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Abstract: Let SR” be the class of starlike functions with real coefficients, i.e., the class of analytic
functions f which satisfy the condition f(0) =0= f'(0) -1, Re{zf'(z)/f(z)} >0, forzeD:={z e C:
|zl < 1} and ay, := f(")(0)/n! is real for all n € N. In the present paper, it is obtained that the sharp
inequalities ~4/9 < H31(f) < v/3/9 hold for f e SR*, where Hj 1 (f) is the third Hankel determinant
of order 3 defined by Hs1(f) = az(azas - a%) —ay(aq —araz) +as(as — a%).
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1. Introduction

Let H be the class of analytic functions in D := {z € C: |z| < 1} and let A be the class of functions
f € H normalized by f(0) =0 = f'(0) - 1. That s, for z € D, f € A has the following representation

f(z)=z+ i anz". @
n=2

For g, n € N, the Hankel determinant H,,,(f) of functions f € A of the form (1) are defined by

an An+l -+ OApig-1
An+l  Aug2 -+ dp+
Hyn(f) = n: . : : P @)
Apn+g-1 An+q -+ An+29-2

Computing the upper bound of H, , over subfamilies of A is an interesting problem to study.
Note that Hy1(f) = a3 - a% is the well-known functional which, for the class of univalent functions,
was estimated by Bieberbach (see, e.g., [1] (Vol. I, p. 35)). Especially, the functional Hj 1 (f), Hankel
determinant of order 3, is presented by

ap ap a3
H31(f)=|ax a3 a4
az a4 4ds

2 2
= a3(axay — a3) — ay (a4 — axaz) +as(az — a3)

Let S* be the class of starlike functions in A. That is, the class S* consists of all functions

f € Asatisfying
zf'(2)
Re{ 15 }>0, zeD. (©)]
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The leading example of a function of class S* is the Koebe function k, defined by
k(Z) = Z(l - Z)_2 =z+27% +3z3 +.o, zeD.

In [2], Janteng et al. obtained the sharp inequality [Hy»(f)| < 1 = [Hp2(k)| for f € S*. For the
estimates on the Hankel determinant H3 1 (f) over the class S*, Babalola [3] obtained the inequality
|H31(f)| < 16. And Zaprawa [4] improved the result by proving |H3 1(f)| < 1. Next, Kwon et al. [5],
recently found the inequality |H3 1 (f)| < 8/9 and we conjectured that

|H31(f)I<4/9, feS™. 4)

The sharp bound of |H3 1 (f)| over the class S* is still open.

Let SR* be the class of starlike functions in A with real coefficients. Hence, if f € A belongs to the
class SR”, then f has the form given by (1) with a,, € R, n e N\ {1} and satisfies the condition (3).

In this paper, we will prove the following.

Theorem 1. If f € SR™ is the form (1), then the following inequalities hold:
4 1
—g $Hsa(f) < §\/§- ©)
The first inequality is sharp for the function f = f; € SR*, where
fi(z) =z(1- 23)_2/3 =z+ §Z4 + 227 +e, zeD.

The second inequality is sharp for the function f = f, € SR*, where

£(2) :=ZeXp(—fOZ (2/V3)g +20° dg)

1+(2/V3)2+*
_, 2,22 P D
V3 3/3 18 '

2. Preliminary Results

Let P be the class of functions p € H of the form

p(z) =1+ cpz", zeD, (6)

n=1

having a positive real part in D, i.e.,, the Carathéodory class of functions. It is well known,
e.g., [6] (p. 166), that for p € P with the form given by (6),

20y =+ (4-6)E, 7)
for some { € D. Moreover, the following lemma will be used for our investigation.
Lemma 1 ([7]). The formula (7) with c¢1 € [0,2) and { € T holds only for the function p € P defined by

B 1+7(1+0)z+ (22
1-1(1-0)z-7z%’

p(z) zeD,

where T € [0,1).
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Let By be the subclass of H of all self-mappings w of D of the form
w(z) = Z Bnz", zeD, (8)
n=1

i.e., the class of Schwarz functions. It is well known that w € By if and only if p = (1 + w)/(1 - w) € P.
For coefficients of functions in By, the following properties, which can be found in [1] (Vol. I, pp. 84-85
and Vol. II, p. 78) and [8] (p. 128), will be used for our proof.

