ([12], p. 275):

Lξ gij = ξi,j + ξ j,i = ϕgij, (20)



Mathematics 2019, 7, 658 5 of 16

where ϕ is some function of the variables x1, x2, . . . , xn.
It is well known that, if a vector field ξ generates conformal infinitesimal transformations,

then the field and the invariant ϕ satisfy the system [3,11]:

(a) ξi,j = ξij;
(b) ϕ,i = ϕi;
(c) ξi,j + ξ j,i = ϕgij;
(d) ξi,jk = ξαRα

kji +
1
2 (ϕkgij + ϕjgik − ϕigjk);

(e) ϕi,j =
2

n−2

(
ξαRij,α + ξα,iRα

j + ξα,jRα
i −

gij
2(n−1) (ξ

αR,α + ϕR)
)

.

(21)

3.3. Nijenhuis Tensor and Lee form under Conformal Infinitesimal Transformations

A necessary and sufficient condition for an almost Hermitian manifold to be Hermitian is

Nk
ij = 0,

where
Nk

ij = Jα
i

(
Jk
α,j − Jk

j,α

)
− Jα

j

(
Jk
α,i − Jk

i,α

)
is the Nijenhuis tensor ([12], p. 121).

The Lie derivative of the Nijenhuis tensor is

Lξ Nk
ij = Jα

i

(
Lξ Jk

α,j −Lξ Jk
j,α

)
− Jα

j

(
Lξ Jk

α,i −Lξ Jk
i,α

)
. (22)

because of (9).
The following identity holds ([12], p. 159):

Lξ Jk
i,j −

(
Lξ Jk

i

)
,j
= Jβ

i LξΓk
jβ − Jk

βLξ Γβ
ji. (23)

Because of (9), from (23) we get

Lξ Jk
i,j = Jβ

i Lξ Γk
jβ − Jk

βLξ Γβ
ji. (24)

Let us calculate the Lie derivative of a Nijenhuis tensor with respect to the vector field ξ,
taking into account (24)

Lξ Nk
ij = Jα

i

(
Lξ Jk

α,j −Lξ Jk
j,α

)
− Jα

j

(
Lξ Jk

α,i −Lξ Jk
i,α

)
=

= Jα
i
(

Jβ
αLξ Γk

jβ − Jk
βLξ Γβ

jα − Jβ
j Lξ Γk

αβ + Jk
βLξΓβ

αj
)
−

−Jα
j
(

Jβ
αLξ Γk

iβ − Jk
βLξ Γβ

iα − Jβ
i Lξ Γk

αβ + Jk
βLξΓβ

αi
)
.

(25)

Removing the parentheses and collecting similar terms in (25) we obtain that the Lie derivative
of a Nijenhuis tensor is equal to zero

Lξ Nk
ij = 0.

Taking into account that any infinitesimal transformation preserves the closeness property
of its Lee form we obtain the theorem.

Theorem 2. Any infinitesimal transformation of an LCK-manifold preserving its complex structure,
transforms it into a locally conformal Kählerian one.
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Proof. Let us calculate a Lie derivative of a Lee form. Because of (9), from (1) we have

Lξ ωi = −
2

n− 2
Lξ

(
Jα
β,α Jβ

i
)
= − 2

n− 2
Lξ

(
Jα
β,α
)

Jβ
i . (26)

On the other hand, Lie derivation and contraction are commutative. Hence, contracting for k
and j (24), we obtain

Lξ Jα
i,α =

1
2

(
nJβ

i ϕβ − ϕα Jiα − Jα
α ϕi + Jα

β ϕβgiα

)
=

=
1
2

(
nJβ

i ϕβ − ϕα Jiα + Jβi ϕ
β
)
=

=
1
2

(
nJβ

i ϕβ − ϕα Jiα − Jiβ ϕβ
)
=

n− 2
2

Jβ
i ϕβ.

(27)

Substituting (27) into (26) we find that

Lξ ωi = −
2

n− 2
· n− 2

2
Jβ
γ ϕβ Jγ

i = ϕi. (28)

Theorem 3. If a vector field ξ generates a conformal infinitesimal transformation of an LCK-manifold,
then components of Lie derivatives of the Lee form are equal to the partial derivatives of the invariant ϕ

defined by the system (21)
Lξ ωi = ϕi.

Proof. It is worth noting that according to (4)

Lξωi = ωi,αξα + ωαξα
,i.

