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Abstract: Let SR∗ be the class of starlike functions with real coefficients, i.e., the class of analytic
functions f which satisfy the condition f (0) = 0 = f ′(0)− 1, Re{z f ′(z)/ f (z)} > 0, for z ∈ D ∶= {z ∈ C ∶

∣z∣ < 1} and an ∶= f (n)(0)/n! is real for all n ∈ N. In the present paper, it is obtained that the sharp
inequalities −4/9 ≤ H3,1( f ) ≤

√
3/9 hold for f ∈ SR∗, where H3,1( f ) is the third Hankel determinant

of order 3 defined by H3,1( f ) = a3(a2a4 − a2
3)− a4(a4 − a2a3)+ a5(a3 − a2

2).
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1. Introduction

LetH be the class of analytic functions in D ∶= {z ∈ C ∶ ∣z∣ < 1} and let A be the class of functions
f ∈H normalized by f (0) = 0 = f ′(0)− 1. That is, for z ∈ D, f ∈ A has the following representation

f (z) = z +
∞

∑
n=2

anzn. (1)

For q, n ∈ N, the Hankel determinant Hq,n( f ) of functions f ∈ A of the form (1) are defined by

Hq,n( f ) =

RRRRRRRRRRRRRRRRRRRR

an an+1 . . . an+q−1

an+1 an+2 . . . an+q

⋮ ⋮ ⋮ ⋮

an+q−1 an+q . . . an+2q−2

RRRRRRRRRRRRRRRRRRRR

. (2)

Computing the upper bound of Hq,n over subfamilies of A is an interesting problem to study.
Note that H2,1( f ) = a3 − a2

2 is the well-known functional which, for the class of univalent functions,
was estimated by Bieberbach (see, e.g., [1] (Vol. I, p. 35)). Especially, the functional H3,1( f ), Hankel
determinant of order 3, is presented by

H3,1( f ) =

RRRRRRRRRRRRRRR

a1 a2 a3

a2 a3 a4

a3 a4 a5

RRRRRRRRRRRRRRR

= a3(a2a4 − a2
3)− a4(a4 − a2a3)+ a5(a3 − a2

2).

Let S∗ be the class of starlike functions in A. That is, the class S∗ consists of all functions
f ∈ A satisfying

Re{
z f ′(z)

f (z)
} > 0, z ∈ D. (3)
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The leading example of a function of class S∗ is the Koebe function k, defined by

k(z) = z(1− z)−2
= z + 2z2

+ 3z3
+⋯, z ∈ D.

In [2], Janteng et al. obtained the sharp inequality ∣H2,2( f )∣ ≤ 1 = ∣H2,2(k)∣ for f ∈ S∗. For the
estimates on the Hankel determinant H3,1( f ) over the class S∗, Babalola [3] obtained the inequality
∣H3,1( f )∣ ≤ 16. And Zaprawa [4] improved the result by proving ∣H3,1( f )∣ ≤ 1. Next, Kwon et al. [5],
recently found the inequality ∣H3,1( f )∣ ≤ 8/9 and we conjectured that

∣H3,1( f )∣ ≤ 4/9, f ∈ S∗. (4)

The sharp bound of ∣H3,1( f )∣ over the class S∗ is still open.
Let SR∗ be the class of starlike functions in Awith real coefficients. Hence, if f ∈ A belongs to the

class SR∗, then f has the form given by (1) with an ∈ R, n ∈ N∖ {1} and satisfies the condition (3).
In this paper, we will prove the following.

Theorem 1. If f ∈ SR∗ is the form (1), then the following inequalities hold:

−
4
9
≤ H3,1( f ) ≤

1
9

√
3. (5)

The first inequality is sharp for the function f = f1 ∈ SR
∗, where

f1(z) ∶= z(1− z3
)
−2/3

= z +
2
3

z4
+

5
9

z7
+⋯, z ∈ D.

The second inequality is sharp for the function f = f2 ∈ SR
∗, where

f2(z) ∶= z exp(−∫

z

0

(2/
√

3)ζ + 2ζ3

1+ (2/
√

3)ζ2 + ζ4
dζ)

= z −
z3
√

3
+

2z7

3
√

3
−

7z9

18
+⋯, z ∈ D.

2. Preliminary Results

Let P be the class of functions p ∈H of the form

p(z) = 1+
∞

∑
n=1

cnzn, z ∈ D, (6)

having a positive real part in D, i.e., the Carathéodory class of functions. It is well known,
e.g., [6] (p. 166), that for p ∈ P with the form given by (6),

2c2 = c2
1 + (4− c2

1)ζ, (7)

for some ζ ∈ D. Moreover, the following lemma will be used for our investigation.

