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Abstract: This article is devoted to the projective Klingenberg spaces over a local ring, which is a
linear algebra generated by one nilpotent element. In this case, subspaces of such Klingenberg spaces
are described. The notion of the “degree of neighborhood” is introduced. Using this, we present
the geometric description of subsets of points of a projective Klingenberg space whose arithmetical
representatives need not belong to a free submodule.
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1. Introduction

Projective Klingenberg spaces (PKS) may be characterized as an incidence structure whose
homomorphic image is a projective space over a field. Geometries over rings began to be studied
systematically in the mid-20th Century. W. Klingenberg [1] followed the study of incidence structures
of D. Barbilian [2] and introduced Klingenberg spaces (initially projective spaces with homomorphisms).
The definition of a PKS of general finite dimension was presented by H. H. Lück in [3]. These topics
were also developed by J. C. Ferrar and F. D. Veldkamp [4–6] and P. Y. Bacon (e.g., [7]). Projective
geometry is also related to the theory of geodesic mappings (e.g., [8]). F. Machala [9] introduced
projective Klingenberg spaces over local rings. The arithmetical fundament of such spaces is a free
finite-dimensional A-module over a local ring A (A-space in the sense of B.R. McDonald [10]). Subspaces
(points, lines, hyperplanes, etc.) of a PKS over a ring A are subsets of points whose homomorphic
images are subspaces of the respective dimension of the projective space over A/Rad(A) mentioned
above. Thus, PKS may be also treated as a projective space over a ring in the sense of Bingen. In the case
of PKS over certain local rings (plural algebras, [11]), we may study in more detail the structure of PKS,
and we can find some special properties (for example, we introduce the degree of neighborhood). By this
apparatus, we may describe not only subspaces of PKS, but also such sets of points (submodules of
PKS) whose arithmetical representatives belong to a general submodule of the arithmetical fundament
of PKS.

Let us consider the following local algebra A (according to [11]):

Definition 1. A plural algebra of order m over a field T is every linear algebra A on T having as a vector space
over T a basis:

{1, η, η2, . . . , ηm−1} with ηm = 0. (1)

Remark 1. It follows from Definition 1 that any element α of A may be uniquely expressed in the form:

α=
m−1

∑
j=0

ajη
j.
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Evidently, A is a local ring with the maximal ideal a = ηA, and all proper ideals of A are just
η jA, 1 ≤ j ≤ m.

For the case m=2, T=R, we obtain well-known dual numbers; for general m, we have plural
numbers. Moreover, if T=R, then A is a Weil algebra of order m and width one; therefore any A-space is
also a Weil module.

Let M be an A-space. It is well known that all bases of M have the same number of elements
(A-dimension of M), and from every set of generators, a basis of M may be selected (see [10]). Above
that, in our case, the following properties of A-space M have been proven in [12] (the point 3 may be
considered as a criterion of transversality of two A-subspaces; Veldkamp [13] called two A-subspaces
transversal if both their intersection and their sum are A-subspaces):

Theorem 1. Let M be an A-space over a plural algebra A. Then, the following hold:

1. Any linearly-independent system of elements of M may be completed to a basis of M,
2. A submodule of M is a free submodule if and only if it is a direct summand of M.
3. An intersection of two A-subspaces of M is an A-subspace of M if and only if the sum of them is an

A-subspace of M.

Remark 2. A subspace of an A-space M (A-subspace) is usually defined as a free direct summand of M. If A is
a plural algebra, it follows from Theorem 1 that A-subspaces of M are just all free submodules of M.

Through the following text, let M denote an arbitrary, but fixed A-space over a plural algebra A.
Let us consider an endomorphism η on M defined by the relation:

∀x ∈ M : η(x) = ηx. (2)

Theorem 2. Let K be a nontrivial submodule of A-space M. Then, there exists a system B0, . . . ,Br of subsets
on M such that:

1. B0 ∪ · · · ∪ Br−1 ∪ Br is a basis of M,
2. ηm−rB0 ∪ ηm−r+1B1 ∪ · · · ∪ ηm−1Br−1 is a set of generators of K.

In this case, r, 1 ≤ r ≤ m, is an integer with K ⊆ Ker ηr ∧ K 6⊂ Ker ηr−1.