On the other hand,
∂

∂xi

(
ωαξα

)
= ωα,iξ

α + ωαξα
,i.

Since the Lee form is closed then ωi,j = ωj,i, and hence from (4) it follows that

∂

∂xi

(
ωαξα

)
=
(
ωαξα

)
,i = ϕi. (29)

Hence the scalar ϕ mentioned in (45) may be expressed by the equation

ϕ = ωαξα + C,

where C is an arbitrary constant. Hence taking into account the conditions (9) the PDE system (21) becomes

(a) ξi,j = ξij;
(b) ξi,j + ξ j,i =

(
ωαξα + C

)
gij;

(c) ξi,jk = ξαRα
kji +

1
2
((

ωαξα
)

,kgij +
(
ωαξα

)
,jgik −

(
ωαξα

)
,igjk

)
;

(d) Ji
j,kξk − Jα

j ξ i
,α + Ji

αξα
,j = 0.

(30)

Let us find the conditions of integrability of (30). According to ([16], p. 17) for the Levi-Civita
connection the conditions are

Lξ Rh
ijk = ∇jLξ Γh

ik −∇kLξ Γh
ij. (31)

For the present case we have

LξΓh
ij =

1
2
((

δh
i ωαξα

)
,j + δh

j
(
ωαξα

)
,igik − gth(ωαξα

)
,tgij

)
. (32)
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Since for the conformal transformations the equations

ωjLξ gik = ωα(Lξ gjα)gik,

are satisfied hence (32) can be presented in the form

Lξ Γh
ij = Lξ Bh

ij, (33)

where
Bh

ij =
1
2
(
δh

i ωj + δh
j ωi −ωhgij

)
.

Also there is identity ([16], p. 16) that for the present case becomes

Lξ∇kBh
ij −∇kLξ Bh

ij = Lξ Γh
tkBt

ij −Lξ Γt
ikBh

tj −LξΓt
jkBh

it. (34)

Taking account of (32), (33), from (31) we obtain

Lξ Rh
ijk = Lξ∇jBh

ik −Lξ∇kBh
ij + Lξ

(
Bh

tkBt
ij
)
−Lξ

(
Bh

tjB
t
ik
)
.

Finally we have

Lξ Rh
ijk = Lξ

(1
2

δh
k ωi,j −

1
2
∇jω

hgik −
1
2

δh
j ωi,k +

1
2
∇kωhgij

+
1
4

δh
k ωiωj −

1
4

δh
j ωiωk +

1
4
||ω||2δh

j gik

−1
4
||ω||2δh

k gij +
1
4

ωhωkgij −
1
4

ωhωjgik
)
,

or
Lξ Qh

ijk = 0, (35)

where Qh
ijk is defined as

Qh
ijk = Rh

ijk + δh
j
(1

2
ωi,k +

1
4

ωiωk −
1
8
||ω||2gik

)
− δh

k
(1

2
ωi,j +

1
4

ωiωj −
1
8
||ω||2gij

)
+
(1

2
ωh

,j +
1
4

ωhωj −
1
8
||ω||2δh

j
)

gik −
(1

2
ωh

,k +
1
4

ωhωk −
1
8
||ω||2δh

k
)

gij.
(36)

Differentiating several times (35) we get a system of differential prolongations. For convenience
we use the identity for Lie derivative of tensor covariant derivative ([16], p.16) and we obtain first
differential prolongation for (35)

Lξ∇lQh
ijk = Lξ Γh

tlQ
t
ijk −Lξ Γt

ilQ
h
tjk −Lξ Γt

jlQ
h
itk −Lξ Γt

klQ
h
ijt, (37)

where Lξ Γh
jk and Qh

ijk are defined by (32) and (36) respectively. We can continue the process until
it turns out that the new equations are satisfied identically or the system has become inconsistent.

The Equation (30a) is solvable for n = 2m unknown functions, and the Equation (30c) is solvable
for n2 = 4m2 unknown functions. The Equation (30b) includes n(n+1)

2 = 2m(2m+1)
2 restrictions. It is

easy to see that (30d) determines 2m2 independent restrictions. Since an LCK-manifold is a Hermitian
one, then it follows from integrability of its almost complex structure that there exists a system of
complex coordinate neighbourhoods. In the complex coordinate system (zα, zα̂) the condition (30d) is
presented in the form

∂β̂ξα = 0

∂βξ α̂ = 0
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Hence we have

∇β̂ξα = Γα
β̂δ

ξδ =

√
−1
2

Jα
β̂,δξδ and ∇βξ α̂ = Γα̂

βδ̂
ξ δ̂ =

√
−1
2

Jα̂
β,δ̂ξ δ̂.