Lemma 1 ([7]). The formula (7) with c1 ∈ [0, 2) and ζ ∈ T holds only for the function p ∈ P defined by

p(z) =
1+ τ(1+ ζ)z + ζz2

1− τ(1− ζ)z − ζz2 , z ∈ D,

where τ ∈ [0, 1).
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Let B0 be the subclass ofH of all self-mappings ω of D of the form

ω(z) =
∞

∑
n=1

βnzn, z ∈ D, (8)

i.e., the class of Schwarz functions. It is well known that ω ∈ B0 if and only if p = (1+ω)/(1−ω) ∈ P .
For coefficients of functions in B0, the following properties, which can be found in [1] (Vol. I, pp. 84–85
and Vol. II, p. 78) and [8] (p. 128), will be used for our proof.

Lemma 2. If ω ∈ B0 is of the form given by (8), then

(1) ∣β1∣ ≤ 1,
(2) ∣β2∣ ≤ 1− ∣β1∣

2,
(3) ∣β3(1− ∣β1∣

2)+ β1β2
2∣ ≤ (1− ∣β1∣

2)2 − ∣β2∣
2.

The following inequalities, which will be used, hold for the fourth coefficients for Schwarz
functions with real coefficients.

Lemma 3 ([9]). If ω ∈ B0 is the form (8), βn ∈ R, n ∈ N, and β2
2 /= (1− β2

1)
2, then

ΨL ≤ β4 ≤ ΨU , (9)

where

ΨL ∶=
1+ β4

1 + β2 − β2
2 − β3

2 − 2β2
1 − β2

1β2 + 2β1β2β3 − β2
3

−1+ β2
1 − β2

(10)

and

ΨU ∶=
1+ β4

1 − β2 − β2
2 + β3

2 − 2β2
1 + β2

1β2 − 2β1β2β3 − β2
3

1− β2
1 − β2

. (11)

For given a set A, let intA, clA and ∂A be the sets of interior, closure and boundary, respectively,
points of A. And let R = [0, 1]× [−1, 1] be a rectangle in R2. From now, we obtain several inequalities
for functions, defined in subsets of R, which will be used in the proof of Theorem 1.

Proposition 1. Define a function F1 by

F1(x, y) =
4
∑
n=0

bn(x)yn, (12)

where

b4(x) = (1− x)2
(1+ x)4,

b3(x) = −x(1+ x)3
(10− 11x + x2

),

b2(x) = (1+ x)2
(7− 16x + 14x3

− 5x4
),

b1(x) = x(10+ 9x − 2x2
− 6x3

− 8x4
− 3x5

),

b0(x) = −8+ 16x2
+ 6x3

− 8x4
− 6x5.

Then F1(x, y) < 2
√

3 holds for all (x, y) ∈ R.

Proof. Let (x, y) ∈ R. Since b4(x) ≥ 0, we have b4(x)y4 ≤ b4(x)y2 and

F1(x, y) ≤ G(x, y), (x, y) ∈ R,
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where
G(x, y) = b3(x)y3

+ (b4(x)+ b2(x))y2
+ b1(x)y + b0(x).

We will show that G(x, y) < 2
√

3 holds for (x, y) ∈ R.
When x = 0, we have G(0, y) = −8(1− y2) ≤ 0, for y ∈ [−1, 1]. And, when x = 1, we have G(1, y) ≡ 0.
Now, let x ∈ (0, 1) be fixed and put bi = bi(x) (i ∈ {0, 1, 2, 3, 4}). Then b3 < 0. Define a function gx

by gx(y) = G(x, y). Note that

gx(−1) = 0 and gx(1) = 4x2
(1− x2

)(5− 2x2
) ≤ 0. (13)

Also,
g′x(y) = 3b3y2

+ 2(b4 + b2)y + b1 = 0 (14)

occurs at y = ζ1 or ζ2, where

ζi =
−(b4 + b2)+ (−1)i+1

√
(b4 + b2)2 − 3b1b3

3b3
, i ∈ {1, 2}.

It is trivial that ζ1 < 0 < ζ2. Furthermore, since b3 < 0, gx has the local minimum at y = ζ1.
Let α = 0.322818⋯ be a zero of polynomial q, where

q(y) = 8− 10y − 42y2
− 14y3

+ 7y4.

Note that ζ2 ≥ 1 holds for x satisfying

2(1− x2
)q(x) = b1 + 2(b4 + b2)+ 3b3 ≥ 0.

Hence we obtain
⎧⎪⎪
⎨
⎪⎪⎩

ζ2 ≥ 1, when x ∈ (0, α],

ζ2 ≤ 1, when x ∈ [α, 1).

(a) When x ∈ (0, α], since ζ2 ≥ 1, gx is convex in [−1, 1]. So, it holds that

gx(y) ≤ max{gx(−1), gx(1)}, y ∈ [−1, 1].

Hence, by (13), we get gx(y) ≤ 0 < 2
√

3 for y ∈ [−1, 1].
(b) When x ∈ [α, 1), gx has its local maximum gx(ζ2). Using the fact that ζ2 is a solution of the

equation given by (14) leads us to

gx(ζ2) = (
2
3

b1 −
2(b2 + b4)

2

9b3
) ζ2 + (b0 −

b1(b2 + b4)

9b3
) .