Lemma 2. If w € By is of the form given by (8), then

(1)  |p1l<1,
2) Bl 1=
() IBs(1=|B1*) + B1B3l < (1= |B1*)* - |B2 I~

The following inequalities, which will be used, hold for the fourth coefficients for Schwarz
functions with real coefficients.

Lemma 3 ([9]). If w € By is the form (8), Bn € R, n e N, and ,B% #(1- [3% )2, then

TLSIB‘lg\PUI (9)
where
w, o LB P2 P3 B3 21~ Fipa+ 2P1Pas — 5 (10)
“1+B7 -2
" 1+ 8% - o - B3+ B3 - 283 + BiBa — 2P1Bas - B
Y= 1~ P27 P27 P2 17 P1P2 1P2P3 3 a1

1-p1- B2

For given a set A, let intA, clA and 0A be the sets of interior, closure and boundary, respectively,
points of A. And let R = [0,1] x [-1,1] be a rectangle in R?. From now, we obtain several inequalities
for functions, defined in subsets of R, which will be used in the proof of Theorem 1.

Proposition 1. Define a function Fy by

4
Fi(x,y) = E_;)bn(X)y”, (12)

where
ba(x) = (1-x)%(1+x)%,
b3(x) = —x(1+x)3(10 - 11x + x?),
by(x) = (1+x)%(7 - 16x + 14x° - 5x%),
b1(x) = x(10 +9x — 2x% — 6x° — 8x* - 3x°),
bo(x) = -8 +16x% + 6x° — 8x* — 6x°.

Then Fy(x,y) < 2\/3 holds for all (x,y) € R.
Proof. Let (x,y) € R. Since by(x) > 0, we have by(x)y* < by(x)y* and

Fi(x,y) <G(xy), (xy)eR,
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where
G(x,y) = b3 (x)y> + (ba(x) + ba(x))y* + by (x)y + bo(x).

We will show that G(x,y) < 21/3 holds for (x,y) € R.

When x = 0, we have G(0,y) = -8(1 -y?) <0, for y € [-1,1]. And, when x = 1, we have G(1,y) = 0.

Now, let x € (0,1) be fixed and put b; = b;(x) (i € {0,1,2,3,4}). Then b3 < 0. Define a function g
by gx(v) = G(x,y). Note that

gx(-1)=0 and g, (1) = 4x*(1-x?)(5-2x%) <0. (13)

Also,
$%(y) =3bsy* +2(bs+by)y + by = 0 (14)

occurs at y = {q or {p, where

_=(by+bp) + (=1)*1\/(by + by)2 — 31 by

3, ie{l,2}.

Ci

It is trivial that 1 < 0 < {p. Furthermore, since b3 < 0, gy has the local minimum at y = (.
Let a = 0.322818--- be a zero of polynomial g, where

q(y) = 810y — 42y> - 14> + 7y,
Note that {, > 1 holds for x satisfying
2(1-x%)q(x) = by +2(by +by) +3b3 > 0.

Hence we obtain
{QQ >1, whenxe€ (0,«],

{»<1, whenxela,l).

(a) When x € (0,a], since { > 1, gx is convex in [-1,1]. So, it holds that

gx(y) <max{gy(-1),8x(1)}, ye[-1,1].