Lowering the indices we obtain

∇β̂ξα̂ =

√
−1
2

Jβ̂α̂,δξδ and ∇βξα =

√
−1
2

Jβα,δ̂ξ δ̂.

Hence we find that the Equation (30b) includes m(m + 1) restrictions which involve (30d).
It follows that solution of the system (30) involves not more then

4m2 + 2m− 2m(2m + 1)
2

+ m(m + 1)− 2m2 + 1 = (m + 1)2

constants.

Theorem 4. In order for an LCK-manifold (Mn, J, g) to admit a group of conformal transformations,
it is necessary and sufficient that the equations

ξi,j + ξ j,i =
(
ωαξα + C

)
gij;

Ji
j,kξk − Jα

j ξ i
,α + Ji

αξα
,j = 0,

the conditions of integrability (35), their differential prolongations (37), ... etc, be algebraically consistent
with respect to ξ i and ξ i

j. If there are, among the Equations (35) and (37), ..., exactly k equations which are
linearly independent among themselves and of

ξi,j + ξ j,i =
(
ωαξα + C

)
gij;

Ji
j,kξk − Jα

j ξ i
,α + Ji

αξα
,j = 0,

then the LCK-manifold admits a r = (m + 1)2 − k parameter group of conformal transformations.

Considering the system (30) we can find that if ωαξα = 0, then the system may also be written
in the form

(a) ξi,j = ξij;
(b) ξi,j + ξ j,i = Cgij;
(c) ξi,jk = ξαRα

kji;
(d) Ji

j,kξk − Jα
j ξ i

,α + Ji
αξα

,j = 0.

Thus we have the following theorem.

Theorem 5. If on an LCK-manifold (Mn, J, g) the Lie algebra of conformal vector fields includes
such subalgebra that everywhere on (Mn, J, g) ωαξα = 0 holds, then the subalgebra generates a group
of homothetic transformations.

Proof. The Theorem follows immediately from the Frobenius Theorem ([15], p. 201).

3.4. Local Isomorphism between Conformal Group of an LCK-Manifold and Homothetic Group
of the Corresponding Kählerian Metric

Let the Kählerian metric ĝij be locally conformal to the metric of an LCK-manifold (Mn, J, g).
According to the definition ĝij = gije−2σ, ωi = 2σ,i. Then

Γ̂k
ij = Γk

ij −
1
2

δk
i ωj −

1
2

δk
j ωi +

1
2

ωkgij, (38)
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is the Levi-Civita connection which is compatible with the metric ĝ. Let us define a contravariant
vector field ξ i on (Mn, J, g). Let us denote

ξi = ξαgαi; ξ̂i = ξα ĝαi = ξie−2σ.

Then we differentiate covariantly ξ̂i with respect to the Levi-Civita connection which is compatible
with the metric ĝ. Covariant derivative with respect to the connection Γ̂k

ij is denoted as “|”.

Covariant derivative with respect to the connection Γk
ij is denoted as usual by comma. We get

ξ̂i|j = ξ̂i,j +
(1

2
δα

i ωj +
1
2

δα
j ωi −

1
2

ωαgij
)
ξ̂α =

=
(
ξie−2σ

)
,j +

1
2

ξ̂iωj +
1
2

ξ̂ jωi −
1
2

ωα ξ̂αgij =

= ξi,je−2σ − ξie−2σωj +
1
2

ξ̂iωj +
1
2

ξ̂ jωi −
1
2

ωα ξ̂αgij =

=
(
ξi,j −

1
2

ξiωj +
1
2

ξ jωi −
1
2

ωαξαgij
)
e−2σ =

=
(
ξi,j −

1
2

ξiωj +
1
2

ξ jωi
)
e−2σ − 1

2
ωαξα ĝij

(39)

Suppose that a field ξ i generates a homothetic group of the metric ĝ. Then it must satisfy equations

ξ̂i|j + ξ̂ j|i = Cĝij (40)

Substituting (39) into (40) we obtain

e−2σ
(
ξi,j + ξ j,i

)
−ωαξα ĝij = Cĝij;

e−2σ
(
ξi,j + ξ j,i

)
= Cĝij + ωαξα ĝij;

e−2σ
(
ξi,j + ξ j,i

)
= e−2σ

(
ωαξαgij + Cgij

)
;

Since e−2σ 6= 0 holds, (30b) are necessarily satisfied

ξi,j + ξ j,i =
(
ωαξα + C

)
gij.