We claim that gx(ζ2)− 3 < 0 holds for all x ∈ [α, 1). A compuation gives

gx(ζ2)− 3 =
1

9b3
(1− x)(1+ x)3

[−2(1− x)(1+ x)κ1ζ2 + xκ2],

where
κ1 = 64− 128x + 204x2

+ 464x3
+ 249x4

− 14x5
+ 7x6

and
κ2 = 910− 11x − 1340x2

− 414x3
+ 752x4

+ 398x5
− 64x6

+ 12x7.

Since b3 < 0, gx(ζ2)− 3 < 0 is equivalent to

2(1− x2
)κ1

√

(b4 + b2)2 − 3b1b3 < −3xκ2b3 − 2(1− x2
)κ1(b4 + b2). (15)
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We can see that the right-side of the above equation is positive for all x ∈ [α, 1). Thus, by squaring
both sides of (15), we have gx(ζ2) < 0 is equivalent to Ψ > 0, where

Ψ = [3xκ2b3 + 2(1− x2
)κ1(b4 + b2)]

2
− 4(1− x2

)
2κ2

1[(b4 + b2)
2
− 3b1b3].

By a simple calculation we have

Ψ = −27x2
(10− x)2

(1− x)2
(1+ x)6Λx, (16)

where

Λx ∶= 22528− 90112x − 143980x2
+ 177084x3

+ 333021x4
− 21120x5

− 258308x6

− 143200x7
+ 452x8

+ 28728x9
+ 37512x10

+ 24288x11
+ 9748x12

+ 2720x13

+ 968x14
− 48x15

+ 36x16.

Since Λx < 0 holds for all x ∈ [α, 1), from (16), Ψ > 0, this implies

gx(ζ2) < 3. (17)

Finally, since
gx(y) ≤ max{gx(−1), gx(1), gx(ζ2)}, y ∈ [−1, 1],

it follows from (13) and (17) that gx(y) < 3 < 2
√

3 holds for all y ∈ [−1, 1]. Thus the proof of Proposition 1
is completed.

Proposition 2. Let

Ω = {(x, y) ∈ [0, 1/2)× [0, 1) ∶ 0 ≤ x ≤
y

1+ y
} ⊂ R.

Define a function F2 ∶ Ω → R by

F2(x, y) =
1− x

8+ y − x(17+ y)
H1(x, y), (18)

where H1(x, y) = ∑3
n=0 dn(y)xn with

d3(y) = (1+ y)2
(1− 6y + y2

), d2(y) = 17+ 24y + 10y2
− 3y4,

d1(y) = −8− 26y − y2
+ 12y3

+ 3y4 and d0(y) = y(8+ y − 8y2
− y3

).

Then F2(x, y) ≤ (2/9)
√

3 holds for all (x, y) ∈ Ω.

Proof. First of all, we note that F2 is well-defined, since 8+ y − x(17+ y) > 0 holds for all (x, y) ∈ Ω.
Differentiating F2 with respect to x twice gives

1
2
[8+ y − x(17+ y)]3 ∂2F2

∂x2 (x, y) =
4
∑
n=0

d̃n(y)xn, (19)
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where

d̃4(y) = −3(1− 6y + y2
)(17+ 18y + y2

)
2,

d̃3(y) = −4(884+ 3197y + 4605y2
+ 2062y3

− 302y4
− 75y5

− 3y6
),

d̃2(y) = 6(1024+ 2344y + 2421y2
+ 956y3

− 202y4
− 60y5

− 3y6
),

d̃1(y) = −12(8+ y)2
(4+ 7y + 5y2

+ y3
− y4

),

d̃0(y) = 512+ 1088y + 960y2
− 176y3

− 83y4
− 30y5

− 3y6.

Fix now y ∈ [0, 1) and put y0 = y/(1 + y) ∈ [0, 1/2). Let us define a function gy ∶ [0, y0] → R by
gy(x) = ∑4

n=0 d̃n(y)xn. Then we have

g′y(x) = −12(1+ y)[8+ y − x(17+ y)]2 ϕ(x), (20)

where
ϕ(x) = 4+ 3y + 2y2

− y3
+ (1+ y)(1− 6y + y2

)x.

Since −4 ≤ 1− 6y + y2 ≤ 1, we have

ϕ(x) ≥ 4+ 3y + 2y2
− y3

− 4x(1+ y) ≥ 4− y + 2y2
− y3

> 0, x ∈ [0, y0].

Thus, by (20), we get g′y(x) < 0, when x ∈ [0, y0]. So gy is decreasing on the interval [0, y0],
which yields

gy(x) ≥ gy(y0) =
64(1− y)(8− 7y + 2y2 + 33y3)

(1+ y)2 ≥ 0, x ∈ [0, y0].

Since 8+ y − x(17+ y) > 0 holds for all (x, y) ∈ Ω, by (19), F2(x, ⋅) is convex on [0, y0]. This gives
us that

F2(x, y) ≤ max{F2(0, y), F2(y0, y)} = F2(0, y) = y − y3
≤

2
9

√
3, (x, y) ∈ Ω,

as we asserted.