Hence, by (13), we get gx(y) <0 <2V/3 fory e [-1,1].
(b) When x € [a,1), gy has its local maximum g,({>). Using the fact that ; is a solution of the
equation given by (14) leads us to

(2, 2(by+by)? bi(by +by)
gx(gz) = (3b1 - %S)éz + (bo - 9b3)

We claim that gx({2) -3 < 0 holds for all x € [«,1). A compuation gives
1
8x(G2) -3 = %(1 =) (1+2)°[22(1 = x) (1 + x)1 02 + X162,

where
Ky = 64 — 128x + 204x? + 464x> + 249x* — 14x° + 7x°

and
Ky =910 — 11x — 1340x? — 414x> + 752x* + 398x° — 64x° + 1227

Since b3 < 0, gx({2) —3 < 0 is equivalent to

2(1 - x2)k1\/ (by + by)? - 3b1b3 < ~3xx2b3 — 2(1 - x%)k1 (by + by). (15)
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We can see that the right-side of the above equation is positive for all x € [«,1). Thus, by squaring
both sides of (15), we have gx({2) < 0 is equivalent to ¥ > 0, where

¥ = [Bxkobs + 2(1 - x2)k1 (by + b2) 1> = 4(1 - x%) 263 [ (by + bp)* - 3by b3].
By a simple calculation we have
¥ = —27x2(10 - x)3(1 - x)%(1+ x)®A,, (16)
where

Ay = 22528 —90112x — 143980x + 177084x> + 333021x* — 21120x° — 258308x°
~143200x7 + 4528 + 28728x° + 37512x10 + 24288x11 + 9748x12 + 2720413
+968x 14 — 48x1° + 36x1°.

Since Ay < 0 holds for all x € [a,1), from (16), ¥ > 0, this implies

8x(02) <3. (17)

Finally, since
8x(y) < max{gx(-1),8x(1),8x(22)}, ye[-11],
it follows from (13) and (17) that gx(y) <3 < 2v/3 holds for all y € [-1,1]. Thus the proof of Proposition 1
is completed. O

Proposition 2. Let

Q= {(x,y) €[0,1/2) x[0,1):0< x < 1Zy} cR
Define a function F, : () - R by

1-x

P ey

1(x,y), (18)

where Hi(x,y) = 22=0 dy (y)x™ with
d3(y) = (1+y)> (1 -6y +v?), da(y) =17 + 24y + 10y - 3y*,

di(y) =-8-26y—y* +12y° +3y* and do(y) =y(8+y-8y*-1°).
Then F»(x,y) < (2/9)\/3 holds for all (x,y) € Q.

Proof. First of all, we note that F, is well-defined, since 8 + y — x(17 +y) > 0 holds for all (x,y) € Q.
Differentiating F, with respect to x twice gives

1 30°F, 4. "
FBry-x(A7+y) =7 (xy) = > du(y)x”, (19)
n=0
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where

dy(y) = -3(1 -6y + yz)(17+ 18y + y2)2,

d3(y) = —4(884 + 3197y + 4605y* + 2062y° - 302y* - 75y° - 3y°),
dy(y) = 6(1024 + 2344y + 2421y> + 956y° - 202* - 60y° - 3°),
di(y) = -12(8+y)*(4+7y+5y° +y’ - y*),

do(y) = 512 + 1088y + 960y — 176y> — 83y* — 30y° — 31/°.

Fix now y € [0,1) and put yo = y/(1+y) € [0,1/2). Let us define a function g, : [0,y0] - R by
gy(x) = Y% _0dn(y)x". Then we have

gy(x) = —12(1+y)[8+y - x(17+y) Po(x), (20)
where
p(x) = 4+3y+2y2 —y3 +(1+y)(1 —6y+y2)x.
Since ~4 <1 -6y +y? <1, we have

@(x) 24+3y+2y2—y3—4x(1+y) 24—y+2y2—y3 >0, x€[0,y0]

Thus, by (20), we get g, (x) < 0, when x € [0,y0]. So gy is decreasing on the interval [0, yo],
which yields

64(1-y)(8 -7y +2y* + 33y°) N
(1+y)? )
Since 8 + y - x(17 +y) > 0 holds for all (x,y) € Q), by (19), F2(x,-) is convex on [0, o]. This gives

us that

8y(x) 2 gy(vo) = 0, xe[0,yo].