Let us differentiate covariantly ξ̂i|j with respect to the connection Γ̂k
ij. Since (38) holds, we obtain

ξ̂i|jk = e−2σ
(
ξi,jk +

1
2
(
ξi,j + ξ j,i

)
ωi −

1
2

ωα
(
ξα,jgik + ξi,αgjk

)
+

1
4

ωk
(
ξ jωi − ξiωj

)
− 1

4
ξαωα

(
ωigjk −ωjgik

)
+

1
2
(
ξ jωi,k − ξiωj,k

)
+

1
4
||ω||2

(
ξigjk − ξ jgik

)
− 1

2
(
ωαξα

)
,kgij;

On the other hand

1
2
(
ξi,j + ξ j,i

)
ωi −

1
2

ωα
(
ξα,jgik + ξi,αgjk

)
=

1
2
(
ωiLξ gjk −∇j(ωαξα)gik + ξαωα,jgik −ωα

(
Lξ giα − ξα,i

))
=

1
2
(
ωiLξ gjk −ωα(Lξ giα)gjk −∇j(ωαξα)gik

+ξαωα,jgik +∇i(ωαξα)gjk − ξαωα,igjk
)
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hence
ξ̂i|jk = e−2σ

(
ξi,jk +

1
4

ωk
(
ξ jωi − ξiωj

)
− 1

4
ξαωα

(
ωigjk −ωjgik

)
+

1
2
(
ξαωα

,jgik − ξαωα
,igjk

)
+

1
2
(
ξ jωi,k − ξiωj,k

)
+

1
4
||ω||2

(
ξigjk − ξ jgik

)
+

1
2
(
ωiLξ gjk −ωα(Lξ giα)gjk

)
−1

2
((

ωαξα
)

,kgij +
(
ωαξα

)
,jgik −

(
ωαξα

)
,igjk

))
(41)

Since according to (21b) in the case of conformal transformations we have Lξ gjk = ϕgjk,
hence ωiLξ gjk −ωα(Lξ giα)gjk = 0, and (41) can be written as

ξ̂i|jk = e−2σ
(
ξi,jk +

1
4

ωk
(
ξ jωi − ξiωj

)
− 1

4
ξαωα

(
ωigjk −ωjgik

)
+

1
2
(
ξαωα

,jgik − ξαωα
,igjk

)
+

1
2
(
ξ jωi,k − ξiωj,k

)
+

1
4
||ω||2

(
ξigjk − ξ jgik

)
− 1

2
((

ωαξα
)

,kgij +
(
ωαξα

)
,jgik −

(
ωαξα

)
,igjk

))
,

or
ξ̂i|jk = e−2σ

(
ξi,jk + ξα

(1
4

ωk
(
δα

j ωi − δα
i ωj

)
− 1

4
ωα
(
ωigjk −ωjgik

)
+

1
2
(
ωα

,jgik −ωα
,igjk

)
+

1
2
(
δα

j ωi,k − δα
i ωj,k

)
+

1
4
||ω||2

(
δα

i gjk − δα
j gik

))
−1

2
((

ωαξα
)

,kgij +
(
ωαξα

)
,jgik −

(
ωαξα

)
,igjk

))
,

(42)

where ||ω||2 = ωiωjgij. On the other hand, it follows from (38) that the curvature tensor R̂ of a Kähler
metric ĝ and the curvature tensor R of an LCK-metric are related by the following expression

R̂h
ijk = Rh

ijk + δh
j
(1

2
ωi,k +

1
4

ωiωk −
1
4
||ω||2gik

)
−

−δh
k
(1

2
ωi,j +

1
4

ωiωj −
1
4
||ω||2gij

)
+

+
(1

2
ωh

,j +
1
4

ωhωj
)

gik −
(1

2
ωh

,k +
1
4

ωhωk
)

gij,

(43)

It is known that if a field ξ i generates homothetic transformation of metric ĝ then the field satisfies
also the equation [10]

ξ̂i|jk = ξ̂αR̂α
kji. (44)

Substituting (42) and (43) into (44), taking into account that ξ̂i = ξie−2σ, we get

e−2σξi,jk = e−2σ
(
ξαRα

kji +
1
2
((

ωαξα
)

,kgij +
(
ωαξα

)
,jgik −

(
ωαξα

)
,igjk

))
.

