Article

The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions with Real Coefficients

Oh Sang Kwon and Young Jae Sim *il
Department of Mathematics, Kyungsung University, Busan 48434, Korea
* Correspondence: yjsim@ks.ac.kr

Received: 15 July 2019; Accepted: 3 August 2019; Published: date

Abstract

Let $\mathcal{S} \mathcal{R}^{*}$ be the class of starlike functions with real coefficients, i.e., the class of analytic functions f which satisfy the condition $f(0)=0=f^{\prime}(0)-1, \operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>0$, for $z \in \mathbb{D}:=\{z \in \mathbb{C}$: $|z|<1\}$ and $a_{n}:=f^{(n)}(0) / n!$ is real for all $n \in \mathbb{N}$. In the present paper, it is obtained that the sharp inequalities $-4 / 9 \leq H_{3,1}(f) \leq \sqrt{3} / 9$ hold for $f \in \mathcal{S} \mathcal{R}^{*}$, where $H_{3,1}(f)$ is the third Hankel determinant of order 3 defined by $H_{3,1}(f)=a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right)$.

Keywords: starlike functions; hankel determinant; carathéodory functions; schwarz functions

1. Introduction

Let \mathcal{H} be the class of analytic functions in $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ and let \mathcal{A} be the class of functions $f \in \mathcal{H}$ normalized by $f(0)=0=f^{\prime}(0)-1$. That is, for $z \in \mathbb{D}, f \in \mathcal{A}$ has the following representation

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1}
\end{equation*}
$$

For $q, n \in \mathbb{N}$, the Hankel determinant $H_{q, n}(f)$ of functions $f \in \mathcal{A}$ of the form (1) are defined by

$$
H_{q, n}(f)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \tag{2}\\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right| .
$$

Computing the upper bound of $H_{q, n}$ over subfamilies of \mathcal{A} is an interesting problem to study. Note that $H_{2,1}(f)=a_{3}-a_{2}^{2}$ is the well-known functional which, for the class of univalent functions, was estimated by Bieberbach (see, e.g., [1] (Vol. I, p. 35)). Especially, the functional $H_{3,1}(f)$, Hankel determinant of order 3 , is presented by

$$
\begin{aligned}
H_{3,1}(f) & =\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{2} & a_{3} & a_{4} \\
a_{3} & a_{4} & a_{5}
\end{array}\right| \\
& =a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right)
\end{aligned}
$$

Let \mathcal{S}^{*} be the class of starlike functions in \mathcal{A}. That is, the class \mathcal{S}^{*} consists of all functions $f \in \mathcal{A}$ satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in \mathbb{D} \tag{3}
\end{equation*}
$$

The leading example of a function of class \mathcal{S}^{*} is the Koebe function k, defined by

$$
k(z)=z(1-z)^{-2}=z+2 z^{2}+3 z^{3}+\cdots, \quad z \in \mathbb{D}
$$

In [2], Janteng et al. obtained the sharp inequality $\left|H_{2,2}(f)\right| \leq 1=\left|H_{2,2}(k)\right|$ for $f \in \mathcal{S}^{*}$. For the estimates on the Hankel determinant $H_{3,1}(f)$ over the class \mathcal{S}^{*}, Babalola [3] obtained the inequality $\left|H_{3,1}(f)\right| \leq 16$. And Zaprawa [4] improved the result by proving $\left|H_{3,1}(f)\right| \leq 1$. Next, Kwon et al. [5], recently found the inequality $\left|H_{3,1}(f)\right| \leq 8 / 9$ and we conjectured that

$$
\begin{equation*}
\left|H_{3,1}(f)\right| \leq 4 / 9, \quad f \in \mathcal{S}^{*} . \tag{4}
\end{equation*}
$$

The sharp bound of $\left|H_{3,1}(f)\right|$ over the class \mathcal{S}^{*} is still open.
Let $\mathcal{S R}{ }^{*}$ be the class of starlike functions in \mathcal{A} with real coefficients. Hence, if $f \in \mathcal{A}$ belongs to the class $\mathcal{S R}{ }^{*}$, then f has the form given by (1) with $a_{n} \in \mathbb{R}, n \in \mathbb{N} \backslash\{1\}$ and satisfies the condition (3).

In this paper, we will prove the following.
Theorem 1. If $f \in \mathcal{S} \mathcal{R}^{*}$ is the form (1), then the following inequalities hold:

$$
\begin{equation*}
-\frac{4}{9} \leq H_{3,1}(f) \leq \frac{1}{9} \sqrt{3} \tag{5}
\end{equation*}
$$

The first inequality is sharp for the function $f=f_{1} \in \mathcal{S} \mathcal{R}^{*}$, where

$$
f_{1}(z):=z\left(1-z^{3}\right)^{-2 / 3}=z+\frac{2}{3} z^{4}+\frac{5}{9} z^{7}+\cdots, \quad z \in \mathbb{D} .
$$

The second inequality is sharp for the function $f=f_{2} \in \mathcal{S R}^{*}$, where

$$
\begin{aligned}
f_{2}(z) & :=z \exp \left(-\int_{0}^{z} \frac{(2 / \sqrt{3}) \zeta+2 \zeta^{3}}{1+(2 / \sqrt{3}) \zeta^{2}+\zeta^{4}} \mathrm{~d} \zeta\right) \\
& =z-\frac{z^{3}}{\sqrt{3}}+\frac{2 z^{7}}{3 \sqrt{3}}-\frac{7 z^{9}}{18}+\cdots, \quad z \in \mathbb{D} .
\end{aligned}
$$