2
RB(xy) smax{R(0,y), B(yo.y)} = R(0.y) =y-y* < 5V3, (vy)eQ,

as we asserted. [

Proposition 3. Define a function F;3 by

91 -x)(1+y)

By = 8-y+x(1+y)

Hy(x,y), (21)

where Hy(x,y) = Zi:o kn(y)x" with

ks(y) = (1+y)%, ka(y) =1+7y+3y* -3¢,
ki(y) =8-2y- 15y2 +3y3 and  ko(y) = —y(8—9y+y2).

Then F3(x,y) < 2+/3 holds for all (x,y) € R.
Proof. First of all, by simple calculations, the equation (9F3/dx)(x,y) = 0 gives us
oH,
(1-x)(8-y+x(1+y))= *(x,y) = 9Ha(x,y)- (22)

Also, the equation (dF3/dy)(x,y) = 0 holds when

Sy By (1 +y>>a;'f<x,y> ~9H, (x,y). (23)
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Assume that the function F; has its critical point at (xp, o) € intR. Since 8 - yo +xo(1 +yo) # 0,
from (22) and (23), we have

oH. oH,
(1=x0) 5% (xoy0) + (1 90) 75 2 (o, 0) =0,
or, equivalently, yo = xo/(1 - xo). However, it holds that

(1= x0) (8o + 30(1+70)) % 2 (x0,30) ~ 9Fha (0, 40) = 64(1 - X0) #0,

since xg € (0,1). This contradicts to (22). Hence F; does not have any critical points in intR. Thus F;
has its maximum on dR.
We now consider F3 on dR.
(a) On the side x = 1, we have F3(1,y) = 0.
(b) On the side y = -1, we have F3(x,-1) = 0.
(c) On the side y = 1, we have
-36x(3-7x +4x)

F(x,1) = 7 9% = ¢(x), xe[0,1]. (24)

Since the inequality 2(7 + 56x — 126x% + 72x*) > 0 holds for all x € [0, 1], it follows that ¢(x) < 2
(x € [0,1]). This inequality with (24) implies F3(x, 1) <2 < 2+/3 holds for x € [0, 1].
(d) On the side x = 0, we have

F3(0,y) = -9y (1-y*) = 9 (v). (25)
And the inequality F3(0,y) < 2v/3 (y € [-1,1]) comes directly from (25) and
P(y) <$(-1/v3) =2V3, ye[-1,1]

From (a)—(d), for all (x,y) € 9R, the inequality F3(x,y) < 2v/3 holds. Thus the proof of Proposition 3
is completed. O

Proposition 4. For F; defined by (12), the inequality
F(xy)>-8
holds for (x,y) € [0,1] x [-1,0].
Proof. Define a function G: [0,1] x[0,1] - R by
G(x,y) = F(x,-y) = by(x)y* +8 = 3(x)y° + L (x)y* + L1 (x)y + [o(x),
where I3(x) = —b3(x), L(x) = ba(x), I1(x) = =b1(x) and [y(x) = bg(x) + 8. Then we have
F(x,y)+82>G(x,-y), (xy)e[0,1]x[-1,0].
We note that, when x =0, G(0,y) = 7_1/2 >0 holds for y € [-1,1]. And, whenx =1, G(1,y) =8 > 0.

Let x € (0,1) be fixed and put I; = [;(x) (i € {0,1,2,3}). Define a function gy : [0,1] - R by
gx(y) = G(x,y). We will show that the inequality gx(y) > 0 holds for all y € [0,1].
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Note that I3 >0 and /; < 0. Let

—Ip + (=1)1\/12 =311
- 2+ ( )l\/z 13/ ie12
3

i
be the roots of the equation
gh(y) =3l3y% + 2Ly +1; = 0.

Then it is easily seen that {; < 0 < {. Moreover {, < 1 holds. Indeed, {, < 1 is equivalent to
Liz+ 3l§ +2ll3 > 0. And a computation gives

I13 + 315 + 2Iol3 = -2x(1 - x)*(1+ x)* (), (26)

where
@(x) = =70 - 73x - 52x° - 34x° — 16x* + 2x°.