Again, it follows from e−2σ 6= 0 that (30c) is satisfied

ξi,jk = ξαRα
kji +

1
2
((

ωαξα
)

,kgij +
(
ωαξα

)
,jgik −

(
ωαξα

)
,igjk

)
.

The condition that for the Kähler metric ĝ a vector field ξ i satisfies

Lξ Ji
j = Ji

j|kξk − Jα
j ξ i
|α + Ji

αξα
|j = 0,
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if and only if the similar conditions (9) is satisfied. Hence if a vector field ξ i satisfies the system (30),
then it satisfies the system

(a) ξ̂i,j = ξ̂ij;
(b) ξ̂i,j + ξ̂ j,i = Cĝij;
(c) ξ̂i,jk = ξ̂αR̂α

kji;
(d) Ji

j|kξk − Jα
j ξ i
|α + Ji

αξα
|j = 0.

We obtain the theorem.

Theorem 6. If an LCK-manifold (Mn, J, g), n = 2m admits a group Gr of infinitesimal conformal
transformations preserving the complex structure, then the group Gr is isomorphic to the group of homothetic
transformations of the Kähler metric ĝ conformally corresponding to the LCK-metric.

It is worth noting that the obtained theorem is very similar to the results obtained by
R. F. Bilyalov ([3], p. 274) for real Lorenzian manifolds. Namely, let Gr be a group of conformal
transformations of a Lorenzian manifold (Mn, g) which is not conformally flat. Then we can find a
manifold (M̂n, ĝ), conformally corresponding to (Mn, g) whose homothetic group is isomorphic to the
group of conformal transformations of the (Mn, g). But our result does not require that the manifold
needs not to be conformally flat.

Applying the Theorems 6 and 4 to conformally flat manifolds, in particularly to a Hopf manifold,
equipped by the Boothby metric, we obtain that conformal groups of the manifolds depend on (m+ 1)2

parameters, where m = dimC(Mn).

3.5. Conformal Infinitesimal Transformations on Compact LCK-Manifolds

Let (Mn, J, g) be a compact LCK-manifold, vector field ξ generates conformal transformations (30b).
Contracting (30c) with gjk we have

∇t∇tξi − ξαRα
i =

2− n
2
∇i(ωαξα). (45)

Then we raise the index i in (45)

∇t∇tξ
i − ξαRi

α =
(2− n)git

2
∇t(ωαξα). (46)

On the other hand, it is known [17], that a necessary and sufficient condition for a vector field ξ

in a compact almost Hermitian space to be contravariant almost analytic is

∇t∇tξi − ξαRα
i = −Ji

α(Lξ∇β Jβ
γ gαγ) +

1
2
(
∇j Jα

k +∇k Jα
j
)

Ji
αLξ gjk. (47)

For LCK-manifolds, taking account of (2) and (1), we have

−Ji
α(Lξ∇β Jβ

γ gαγ) +
1
2
(
∇j Jα

k +∇k Jα
j
)

Ji
αLξ gjk

=
(2− n)git

2
∇t(ωαξα).

(48)

Comparing (46) and (47), taking account of (48) we obtain the theorem.

Theorem 7. In a compact LCK-manifold (Mn, J, g) any vector field ξ which generates nontrivial conformal
transformations is contravariant almost analytic.
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3.6. Isometries of LCK-Manifolds

Let a vector field ξ generates one-parameter continuous group of isometries of an LCK-manifold.
Then the vector field ξ satisfies the Killing equations.

ξi,j + ξi,j = 0. (49)

Taking account of (39), expressing (49) with respect to the Levi-Civita connection which
is compatible with the Kählerian metric ĝ, we obtain

ξ̂i|j + ξ̂ j|i = −ξαωα ĝij. (50)

But it follows from the Theorem 3 that Kählerian metric does not admit nontrivial conformal
transformations. Hence ξαωα = const, and we obtain the theorem.