Proof. Let us denote ϑ = η|K, ϑ ∈ End(K).
Since M is a free module, it follows from [14] that η j M=Ker ηm−j, 0≤j≤m. This implies:

K ∩ η j M = Ker ϑm−j, 0 ≤ j ≤ m. (3)

Evidently, there exists a unique r∈N, 1≤r≤m, such that K⊆Ker ηr∧K 6⊂Ker ηr−1. Respecting the
fact that K is a vector space over A/a= T, we have that ϑ is a nilpotent endomorphism of K, and
therefore, we obtain elements
u1, . . . ,us0 ,us0+1, . . . ,us1 ,us1+1, . . . ,us2 , . . . ,usr−2+1, . . . ,usr−1 of K such that:

ηr−ku1, . . . , ηr−kus0 , ηr−k−1us0+1, . . . , ηr−k−1us1 , . . . ,usr−k−1+1, . . . ,usr−k

form a T-basis Kerϑk mod Kerϑk−1, 1 < k < r− 1.
As {u1, . . . ,us0} ⊆ Ker ϑr ⊆ ηm−r M (see (3)), there exist v1, . . . ,vs0 ∈ M with:

ui = ηm−rvi, 1 ≤ i ≤ s0. (4)

In the same way, {usr−k−1+1, . . . ,usr−k} ⊆ Kerϑk implies the existence of elements
vsr−k−1+1, . . . ,vsr−k ∈ M with:

ui = ηm−kvi, sr−k−1 + 1 ≤ i ≤ sr−k, for k = 1, . . . , r− 1. (5)
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Let us denote B0 = {v1, . . . ,vs0} and Br−k = {vsr−k−1+1, . . . ,vsr−k}, k = r− 1, . . . , 1.

(a) Let us show the linear independence of the set B0 ∪ . · · · ∪ Br−1. Supposing:

sr−1

∑
i=1

ξivi = o,

and denoting (according to (1)) ξi = ∑m−1
j=0 xijη

j, 1 ≤ i ≤ sr−1, where xij ∈ T, we obtain:

m−1

∑
j=0

η j
sr−1

∑
i=1

xijvi = o. (6)

Multiplying this equality by ηm−1 and using (4) and (5), we may write:

s0

∑
i=1

xi0(η
r−1ui) +

s1

∑
i=s0+1

xi0(η
r−2ui) + · · ·+

sr−1

∑
i=sr−2+1

xi0ui = o.

We have obtained a linear combination of the elements of a T-basis of submodule K with coefficients
from T. It gives xi0 = 0, for i = 1, . . . , sr−1. Therefore, (6) may be written in the form:

m−1

∑
j=1

η j
sr−1

∑
i=1

xijvi = o.

Multiplying this equality by ηm−2 and using again (4) and (5), we obtain xi1 = 0, i = 1, . . . , sr−1.
Then, (6) may be written as:

m−1

∑
j=2

η j
sr−1

∑
i=1

xijvi = o.

Multiplying (6) by ηm−3, . . . , η, consecutively, we have that all xij are zero and ξ1 = ξ2 = · · · = ξsr−1 =

0, consequently.
Since B0 ∪ . · · · ∪ Br−1 is a set of linearly-independent elements, it may be completed by a set Br

to an A-basis of M (according to Theorem 1).
(b) Let us show that ηm−rB0 ∪ ηm−r+1B1 ∪ · · · ∪ ηm−1Br−1 generates (over A) the module K.

Respecting (4) and (5), we may write:

x = ∑
1≤i≤s0

0≤j≤r−1

xij(η
jui) + ∑

s0<i≤s1
0≤j≤r−2

xij(η
jui) + · · ·+ ∑

sr−3<i≤sr−2
0≤j≤1

xij(η
jui)+

+ ∑
sr−2<i≤sr−1

xi0ui =

= ∑
1≤i≤s0

0≤j≤r−1

xij(η
j+m−rvi) + ∑

s0<i≤s1
0≤j≤r−2

xij(η
j+m−r+1vi) + · · ·+

+ ∑
sr−3<i≤sr−2

0≤j≤1

xij(η
j+m−2vi) + ∑

sr−2<i≤sr−1

xi0ηm−1vi =

= ∑
1≤i≤s0

0≤k≤m−1

(xikηk)(ηm−rvi) + ∑
s0<i≤s1

0≤k≤m−1

(xikηk)(ηm−r+1vi) + · · ·+

+ ∑
sr−3<i≤sr−2

0≤k≤m−1

(xikηk)(ηm−2vi) + ∑
sr−2<i≤sr−1

0≤k≤m−1

(xikηk)(ηm−1vi) =
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= ∑
1≤i≤s0