Since ¢(x) <0, by (26), we get 113 + 3Z§ +2ll3 > 0and , < 1. Therefore, we have

8x(y) 28x(82), y<[0,1]. (27)
On the other hand, simple calculations give us that
1
8x(%2) = %[(61113 -213)¢2 + (9ol ~ hilp)]

-1
= ﬁ(l -x)(1+ x)3[2(1 - xz)Klgz +xK7],
3
where
K1 = 49 — 126x + 255x% + 472x% + 204x* — 24x° + 16x°

and
Ky = =70 +97x — 1352x2 — 429x3 + 746x* + 401x° - 56x° + 15x”.

Since I3 > 0, gx({2) > 0 holds, if
2(1- xz)Klgz + xx5 < 0. (28)
Moreover (28) is equivalent to ¥ > 0, where
Y = [2(1-x%)K1lp - Bxkal3]? = 4(1 - x%) k3 (13 - 3L 13).

We represent ¥ by
¥ = —27x*(10 - x)2(1 - x)%(1 + x)°A,, (29)

where

Ay =— 17052 + 84812x — 222415x% — 10212x°> + 78990x* — 226456x°
~152793x% + 198120x7 + 169280x% — 11796x” — 33413x'° + 1068x ! (30)
+2790x'% - 1008x 13 + 117x14.

Since Ay < 0 holds for all x € (0,1), from (29), ¥ > 0 is true. We thus have gx(C2) > 0. Finally,
it follows from (27) that ¢x(y) > 0 holds for all y € [0,1]. The proof of Proposition 4 is completed. [
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Proposition 5. For a function Fy defined by
Fs(x,y) = Fu(=x,y), (31)
where F, is defined by (12), we have
Fi(x,y)>-8, (x,y)€[0,1]x[-1/3,1].

Proof. It is easily checked that F4(x,y) > -8 holds for y € [-1/3,1] whenx =0orx =1. Let x € (0,1) be
fixed and put m; = b;(-x) (i € {0,1,2,3,4}). Define a function gy : [-1/3,1] - Rby ¢x(y) = F4(x,y).

First, we will show that gx(y) > -8 holds for y € [-1/3,0]. Since m3 > 0 and m4 > 0, we have
myy* >0 and mzy® > ~m3y?/3 for y € [-1/3,0]. Hence, we obtain

gx(y) +82¢x(-y), ye[-1/3,0], (32)

where ¢y : [0,1/3] - R is the function defined by

1
ox(y) = (—gmg +m2)y2 -my+my+8, ye[0,1/3].
Since my <0 and

1 1
~ 3 = 5(1 - x3)2(21 -4x+14x?) >0, x€(0,1),

we get
1
Py (y) =2 (—gma + mz)y -my >0, ye[0,1/3].
Therefore ¢, is increasing on [0,1/3] and we get

@2 (y) 2 9x(0) = mg+8 = x*(16 - 6x - 8x2 +6x°) >0, y€[0,1/3].

Thus, by (32), gx(y) > -8 holds for y € [-1/3,0].
Next, we will show that gx(y) > -8 holds for y € [0, 1]. For this, define a function ¢, : [0,1] - R by

Pr(y) = () - m4y4 +8= m3y3 + m2y2 +myy +mp +8.

It is sufficient to show that ¢x(y) > 0 holds for y € [0, 1], since

gx(y) +829x(y), ye[01]

—my + (=1)'\/m3 - 3mymg
= , ief1,2
‘ LA ic(1,2)

Let

1

be the roots of the equation
W (y) = 3may® + 2myy + my = 0.