Theorem 8. Isometric Group of an LCK-manifold (Mn, J, g) is isomorphic to some subgroup of homothetic
group of the corresponding local Kählerian metric. In particular, if a vector field orthogonal to the Lee vector field
is Killing with respect to the LCK-metric g then the field is also Killing with respect to the local Kählerian metric ĝ.

3.7. Transformations Generated by the Lee Fields and Anti-Lee Vector Fields on Pseudo-Vaisman Manifolds

Let us consider a pseudo-Vaisman manifold [18], i.e., the LCK-manifold whose Lee form satisfies
the equation

Φ4(∇ω(X, Y)) =
||ω||2

2
g(X, Y), (51)

where Φ4 is the fourth Obata projector. It follows from (51) that, Lie derivative with respect to the vector
field B = ω# satisfies the equations

LBgij + Js
i (LBgst)Jt

j = 2||ω||2gij.

Let us find a Lie derivative of a fundamental form Ωij = Js
i gsj. According to ([9], p. 4) on an

LCK-manifold, covariant derivatives of the complex structure in the directions of B or A are equal
to zero:

∇B J = ∇A J = 0. (52)

Here A = −JB is so called the anti-Lee vector field, the symbol ∇B denotes the covariant
derivative of the Riemannian connection defined by the LCK-metric g with respect to B, etc. Hence

LBΩij = Ωtj∇iω
t + Ωit∇jω

t = −Jt
j ωt,i + Jt

i ωt,j. (53)

Since (51) is equivalent to
ωt,j Jt

i −ωt,i Jt
j − ||ω||2 Jij = 0,

it follows from (53) that
LBΩij = ||ω||2Ωij. (54)

Let us find a Lie derivative of the fundamental form with respect to the anti-Lee vector field
A = −JB = θ#. Since (52) holds, we have

LAΩij = Ωtj∇iθ
t + Ωit∇jθ

t = Jt
i θt,j − Jt

j θt,i

= Jt
i∇j(Js

t ωs)− Jt
j∇i(Js

t ωs) = Jt
i ωs Js

t,j − Jt
j ωs Js

t,i + Jt
i Js

t ωs,j − Jt
j Js

t ωs,i

= −ωi,j −ωj,i +
1
2

Jt
i ωs
(
δs

j Ju
t ωu −ωs Jtj − Js

j ωt + Js
uωugtj

)
−1

2
Jt
j ωs
(
δs

i Ju
t ωu −ωs Jti − Js

i ωt + Js
uωugti

)
.

(55)
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Removing the parentheses in (55), and taking into account that Lee form is closed, we have

LAΩij = 0.

We obtain the theorem.

Theorem 9. On a pseudo-Vaisman manifold, i.e., on an LCK-manifold whose Lee form satisfies the condition

Φ4(∇ω(X, Y)) =
||ω||2

2
g(X, Y),

Lie derivatives of the fundamental form with respect to the Lee vector field B = ω# and to the vector anti-Lee
vector field A = −JB = θ# satisfy the equations

1)LBΩij = ||ω||2Ωij,
2)LAΩij = 0.

Let us find a Lie derivative of the complex structure with respect to the Lee vector field B and the
anti-Lee vector field A taking account of (52).

LB Jk
i = Jk

s∇iω
s − Jt

i∇tω
k. (56)

LA Jk
i = Jk

t∇iθ
t − Jt

i∇tθ
k = −Jk

t∇i(Jt
sωs) + Jt

i∇t(Jk
s ωs)

= −Jk
t Jt

s∇iω
s + Jt

i Jk
s∇tω

s − Jk
t ωs Jt

s,i + Jt
i ωs Jk

s,t

= ∇iω
k + Jt

i Jk
s∇tω

s − 1
2

Jk
t ωs(δt

i Ju
s ωu −ωt Jsi − Jt

i ωs + Jt
uωugsi

)
+

1
2

Jt
i ωs(δk

t Ju
s ωu −ωk Jst − Jk

t ωs + Jk
uωugst

)
.