ξi(η
m−rvi) + ∑

s0<i≤s1

ξi(η
m−r+1vi) + · · ·+

+ ∑
sr−3<i≤sr−2

ξi(η
m−2vi) + ∑

sr−2<i≤sr−1

ξi(η
m−1vi).

If an element x of M may be expressed as a linear combination of elements of a T-basis of
submodule K with coefficients from T, then it may be also expressed as a linear combination of the
elements of the set ηm−rB0 ∪ ηm−r+1B1 ∪ · · · ∪ ηm−1Br−1 with coefficients from A and vice versa.

2. Projective Klingenberg Spaces

Let us remind about the definition of a projective Klingenberg space (Klingenberg’s definition as
modified by Lück [3]).

Definition 2. A projective Klingenberg space of dimension n, n ≥ 2, is an incidence structure P=(P, H, I)
with a homomorphism µ of P onto an n-dimensional projective space P0=(P0, H0, I0) such that:

1. If X1, . . . , Xk, 1 ≤ k ≤ n, are points in P such that µ(X1), . . . , µ(Xk) are independent in P0, then there
exists a hyperplaneH in H such that X1, . . . , Xk I H. This hyperplane is unique if k = n.

2. this condition is the dual of one.
3. If X1, . . . , Xn−1∈P andH1,H2∈H are such that µ(X1), . . . , µ(Xn−1)∈P0, as well as µ(H1), µ(H2)∈H0

are independent and P1, . . . , Pn−1 I H1,H2, then: (Y IH1,H2 ∧ P1, . . . , Pn−1 IH)⇒ Y IH.

Following [9], we define:

Definition 3. Let A be a local ring and a be its maximal ideal. Let us denote M=An+1, n ≥ 2, M̄=M/aM.
Then, an incidence structure PA such that

1. points in PA are just all submodules [x] ⊆ M such that 〈x〉 is a nonzero element of M̄,
2. hyperplanes in PA are just all submodules [u1,u2 . . .un] ⊆ M such that 〈u1〉, 〈u2〉, . . . , 〈un〉 are

linearly-independent elements of M̄,
3. the incidence relation is an inclusion,

is called an n-dimensional projective Klingenberg space over the ring A.
For any point X = [x] of PA, an element x is called an arithmetical representative of the point X.

The module M is called the arithmetical fundament of the space PA.

It is known that for n ≥ 3, there is no (up to an isomorphism) other projective Klingenberg spaces
except of PKS over a local ring. In the case of planes, it is true only for Desarguesian ones.

Remark 3. Let us consider the n-dimensional projective space P(A/a) over the field A/a (i.e., with arithmetical
fundament M̄ = M/aM). Then, P(A/a) is an homomorphic image of PA in the homomorphism µ defined by:

∀X, X=[x], x∈M : µ(X) = [〈x〉]. (7)

Thus, points of PA are just submodules in M that are (by homomorphism µ) mapped on points of the projective
space P(A/a), and hyperplanes in PA are just submodules in M that are mapped (by homomorphism µ) on
hyperplanes of the projective space P(A/a).

The following definition is natural. According to Definition 3, points and hyperplanes correspond
to the cases k = 0 and k = n− 1, respectively (it is usual to identify a hyperplane H with the set of
points incident withH, and we will use this approach).



Mathematics 2019, 7, 702 5 of 8

Definition 4. Let PA be an n-dimensional projective Klingenberg space and M be its arithmetical fundament.
Let a submodule K of M be given. A set:

K = {X ∈ PA, X=[x] : x ∈ K} (8)

is called a k-dimensional subspace in PA, 0 ≤ k ≤ n−1, if K = [u1,u2 . . .uk+1], and 〈u1〉, 〈u2〉, . . . , 〈uk+1〉
are linearly-independent elements of M̄.
The submodule K is called an arithmetical fundament of the subspace K.