Clearly, {7 < 0. Thus we have
¥x(y) 2 min{gx (1), ¥x(82)}, v [0,1]. (33)

Since
Pr(1) =7 +2x - 19x% —4x% +29x* +2x° - 9x° >0, x¢€(0,1),
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it is enough to show that ¢,({2) > 0 holds. A similar argument with the proof of Proposition 4,
for x € (0,1), Px({2) > 0 holds if A_y < 0, where Ay is the quantity defined by (30). It can be checked
that A, <0 holds for all x € (-1,0). Consequently, x({2) > 0, when x € (0,1), follows. Hence, by (33),
Px(y) > 0 holds for y € [0, 1]. It completes the proof of Proposition 5. []

3. The Proof of Thereom 1

By using all lemmas and propositions in Section 2, we can prove Theorem 1 as follows.

Proof of Theorem 1. Let f € SR™ be of the form (1). Then by (3) there exists a w € By of the form (8)

such that f'( )1 @)
zZ Z +wl(z
f@) 1-w() 9

Substituting the series (1) and (8) into (34), by equating the coefficients we get

18H3,1(f) = 3B1B2 +6B1P3 + 101523 ~ 863 ~ 115153 +9(B2 — 1) Ba. (35)

Since Hz1(f) = Hz1(f), where f(z) = -f(-z) e SR*, we may assume that B € [0,1].
The inequality (5) will be proved case by case as in the following Table 1.

Table 1. An outline of the proof

Cases Conditions Used Results for the Proof
I B1=1 Schwarz’s lemma

II(a) Bo=1-PB2,B1€[0,1) Lemma 1

II(b) Bo=B3-1,B1€[0,1) Lemma 1

M(a) |B2#1- ,B%, B1€[0,1), B2 > ,B% Lemma 2 and 3, Proposition 1 and 2
M) [B2]#1- ,B‘%, B1€[0,1), B2 < ,B% Lemma 2 and 3, Proposition 1 and 3
V@) [Ba| #1-p%,B1€[0,1), B2 >3 Lemma 2 and 3, Proposition 5

IV(b) |Ba| #1-PB3, B1€[0,1), B2 <B7 Lemma 2 and 3, Proposition 4 and 5

I. When B; = 1, then by Schwarz’s lemma, 8, = 0 for all n > 2. Thus, by (35), H3 1(f) = 0.
II. When w € By be such that [8,| = 1 - 85 and B € [0,1). Let p = (1 +w)/(1 - w) € P be of the form
(6). From the relations
c1 =281 and ¢ =2(B3+B2),

it follows from that ¢ € [0,2) and 2¢; = C% +(4- c%)@, where { =+1€T.
II(a) Assume that ¢ = 1. Then, by Lemma 1, p = p1, where

1427z + Z2

12 :1+2‘L'Z+222+2TZ3+~~~, zeD
-z

p1(z) =
with 7€[0,1). And, from p = (1 +w)/(1 - w), we have
B1=T1, [32:1—T2, [33:—T+T3 and ,84:1'2—1'4. (36)
Substituting (36) into (35), we get

Hs1(f) = -512(5-71%274) = g(7?), (37)

where )
g(x) = —§x(1 -x)(5-2x).
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It can be easily checked that g(x) < g(0) =0, for x € [0,1). Moreover, since g'(x) = 0 occurs only
when x = x; = (7-/19)/6 = 0.440184--- € [0,1) and "' (x1) = 4v/19/9 > 0, it holds that

1

4
15 (28- 19V19) > -5 xel0D).

8(x) 2 g(x1) =

So, from (37), the inequality (5) holds.
II(b) Now assume that { = —1. Then, by Lemma 1 again, we get p = pp, where

(z)—i
Patz) = 1-27z+ 22

= 14272+ (-2+47%)2% + (6T +87°)22 + (2-16T% +16T%)z* +--, zeD
with 7 €[0,1). Thus, we have
B1=1, [32:72—1, ﬁ3:T3—T and /34:T4—T2. (38)

Substituting (38) into (35), we get H3 1 (f) = 0 and the inequality (5) holds.

IIL Let now |By| # 1 - B3 and 1 # 1.