Proposition 3. Define a function F3 by

F3(x, y) =
9(1− x)(1+ y)
8− y + x(1+ y)

H2(x, y), (21)

where H2(x, y) = ∑3
n=0 kn(y)xn with

k3(y) = (1+ y)3, k2(y) = 1+ 7y + 3y2
− 3y3,

k1(y) = 8− 2y − 15y2
+ 3y3 and k0(y) = −y(8− 9y + y2

).

Then F3(x, y) ≤ 2
√

3 holds for all (x, y) ∈ R.

Proof. First of all, by simple calculations, the equation (∂F3/∂x)(x, y) = 0 gives us

(1− x)(8− y + x(1+ y))
∂H2

∂x
(x, y) = 9H2(x, y). (22)

Also, the equation (∂F3/∂y)(x, y) = 0 holds when

− (1+ y)(8− y + x(1+ y))
∂H2

∂y
(x, y) = 9H2(x, y). (23)



Mathematics 2019, 7, 721 7 of 14

Assume that the function F3 has its critical point at (x0, y0) ∈ intR. Since 8 − y0 + x0(1 + y0) /= 0,
from (22) and (23), we have

(1− x0)
∂H2

∂x
(x0, y0)+ (1+ y0)

∂H2

∂y
(x0, y0) = 0,

or, equivalently, y0 = x0/(1− x0). However, it holds that

(1− x0)(8− y0 + x0(1+ y0))
∂H2

∂x
(x0, y0)− 9H2(x0, y0) = 64(1− x0) /= 0,

since x0 ∈ (0, 1). This contradicts to (22). Hence F3 does not have any critical points in intR. Thus F3

has its maximum on ∂R.
We now consider F3 on ∂R.
(a) On the side x = 1, we have F3(1, y) ≡ 0.
(b) On the side y = −1, we have F3(x,−1) ≡ 0.
(c) On the side y = 1, we have

F3(x, 1) =
−36x(3− 7x + 4x3)

7+ 2x
=∶ ϕ(x), x ∈ [0, 1]. (24)

Since the inequality 2(7 + 56x − 126x2 + 72x4) > 0 holds for all x ∈ [0, 1], it follows that ϕ(x) < 2
(x ∈ [0, 1]). This inequality with (24) implies F3(x, 1) < 2 < 2

√
3 holds for x ∈ [0, 1].

(d) On the side x = 0, we have

F3(0, y) = −9y(1− y2
) =∶ ψ(y). (25)

And the inequality F3(0, y) ≤ 2
√

3 (y ∈ [−1, 1]) comes directly from (25) and

ψ(y) ≤ ψ(−1/
√

3) = 2
√

3, y ∈ [−1, 1].

From (a)–(d), for all (x, y) ∈ ∂R, the inequality F3(x, y) ≤ 2
√

3 holds. Thus the proof of Proposition 3
is completed.

Proposition 4. For F1 defined by (12), the inequality

F1(x, y) ≥ −8

holds for (x, y) ∈ [0, 1]× [−1, 0].

Proof. Define a function G ∶ [0, 1]× [0, 1]→ R by

G(x, y) = F(x,−y)− b4(x)y4
+ 8 = l3(x)y3

+ l2(x)y2
+ l1(x)y + l0(x),

where l3(x) = −b3(x), l2(x) = b2(x), l1(x) = −b1(x) and l0(x) = b0(x)+ 8. Then we have

F(x, y)+ 8 ≥ G(x,−y), (x, y) ∈ [0, 1]× [−1, 0].

We note that, when x = 0, G(0, y) = 7y2 ≥ 0 holds for y ∈ [−1, 1]. And, when x = 1, G(1, y) ≡ 8 > 0.
Let x ∈ (0, 1) be fixed and put li = li(x) (i ∈ {0, 1, 2, 3}). Define a function gx ∶ [0, 1] → R by

gx(y) = G(x, y). We will show that the inequality gx(y) ≥ 0 holds for all y ∈ [0, 1].
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Note that l3 > 0 and l1 < 0. Let

ζi =
−l2 + (−1)i

√
l2
2 − 3l1l3

l3
, i = 1, 2

be the roots of the equation
g′x(y) = 3l3y2

+ 2l2y + l1 = 0.

Then it is easily seen that ζ1 < 0 < ζ2. Moreover ζ2 < 1 holds. Indeed, ζ2 < 1 is equivalent to
l1l3 + 3l2

3 + 2l2l3 > 0. And a computation gives

l1l3 + 3l2
3 + 2l2l3 = −2x(1− x)2

(1+ x)4 ϕ(x), (26)

where
ϕ(x) = −70− 73x − 52x2

− 34x3
− 16x4

+ 2x5.