Define a relation “to be neighbor” on points of PKS. Thus, PKS may be also treated as Barbilian spaces.

Definition 5. Points X, Y ∈ PA are called neighbors, if µ(X) = µ(Y). Otherwise, we speak of
non-neighbor points.

In what follows, we study n-dimensional PKS PA over a plural algebra A with arithmetical
fundament denoted by M (Definition 3). Obviously, the module M is an A-space. Using Theorem 1
(and Theorem I.2 of [10]), we have characterized the notions point and hyperplane, as well as the subspace
of arbitrary dimension in PKS (cf. [15]).

Theorem 3. Let PA be a projective Klingenberg space. Then, k-dimensional subspaces of PA, 0 ≤ k ≤ n− 1,
are just all subsets (8) such that K is a (k+1)-dimensional A-subspace in M.

Theorem 3 implies that any PKS PA can be also treated as a projective space over the ring A in the
sense of Bingen [16] if we ignore the neighbor relation. Bingen has defined these projective spaces as
structures formed by A-subspaces of a free finite-dimensional A-module.

Let us define a useful subrelation of the relation “to be neighbor”. We get a new equivalence
relation on the set of points of PA; a couple of points belongs to this one, if they have the same degree of
neighborhood. That allows one to study new properties of PKS.

Definition 6. [15] Let X=[x] and Y=[y] be points of a projective Klingenberg space PA, and let r be a
non-negative integer satisfying:

(ηm−rx ∈ [y]) ∧ (ηm−r−1x 6∈ [y] ∨ r = m).

The number r is called the degree of neighborhood of the points X and Y.

Clearly, for a couple of non-neighbor points, we have r = 0, for neighbor different points
1 ≤ r ≤ m− 1 and for identical points r = m.

For arbitrary point X and every integer r, 0 ≤ r ≤ m, there exists at least one point Y such that
the degree of neighborhood of points X, Y is equal to r.

Definition 7. Let X be a point and K be a set of points of a projective Klingenberg space. We said that r
is a degree of neighborhood of X and K if there exists at least one point Y ∈ K such that the degree of the
neighborhood of points X, Y is equal to r and the degree of the neighborhood of X and any point of K is no
greater then r.

Corollary 1. If K is a subspace of PA and K is an arithmetical fundament of K, then the degree of neighborhood
of a point X=[x] and subspace K is equal to r if and only if ((ηm−rx ∈ K) ∧ (ηm−r−1x 6∈ K ∨ r = m)).

Let φ be a linear form on an h-dimensional A-space M such that Imφ 6⊂ a. Then, Kerφ is an
(h− 1)-dimensional A-subspace in M (see [12]), and for K = Ker φ, the subset (8) forms a hyperplane
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in KPS PA. If φ is a general linear form, then its kernel need not be an A-subspace. Then, there is a
question about how to describe a set of points of PA whose arithmetical representatives belong to a
kernel of a general linear form.

For any linear form φ on M, there exists a linear form φ0 with Imφ0 6⊂ a and just one integer
k, 0≤k≤m, (called an order of linear form φ) such that φ = ηkφ0 (see [17]).

Lemma 1. Let PA be projective Klingenberg space. Let φ be an arbitrary linear form on M of order k.
Then, the set:

H = {X ∈ PA, X = [x] : x ∈ Ker φ}

is formed by all points with the degree of neighborhood at least m−k to a certain hyperplaneH0 of PA. If φ0 is a
form of zero order such that φ = ηkφ0, then:

H0 = {X ∈ PA, X = [x] : x ∈ Ker φ0}.

Proof. Let φ = ηkφ0, where φ0 is a linear form of zero order. For kernels of linear forms φ, φ0, it holds:

Ker φ = {x ∈ M : ηkx ∈ Ker φ0}.