At first, we will show that the second inequality in (5) holds. Since B1, B2 and B3 are real,
by Lemma 2 fors € [0,1] and ¢, u € [-1,1] we have

Bi=s, Pa=(1-s)t, Ba=(1-5")(u(1-F)-st?). (39)
Substituting (39) into (10) and (11), we have
Y= (1-s2)[1-u?—u(u+2s)t— (1-u?) + (u+s)t] (40)

and
Y= (1-52)[-1+u? —u(u+2s)t+ (1-u?)t? + (u+5)*]. (41)

We also have (s,t) ¢ C, where C is a curve defined by
C={(s,t)eR:s=1 or t==x1} coR.

ITI(a) Consider the case B, > [3%, ie., (s,t) € 1, where () is the set defined by

2
0O = {(s,t) €[0,1/v/2) x[0,1) : 1 ° 2 <t< 1}
so that (3 n C = @. In this case, by (40), we have

18Hs,1(f) < 31B2 + 6B1P3 + 10123 ~ 83 ~ 115153 + 9(B2 - 1) ¥u

=-(1 —52)(1 +8H)D(s,t,u), (s,t,u)eqx[-1,1], *2)

where
D(s, t,u) = Dy + Dyu + Dyu® (43)

with
Dy = D (s,t) = -9(1 - )t —s (3 +2t - 12) +s2(9+ 21> - 1),
D1 = Dy (s,t) = =25(1 - )[(5- 1)t + s> (3 + 4t +17)],
Dy = Dy(s, t) = (1-13)[8+t-s*(17+1)].
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We note that ®, > 0, since

8(1-1)

8+t-s(17+1) >
+t-5°(17+1¢) 2 1+

>0, (s,t)e0)y.

Let u; = —-®1/(2®,) be the root of the equation (0®/du)(s,t,u) = 0. Then it can be seen that
u1 > 1. Indeed, we note that 2®, - ®; = 2(1-1)Y(s,t), where Y(s,t) = Ay(s)t> + A1 (s)t + Ag(s), where

Aa(s) = (1-5)2(1+s), A1(s) =9+55—18s> +4s°

and
Ao(s) = 8175 +3s°.
Since A;(s) > 0 when s € [0,1/+/2) fori € {1,2}, we have

~ 8(1+s-5%)
- 1+s

$2
Y(s,t)zY(s,l_Sz) >0, (s,t)e()y.

Hence, we get 2, — 7 > 0 and it follows from ®, > 0 that uq > -1.
(i) Assume that ©7 > 1. Then we have

O(s, t,u) >P(s,1,1) =Py + D1+ Dy,  (s,t,u) e x[-1,1].
Therefore, by (42), it holds that
18H31(f) < —(1-82)(1+t)(Pg + Dy +Dy) = Fi(s5,1), (s5,1) € Oy, (44)

where F; is the function defined by (12). From Proposition 1 and (44), we thus have H3;(f) < V3/9.
(ii) Assume that -1 < uq < 1. Then we have

2
O(s,t,u) > P(s,t,u1) =Py — ——, (s,t,u) e x[-1,1].
4P,
Therefore, by (42), it holds that
q)Z
18H31(f) <-(1- sz)(l +1) (CDO - éM;) = 9F2(sz,t), (s, 1) € (),
2

where F, is the function defined by (18). Therefore, by Proposition 2, Hz 1 (f) < v/3/9 holds.
ITI(b) Consider the case B, < ,B%, ie., (s,t) € Oy, where (); is the set defined by (), = cI(R~ (1)~ C.
Then, from (41), we have

18H31(f) < 3B1B2 + 681 B3 + 101 2B — 883 - 11BB5 +9(B2 - P ¥

=-(1 —sz)(l + t)CTD(s, tu), (s,tu)eQyx[-1,1], )

where
<T>(s,t,u) :<T>0+d31u+<i>2u2 (46)

with

Do (s,t) = 9(1 - 1)t —s*H(3+ 2t — 12) = s2(9 - 208> + 13),
by (s,t) = -25(1 - H)[(5- 1)t +52(3+4t +12)],

by = Dy(s,t) = (1-1)2[8—t+s*(1+1)].