Since ϕ(x) < 0, by (26), we get l1l3 + 3l2
3 + 2l2l3 > 0 and ζ2 < 1. Therefore, we have

gx(y) ≥ gx(ζ2), y ∈ [0, 1]. (27)

On the other hand, simple calculations give us that

gx(ζ2) =
1

9l3
[(6l1l3 − 2l2

2)ζ2 + (9l0l3 − l1l2)]

=
−1
9l3

(1− x)(1+ x)3
[2(1− x2

)κ1ζ2 + xκ2],

where
κ1 = 49− 126x + 255x2

+ 472x3
+ 204x4

− 24x5
+ 16x6

and
κ2 = −70+ 97x − 1352x2

− 429x3
+ 746x4

+ 401x5
− 56x6

+ 15x7.

Since l3 > 0, gx(ζ2) ≥ 0 holds, if

2(1− x2
)κ1ζ2 + xκ2 ≤ 0. (28)

Moreover (28) is equivalent to Ψ ≥ 0, where

Ψ = [2(1− x2
)κ1l2 − 3xκ2l3]2

− 4(1− x2
)

2κ2
1(l2

2 − 3l1l3).

We represent Ψ by
Ψ = −27x4

(10− x)2
(1− x)2

(1+ x)6Λ̃x, (29)

where

Λ̃x =− 17052+ 84812x − 222415x2
− 10212x3

+ 78990x4
− 226456x5

− 152793x6
+ 198120x7

+ 169280x8
− 11796x9

− 33413x10
+ 1068x11

+ 2790x12
− 1008x13

+ 117x14.

(30)

Since Λ̃x < 0 holds for all x ∈ (0, 1), from (29), Ψ ≥ 0 is true. We thus have gx(ζ2) ≥ 0. Finally,
it follows from (27) that gx(y) ≥ 0 holds for all y ∈ [0, 1]. The proof of Proposition 4 is completed.
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Proposition 5. For a function F4 defined by

F4(x, y) = F1(−x, y), (31)

where F1 is defined by (12), we have

F4(x, y) ≥ −8, (x, y) ∈ [0, 1]× [−1/3, 1].

Proof. It is easily checked that F4(x, y) ≥ −8 holds for y ∈ [−1/3, 1] when x = 0 or x = 1. Let x ∈ (0, 1) be
fixed and put mi = bi(−x) (i ∈ {0, 1, 2, 3, 4}). Define a function gx ∶ [−1/3, 1]→ R by gx(y) = F4(x, y).

First, we will show that gx(y) ≥ −8 holds for y ∈ [−1/3, 0]. Since m3 > 0 and m4 > 0, we have
m4y4 ≥ 0 and m3y3 ≥ −m3y2/3 for y ∈ [−1/3, 0]. Hence, we obtain

gx(y)+ 8 ≥ ϕx(−y), y ∈ [−1/3, 0], (32)

where ϕx ∶ [0, 1/3]→ R is the function defined by

ϕx(y) = (−
1
3

m3 +m2) y2
−m1y +m0 + 8, y ∈ [0, 1/3].

Since m1 < 0 and

−
1
3

m3 +m2 =
1
3
(1− x2

)
2
(21− 4x + 14x2

) > 0, x ∈ (0, 1),

we get

ϕ′x(y) = 2(−
1
3

m3 +m2) y −m1 > 0, y ∈ [0, 1/3].

Therefore ϕx is increasing on [0, 1/3] and we get

ϕx(y) ≥ ϕx(0) = m0 + 8 = x2
(16− 6x − 8x2

+ 6x3
) ≥ 0, y ∈ [0, 1/3].

Thus, by (32), gx(y) ≥ −8 holds for y ∈ [−1/3, 0].
Next, we will show that gx(y) ≥ −8 holds for y ∈ [0, 1]. For this, define a function ψx ∶ [0, 1]→ R by

ψx(y) = gx(y)−m4y4
+ 8 = m3y3

+m2y2
+m1y +m0 + 8.

It is sufficient to show that ψx(y) ≥ 0 holds for y ∈ [0, 1], since

gx(y)+ 8 ≥ ψx(y), y ∈ [0, 1].

Let

ζi =
−m2 + (−1)i

√
m2

2 − 3m1m3

3m3
, i ∈ {1, 2}

be the roots of the equation
ψ′x(y) = 3m3y2

+ 2m2y +m1 = 0.

Clearly, ζ1 < 0. Thus we have

ψx(y) ≥ min{ψx(1), ψx(ζ2)}, y ∈ [0, 1]. (33)

Since
ψx(1) = 7+ 2x − 19x2

− 4x3
+ 29x4

+ 2x5
− 9x6

> 0, x ∈ (0, 1),
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it is enough to show that ψx(ζ2) ≥ 0 holds. A similar argument with the proof of Proposition 4,
for x ∈ (0, 1), ψx(ζ2) ≥ 0 holds if Λ̃−x < 0, where Λ̃x is the quantity defined by (30). It can be checked
that Λ̃x < 0 holds for all x ∈ (−1, 0). Consequently, ψx(ζ2) ≥ 0, when x ∈ (0, 1), follows. Hence, by (33),
ψx(y) ≥ 0 holds for y ∈ [0, 1]. It completes the proof of Proposition 5.