According to Theorem 3, a subset H0 is a hyperplane in PA. Let X = [x] be a point belonging to H;
thus, ηkx ∈ Ker φ0. Therefore, there exists an element y ∈ Ker φ0 with ηkx = y. Because Ker φ0 is
an A-subspace, y may be written as y = ηlz, where z is a linearly-independent element from Ker φ0

(clearly, l = k). We get ηkx ∈ [z], which means that points X and Z, Z=[z], Z ∈ H0 are neighbors
with degree at least m− k.

Now, we may present a natural generalization of the notion subspace of Klingenberg projective space
PA. We have seen that subspaces in PA are just all subsets of points whose arithmetical representatives
belong to some A-subspace of M. Let us in (8) consider an arbitrary submodule K of M. In this case, the
subset (8) of points of PA is appropriate, called a submodule of KPS.

Definition 8. Let PA be an n-dimensional projective Klingenberg space and M be its arithmetical fundament.
Let a submodule K of M be given. Then, a set:

K = {X ∈ PA, X=[x] : x ∈ K}

is called a submodule in PA (with arithmetical fundament K).

The following theorem brings a pure geometric description of the submodules of PKS PA.

Theorem 4. Let PA be projective Klingenberg space and M be its arithmetical fundament. Let K be an
arbitrary non-trivial submodule in M. Then, there exists a system
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H0, . . . ,Hr−1, Hr

of sets of hyperplanes of PA such that the submodule of PA with arithmetical fundament K is equal to the
intersection of:
(0) all hyperplanes belonging to Hr,
(1) a set of points having the degree of neighborhood at least m-1

to every hyperplane belonging to Hr−1,
...
(r) a set of points having the degree of neighborhood at least m-r

to every hyperplane belonging to H0.

Proof. Let us denote byK the submodule of PA with arithmetical fundament K. Due to Theorem 2, we
get for a submodule K a system of sets B0, . . . ,Br. Let us denote their elements in the following way:

B0 = {ei}k0
i=1, B1 = {ei}k1

i=k0+1, . . . , Br = {ei}kr
i=kr−1

and construct by these sets a base B of an arithmetical fundament M. A dual base B̃ of a dual A-space
M̃ may be constructed as well (cf. [12]). Any element of B̃ is a linear form of zero order, of course.

For any linear form ẽi, 1≤i≤n, let us denote by Hi a hyperplane in PA with arithmetical
fundament Ker ẽi. We obtain the following system of sets of hyperplanes:

H0 = {Hi}k0
i=1, H1 = {Hi}k1

i=k0+1, . . . , Hr = {Hi}kr
i=kr−1

.

Let us consider an arbitrary point X ∈ PA, X=[x]. Respecting the form of a set of generators of
the submodule K, as is described in Theorem 2 (2), we have that X belongs to K (i.e., x ∈ K) if and
only if:

{ẽi(x) ∈ am−r, 1≤i≤k0} ∧ {ẽi(x) ∈ am−r+1, k0+1≤i≤k1} ∧ · · · ∧

∧ {ẽi(x) ∈ am−1, kr−2+1≤i≤kr−1} ∧ {ẽi(x)=0, kr−1+1≤i≤kr}.

It may be equivalently expressed by:

{ηrẽi(x)=0, 1≤i≤k0} ∧ {ηr−1ẽi(x)=0, k0+1≤i≤k1} ∧ · · · ∧

∧ {ηẽi(x)=0, kr−2+1≤i≤kr−1} ∧ {ẽi(x)=0, kr−1+1≤i≤kr}.

Finally, we have that X ∈ K if and only if:

{x ∈ Ker ηrẽi, 1≤i≤k0} ∧ {x ∈ Ker ηr−1ẽi, k0+1≤i≤k1} ∧ · · · ∧

∧ {x ∈ Ker ηẽi, kr−2+1≤i≤kr−1} ∧ {x ∈ Ker ẽi, kr−1+1≤i≤kr}.

Now, using Lemma 1, we obtain the proven theorem.

The notion of the “degree of neighborhood” has shown up as a key one, which allows us to
describe pure geometrically point sets that form submodules of PKS. Now, we see that the structure of
Klingenberg spaces PA is richer than the structure of subspaces of a projective space over the ring A in
the sense of Bingen.
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