@

H»eo
I
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Using the inequality s> > t/(1+t), we have ®; > 8(1-1)? > 0 for (s,t) € (. Let up = ~d;/(2d,)
be the root of the equation (0d/du)(s,t,u) = 0. Then, by a similar procedure with Part ITI(a), it can be
seen that up > 1.

(i) Assume that up > 1. Then we have

b(s, t,u) > B(s,t,1) =Dy + Dy + Dy,  (s,t,u) € Oy x [-1,1].
Therefore, by (45), it holds that
18H31(f) < —(1-82)(1+t)(dg + By +Dy) = Fi(s,1), (s,1) e Oy,

where Fj is the function defined by (12). Thus, by Proposition 1, Hz 1 (f) < /3/9 holds.
(ii) Assume that -1 < up < 1. Then we have
. R >
&(s,t,u) > D(s,t,up) = Pg— —=, (s,t,u) e x[-1,1].
40,
Therefore, by (45), it holds that

18H31(f) < —(1-5%)(1+t) (ci>0 - f;i) = F3(s%, 1), (s,t) ey,

where F; is the function defined by (21). Therefore, by Proposition 3, we obtain Hz1(f) < v/3/9.
Next, we will show that the first inequality in (5) holds.
IV(a) Consider the case B, > 3. Then we have

18H31(f) > —(1-52)(1+£)d(s, t,u), (s,t,u) e Qg x[-1,1], (47)
where & is the function defined by (46). Since &, <0and &, > 0, it holds that
&(s, t,u) < max{d(s, t,-1),d(s,t,1)}
=d(s,t,-1) =Dy - D1 + Dy, (s,t,u) e Oy x[-1,1].
Hence, from (47), we obtain
Hz1(f) 2 ~(1-*)(1+ 1) (Dy - Dy + D) = Fy(s, 1), (s,t) €y, (48)

where F; is the function defined by (31). Thus, by Proposition 5 and (48), we get H 1 (f) > —4/9.
IV(b) We consider the case 8, < 8. Then we have

18H31(f) > —(1-5*)(1+£)®(s, t,u), (s,t,u) e Qx[-1,1],

where @ is the function defined by (43).

For t € [-1/3,0], let
25t
244143
so that 0 =sp < st <s_j/3 =1 holds for t € [-1/3,0]. And let

St

Q3 ={(s,t) eMp:s<s} and Qg ={(s,f) € Dp:5>5:}.

We note that Q3 c [0,1] x[-1,0] and Q4 c [0,1] x[-1/3,1]. Then ®; > 0 when (s,f) € Q3,
and ®; < 0 when (s,t) € Q.
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(i) For the case (s,t) € )3, since &1 > 0 and P, > 0, we have
D(s,t,u) <P(s,t,1) =Dy + D1+ Dy, (s,t,u) e Q3x[-1,1]
and, therefore, we get
18H31(f) > ~(1-8*)(1+t)(Dy + D1 + @) = Fi(5,1), (s,t) € O,

where F; is the function defined by (12). Since Q)3 c [0,1] x [-1,0], Proposition 4 gives us that
H31(f) > —4/9 holds.
(ii) For the case (s,t) € )y, we have

18H31(f) 2> —(1-8%)(1+)(Dy - Dy + Do) = Ey(s,1), (5,1) € Qy,

where F; is the funciton defined by (31). Since ()4 c [0,1] x [-1/3,1], Proposition 5 gives us that
H31(f) > -4/9 holds. Thus the proof of Theorem 1 is now completed. O

4. Conclusions

In the present paper, we obtained that the sharp inequalities ~4/9 < Hz 1(f) < v/3/9 hold for f in
the class SR*, i.e., starlike functions with real coefficients. Therefore, it follows that |H3 1 (f)| < 4/9 holds
for f € SR* and this inequality is sharp with the extremal function f; e SR*, where f;(z) = z(1-23)72/3,
So it can be naturally expected that the sharp inequality |H3 1 (f)| < 4/9 would hold for all f € S*.
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