3. The Proof of Thereom 1

By using all lemmas and propositions in Section 2, we can prove Theorem 1 as follows.

Proof of Theorem 1. Let f ∈ SR∗ be of the form (1). Then by (3) there exists a ω ∈ B0 of the form (8)
such that

z f ′(z)
f (z)

=
1+ω(z)
1−ω(z)

. (34)

Substituting the series (1) and (8) into (34), by equating the coefficients we get

18H3,1( f ) = 3β4
1β2 + 6β3

1β3 + 10β1β2β3 − 8β2
3 − 11β2

1β2
2 + 9(β2 − β2

1)β4. (35)

Since H3,1( f ) = H3,1( f̃ ), where f̃ (z) = − f (−z) ∈ SR∗, we may assume that β1 ∈ [0, 1].
The inequality (5) will be proved case by case as in the following Table 1.

Table 1. An outline of the proof

Cases Conditions Used Results for the Proof

I β1 = 1 Schwarz’s lemma
II(a) β2 = 1− β2

1, β1 ∈ [0, 1) Lemma 1
II(b) β2 = β2

1 − 1, β1 ∈ [0, 1) Lemma 1
III(a) ∣β2∣ /= 1− β2

1, β1 ∈ [0, 1), β2 ≥ β2
1 Lemma 2 and 3, Proposition 1 and 2

III(b) ∣β2∣ /= 1− β2
1, β1 ∈ [0, 1), β2 ≤ β2

1 Lemma 2 and 3, Proposition 1 and 3
IV(a) ∣β2∣ /= 1− β2

1, β1 ∈ [0, 1), β2 ≥ β2
1 Lemma 2 and 3, Proposition 5

IV(b) ∣β2∣ /= 1− β2
1, β1 ∈ [0, 1), β2 ≤ β2

1 Lemma 2 and 3, Proposition 4 and 5

I. When β1 = 1, then by Schwarz’s lemma, βn = 0 for all n ≥ 2. Thus, by (35), H3,1( f ) = 0.
II. When ω ∈ B0 be such that ∣β2∣ = 1− β2

1 and β1 ∈ [0, 1). Let p = (1+ω)/(1−ω) ∈ P be of the form
(6). From the relations

c1 = 2β1 and c2 = 2(β2
1 + β2),

it follows from that c1 ∈ [0, 2) and 2c2 = c2
1 + (4− c2

1)ζ, where ζ = ±1 ∈ T.
II(a) Assume that ζ = 1. Then, by Lemma 1, p = p1, where

p1(z) =
1+ 2τz + z2

1− z2 = 1+ 2τz + 2z2
+ 2τz3

+⋯, z ∈ D

with τ ∈ [0, 1). And, from p = (1+ω)/(1−ω), we have

β1 = τ, β2 = 1− τ2, β3 = −τ + τ3 and β4 = τ2
− τ4. (36)

Substituting (36) into (35), we get

H3,1( f ) = −
2
9

τ2
(5− 7τ2

+ 2τ4
) =∶ g(τ2

), (37)

where
g(x) = −

2
9

x(1− x)(5− 2x).
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It can be easily checked that g(x) ≤ g(0) = 0, for x ∈ [0, 1). Moreover, since g′(x) = 0 occurs only
when x = x1 ∶= (7−

√
19)/6 = 0.440184⋯ ∈ [0, 1) and g′′(x1) = 4

√
19/9 > 0, it holds that

g(x) ≥ g(x1) =
1

243
(28− 19

√
19) ≥ −

4
9

, x ∈ [0, 1).

So, from (37), the inequality (5) holds.
II(b) Now assume that ζ = −1. Then, by Lemma 1 again, we get p = p2, where

p2(z) =
1− z2

1− 2τz + z2

= 1+ 2τz + (−2+ 4τ2
)z2

+ (−6τ + 8τ3
)z3

+ (2− 16τ2
+ 16τ4

)z4
+⋯, z ∈ D

with τ ∈ [0, 1). Thus, we have

β1 = τ, β2 = τ2
− 1, β3 = τ3

− τ and β4 = τ4
− τ2. (38)

Substituting (38) into (35), we get H3,1( f ) = 0 and the inequality (5) holds.
III. Let now ∣β2∣ /= 1− β2

1 and β1 /= 1.
At first, we will show that the second inequality in (5) holds. Since β1, β2 and β3 are real,

by Lemma 2 for s ∈ [0, 1] and t, u ∈ [−1, 1] we have

β1 = s, β2 = (1− s2
)t, β3 = (1− s2

)(u(1− t2
)− st2

). (39)

Substituting (39) into (10) and (11), we have

ΨU = (1− s2
)[1− u2

− u(u + 2s)t − (1− u2
)t2

+ (u + s)2t3
] (40)

and
ΨL = (1− s2

)[−1+ u2
− u(u + 2s)t + (1− u2

)t2
+ (u + s)2t3

]. (41)

We also have (s, t) /∈ C, where C is a curve defined by

C = {(s, t) ∈ R ∶ s = 1 or t = ±1} ⊂ ∂R.