(57)

Removing the parentheses in (57) and collecting similar terms, we obtain that

LA Jk
i = ∇iω

k + Jt
i Jk

s∇tω
s. (58)

Let us find a Lie derivative of the LCK-metric with respect to the anti-Lee vector field A

LAgij = θi,j + θj,i = ∇j(Jt
i ωt) +∇i(Jt

j ωt)

= Jt
i,jωt + Jt

i ωt,j + Jt
j,iωt + Jt

j ωt,i

=
1
2

ωt
(
δt

j Ju
i ωu −ωt Jij − Jt

j ωi + Jt
uωugij

)
+ Jt

i ωt,j

+
1
2

ωt
(
δt

i Ju
j ωu −ωt Jji − Jt

i ωji + Jt
uωugji

)
+ Jt

j ωt,i

Finally, we get
LAgij = Jt

i∇jωt + Jt
j∇iωt. (59)

Now let us consider the case when the Lee form satisfies the strong pseudo-Vaisman condition

∇ω(X, Y) =
||ω||2

2
g(X, Y)

Hence the Lee vector field satisfies the equations

ωi,j + ωj,i = ||ω||2gij
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Comparing the equations with (30b)

ξi,j + ξ j,i =
(
ωαξα + C

)
gij,

we obtain, that the Lee vector field ω# generates on the LCK-manifold one-parameter conformal group
for which in (30b) the condition C = 0 holds. We get

ωi,j + ωj,i =
(
ωαωα

)
gij.

Taking account of (39) we obtain that for the connection which is compatible with the Kählerian
metric ĝij = e−2σgij the equations

ω̂i|j + ω̂j|i = 0, (60)

are satisfied. Here we note ω̂i = ωtgst ĝti = e−2σωi. It follows from (60) that the vector field
ω# generates one-parameter isometry group of the Kählerian metric ĝij. Also it follows from (56)
that if the Lee form satisfies the strong pseudo-Vaisman condition, then we have

LB Jk
i = 0.

Hence the Lee vector field is contravariant analytic, i.e., a transformation generated by the field
preserves the complex structure. Also, substituting the strong pseudo-Vaisman condition into (57),
we obtain

LA Jk
i = 0,

It means that the anti-Lee field is also contravariant analytic. Hence we write (59) in the form

LAgij = 0.,

That means also that the anti-Lee vector field θ# is a Killing vector field. Taking into account
Theorem 8 we make the following deductions.

Theorem 10. Let (Mn , J, g) be an LCK-manifold, n = 2m and its Lee form satisfies the strong
pseudo-Vaisman condition

∇ω(X, Y) =
||ω||2

2
g(X, Y),

Then:

1. The Lee and anti-Lee vector fields (respectively ω# and θ# ) are contravariant analytic.
2. On the manifold (Mn, J, g) the Lie field ω# generates one-parameter conformal group, and anti-Lee field θ#

generates one-parameter group of isometry.
3. The Lee and anti-Lee vector fields generate one-parameter isometric groups of the Kählerian metric ĝij.

The Kählerian metric ĝij is conformally corresponding to the LCK-metric g.

4. Conclusions

The manifolds under consideration are LCK-manifolds. The investigations use local coordinates.
We assume that all functions under consideration are sufficiently differentiable, and use tensor
methods (c.f. [19]).

Complex geometry deals primarily with Kählerian manifolds, i.e., manifolds carrying some
Kählerian metric. Although, some complex manifolds, such as complex Hopf manifolds, admit no
global Kählerian metrics at all. However, we can often find for every map of atlas a multiplyer
which transforms a metric into a Kählerian one. One can say that a metric g is a locally conformal
Kähler (LCK) metric if g is conformal to some local Kählerian metric in the neighborhood of each
point of a manifold. In fact, the locally conformal Kähler manifolds were introduced by W. Westlake
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in 1954, some publications were soon made by P. Libermann, but mainly through the works of Vaisman
since the 1970s has the geometry of LCK-manifolds been developed. Mappings and transformations
of LCK-manifolds were explored by V. F. Kirichenko, K. Matsumoto, J. Mikeš, A. Moroianu, L. Ornea.
The presented paper is devoted to infinitesimal transformations. We have obtained that LCK-manifolds
does not admit nontrivial infinitesimal projective transformations. Then we study infinitesimal
conformal transformations of LCK-manifolds. We have found the expression for the Lie derivative
of a Lee form. We have also obtained the system of partial differential equations for the transformations,
and explored its integrability conditions. Finally, we have got the necessary and sufficient conditions
in order that the an LCK-manifold admit a group of conformal motions. In addition, we have
calculated the number of parameters which the group depends on. We have proved that the group
of conformal motions admitted by an LCK-manifold is isomorphic to the homothetic group admitted
by the corresponding Kählerian metric.
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