III(a) Consider the case β2 ≥ β2
1, i.e., (s, t) ∈ Ω1, where Ω1 is the set defined by

Ω1 = {(s, t) ∈ [0, 1/
√

2)× [0, 1) ∶
s2

1− s2 ≤ t < 1}

so that Ω1 ∩C = ∅. In this case, by (40), we have

18H3,1( f ) ≤ 3β4
1β2 + 6β3

1β3 + 10β1β2β3 − 8β2
3 − 11β2

1β2
2 + 9(β2 − β2

1)ΨU

= −(1− s2
)(1+ t)Φ(s, t, u), (s, t, u) ∈ Ω1 × [−1, 1],

(42)

where
Φ(s, t, u) = Φ0 +Φ1u +Φ2u2 (43)

with

Φ0 = Φ0(s, t) ∶= −9(1− t)t − s4t(3+ 2t − t2
)+ s2

(9+ 2t2
− t3

),

Φ1 = Φ1(s, t) ∶= −2s(1− t)[(5− t)t + s2
(3+ 4t + t2

)],

Φ2 = Φ2(s, t) ∶= (1− t2
)[8+ t − s2

(17+ t)].
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We note that Φ2 > 0, since

8+ t − s2
(17+ t) ≥

8(1− t)
1+ t

> 0, (s, t) ∈ Ω1.

Let u1 = −Φ1/(2Φ2) be the root of the equation (∂Φ/∂u)(s, t, u) = 0. Then it can be seen that
u1 ≥ −1. Indeed, we note that 2Φ2 −Φ1 = 2(1− t)Υ(s, t), where Υ(s, t) = λ2(s)t2 + λ1(s)t + λ0(s), where

λ2(s) = (1− s)2
(1+ s), λ1(s) = 9+ 5s − 18s2

+ 4s3

and
λ0(s) = 8− 17s2

+ 3s3.

Since λi(s) ≥ 0 when s ∈ [0, 1/
√

2) for i ∈ {1, 2}, we have

Υ(s, t) ≥ Υ(s,
s2

1− s2 ) =
8(1+ s − s2)

1+ s
≥ 0, (s, t) ∈ Ω1.

Hence, we get 2Φ2 −Φ1 ≥ 0 and it follows from Φ2 > 0 that u1 ≥ −1.
(i) Assume that u1 ≥ 1. Then we have

Φ(s, t, u) ≥ Φ(s, t, 1) = Φ0 +Φ1 +Φ2, (s, t, u) ∈ Ω1 × [−1, 1].

Therefore, by (42), it holds that

18H3,1( f ) ≤ −(1− s2
)(1+ t)(Φ0 +Φ1 +Φ2) = F1(s, t), (s, t) ∈ Ω1, (44)

where F1 is the function defined by (12). From Proposition 1 and (44), we thus have H3,1( f ) ≤
√

3/9.
(ii) Assume that −1 ≤ u1 ≤ 1. Then we have

Φ(s, t, u) ≥ Φ(s, t, u1) = Φ0 −
Φ2

1
4Φ2

, (s, t, u) ∈ Ω1 × [−1, 1].

Therefore, by (42), it holds that

18H3,1( f ) ≤ −(1− s2
)(1+ t)(Φ0 −

Φ2
1

4Φ2
) = 9F2(s2, t), (s, t) ∈ Ω1,

where F2 is the function defined by (18). Therefore, by Proposition 2, H3,1( f ) ≤
√

3/9 holds.
III(b) Consider the case β2 ≤ β2

1, i.e., (s, t) ∈ Ω2, where Ω2 is the set defined by Ω2 = cl(R∖Ω1)∖C.
Then, from (41), we have

18H3,1( f ) ≤ 3β4
1β2 + 6β3

1β3 + 10β1β2β3 − 8β2
3 − 11β2

1β2
2 + 9(β2 − β2

1)ΨL

= −(1− s2
)(1+ t)Φ̂(s, t, u), (s, t, u) ∈ Ω2 × [−1, 1],

(45)

where
Φ̂(s, t, u) = Φ̂0 + Φ̂1u + Φ̂2u2 (46)

with

Φ̂0 = Φ̂0(s, t) ∶= 9(1− t)t − s4t(3+ 2t − t2
)− s2

(9− 20t2
+ t3

),

Φ̂1 = Φ̂1(s, t) ∶= −2s(1− t)[(5− t)t + s2
(3+ 4t + t2

)],

Φ̂2 = Φ̂2(s, t) ∶= (1− t)2
[8− t + s2

(1+ t)].
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Using the inequality s2 ≥ t/(1+ t), we have Φ̂2 ≥ 8(1− t)2 > 0 for (s, t) ∈ Ω2. Let u2 = −Φ̂1/(2Φ̂2)

be the root of the equation (∂Φ̂/∂u)(s, t, u) = 0. Then, by a similar procedure with Part III(a), it can be
seen that u2 ≥ −1.

(i) Assume that u2 ≥ 1. Then we have

Φ̂(s, t, u) ≥ Φ̂(s, t, 1) = Φ̂0 + Φ̂1 + Φ̂2, (s, t, u) ∈ Ω2 × [−1, 1].

Therefore, by (45), it holds that

18H3,1( f ) ≤ −(1− s2
)(1+ t)(Φ̂0 + Φ̂1 + Φ̂2) = F1(s, t), (s, t) ∈ Ω2,

where F1 is the function defined by (12). Thus, by Proposition 1, H3,1( f ) ≤
√

3/9 holds.
(ii) Assume that −1 ≤ u2 ≤ 1. Then we have

Φ̂(s, t, u) ≥ Φ̂(s, t, u2) = Φ̂0 −
Φ̂2

1

4Φ̂2
, (s, t, u) ∈ Ω2 × [−1, 1].

Therefore, by (45), it holds that

18H3,1( f ) ≤ −(1− s2
)(1+ t)(Φ̂0 −

Φ̂2
1

4Φ̂2
) = F3(s2, t), (s, t) ∈ Ω2,

where F3 is the function defined by (21). Therefore, by Proposition 3, we obtain H3,1( f ) ≤
√

3/9.
Next, we will show that the first inequality in (5) holds.
IV(a) Consider the case β2 ≥ β2

1. Then we have

18H3,1( f ) ≥ −(1− s2
)(1+ t)Φ̂(s, t, u), (s, t, u) ∈ Ω1 × [−1, 1], (47)

where Φ̂ is the function defined by (46). Since Φ̂1 ≤ 0 and Φ̂2 > 0, it holds that

Φ̂(s, t, u) ≤ max{Φ̂(s, t,−1), Φ̂(s, t, 1)}

= Φ̂(s, t,−1) = Φ̂2 − Φ̂1 + Φ̂0, (s, t, u) ∈ Ω1 × [−1, 1].

Hence, from (47), we obtain

H3,1( f ) ≥ −(1− s2
)(1+ t)(Φ̂2 − Φ̂1 + Φ̂0) = F4(s, t), (s, t) ∈ Ω1, (48)

where F4 is the function defined by (31). Thus, by Proposition 5 and (48), we get H3,1( f ) ≥ −4/9.
IV(b) We consider the case β2 ≤ β2

1. Then we have

18H3,1( f ) ≥ −(1− s2
)(1+ t)Φ(s, t, u), (s, t, u) ∈ Ω2 × [−1, 1],

where Φ is the function defined by (43).
For t ∈ [−1/3, 0], let

st =
t2 − 5t

t2 + 4t + 3

so that 0 = s0 ≤ st ≤ s
−1/3 = 1 holds for t ∈ [−1/3, 0]. And let

Ω3 = {(s, t) ∈ Ω2 ∶ s ≤ st} and Ω4 = {(s, t) ∈ Ω2 ∶ s ≥ st}.

We note that Ω3 ⊂ [0, 1] × [−1, 0] and Ω4 ⊂ [0, 1] × [−1/3, 1]. Then Φ1 ≥ 0 when (s, t) ∈ Ω3,
and Φ1 ≤ 0 when (s, t) ∈ Ω4.
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(i) For the case (s, t) ∈ Ω3, since Φ1 ≥ 0 and Φ2 ≥ 0, we have

Φ(s, t, u) ≤ Φ(s, t, 1) = Φ2 +Φ1 +Φ0, (s, t, u) ∈ Ω3 × [−1, 1]

and, therefore, we get

18H3,1( f ) ≥ −(1− s2
)(1+ t)(Φ2 +Φ1 +Φ0) = F1(s, t), (s, t) ∈ Ω3,

where F1 is the function defined by (12). Since Ω3 ⊂ [0, 1] × [−1, 0], Proposition 4 gives us that
H3,1( f ) ≥ −4/9 holds.

(ii) For the case (s, t) ∈ Ω4, we have

18H3,1( f ) ≥ −(1− s2
)(1+ t)(Φ2 −Φ1 +Φ0) = F4(s, t), (s, t) ∈ Ω4,

where F4 is the funciton defined by (31). Since Ω4 ⊂ [0, 1] × [−1/3, 1], Proposition 5 gives us that
H3,1( f ) ≥ −4/9 holds. Thus the proof of Theorem 1 is now completed. ◻

4. Conclusions

In the present paper, we obtained that the sharp inequalities −4/9 ≤ H3,1( f ) ≤
√

3/9 hold for f in
the class SR∗, i.e., starlike functions with real coefficients. Therefore, it follows that ∣H3,1( f )∣ ≤ 4/9 holds
for f ∈ SR∗ and this inequality is sharp with the extremal function f1 ∈ SR

∗, where f1(z) = z(1− z3)−2/3.
So it can be naturally expected that the sharp inequality ∣H3,1( f )∣ ≤ 4/9 would hold for all f ∈ S∗.
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