2. Preliminary Results

Let \mathcal{P} be the class of functions $p \in \mathcal{H}$ of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}, \quad z \in \mathbb{D} \tag{6}
\end{equation*}
$$

having a positive real part in \mathbb{D}, i.e., the Carathéodory class of functions. It is well known, e.g., [6] (p. 166), that for $p \in \mathcal{P}$ with the form given by (6),

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+\left(4-c_{1}^{2}\right) \zeta \tag{7}
\end{equation*}
$$

for some $\zeta \in \overline{\mathbb{D}}$. Moreover, the following lemma will be used for our investigation.
Lemma 1 ([7]). The formula (7) with $c_{1} \in[0,2)$ and $\zeta \in \mathbb{T}$ holds only for the function $p \in \mathcal{P}$ defined by

$$
p(z)=\frac{1+\tau(1+\zeta) z+\zeta z^{2}}{1-\tau(1-\zeta) z-\zeta z^{2}}, \quad z \in \mathbb{D}
$$

where $\tau \in[0,1)$.

Let \mathcal{B}_{0} be the subclass of \mathcal{H} of all self-mappings ω of \mathbb{D} of the form

$$
\begin{equation*}
\omega(z)=\sum_{n=1}^{\infty} \beta_{n} z^{n}, \quad z \in \mathbb{D}, \tag{8}
\end{equation*}
$$

i.e., the class of Schwarz functions. It is well known that $\omega \in \mathcal{B}_{0}$ if and only if $p=(1+\omega) /(1-\omega) \in \mathcal{P}$. For coefficients of functions in \mathcal{B}_{0}, the following properties, which can be found in [1] (Vol. I, pp. 84-85 and Vol. II, p. 78) and [8] (p. 128), will be used for our proof.

Lemma 2. If $\omega \in \mathcal{B}_{0}$ is of the form given by (8), then
(1) $\left|\beta_{1}\right| \leq 1$,
(2) $\left|\beta_{2}\right| \leq 1-\left|\beta_{1}\right|^{2}$,
(3) $\left|\beta_{3}\left(1-\left|\beta_{1}\right|^{2}\right)+\overline{\beta_{1}} \beta_{2}^{2}\right| \leq\left(1-\left|\beta_{1}\right|^{2}\right)^{2}-\left|\beta_{2}\right|^{2}$.

The following inequalities, which will be used, hold for the fourth coefficients for Schwarz functions with real coefficients.

Lemma 3 ([9]). If $\omega \in \mathcal{B}_{0}$ is the form (8), $\beta_{n} \in \mathbb{R}, n \in \mathbb{N}$, and $\beta_{2}^{2} \neq\left(1-\beta_{1}^{2}\right)^{2}$, then

$$
\begin{equation*}
\Psi_{L} \leq \beta_{4} \leq \Psi_{U} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{L}:=\frac{1+\beta_{1}^{4}+\beta_{2}-\beta_{2}^{2}-\beta_{2}^{3}-2 \beta_{1}^{2}-\beta_{1}^{2} \beta_{2}+2 \beta_{1} \beta_{2} \beta_{3}-\beta_{3}^{2}}{-1+\beta_{1}^{2}-\beta_{2}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{U}:=\frac{1+\beta_{1}^{4}-\beta_{2}-\beta_{2}^{2}+\beta_{2}^{3}-2 \beta_{1}^{2}+\beta_{1}^{2} \beta_{2}-2 \beta_{1} \beta_{2} \beta_{3}-\beta_{3}^{2}}{1-\beta_{1}^{2}-\beta_{2}} \tag{11}
\end{equation*}
$$

For given a set A, let $\operatorname{int} A, \mathrm{cl} A$ and ∂A be the sets of interior, closure and boundary, respectively, points of A. And let $R=[0,1] \times[-1,1]$ be a rectangle in \mathbb{R}^{2}. From now, we obtain several inequalities for functions, defined in subsets of R, which will be used in the proof of Theorem 1.

Proposition 1. Define a function F_{1} by

$$
\begin{equation*}
F_{1}(x, y)=\sum_{n=0}^{4} b_{n}(x) y^{n} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
& b_{4}(x)=(1-x)^{2}(1+x)^{4} \\
& b_{3}(x)=-x(1+x)^{3}\left(10-11 x+x^{2}\right), \\
& b_{2}(x)=(1+x)^{2}\left(7-16 x+14 x^{3}-5 x^{4}\right), \\
& b_{1}(x)=x\left(10+9 x-2 x^{2}-6 x^{3}-8 x^{4}-3 x^{5}\right), \\
& b_{0}(x)=-8+16 x^{2}+6 x^{3}-8 x^{4}-6 x^{5} .
\end{aligned}
$$

Then $F_{1}(x, y)<2 \sqrt{3}$ holds for all $(x, y) \in R$.
Proof. Let $(x, y) \in R$. Since $b_{4}(x) \geq 0$, we have $b_{4}(x) y^{4} \leq b_{4}(x) y^{2}$ and

$$
F_{1}(x, y) \leq G(x, y), \quad(x, y) \in R
$$

where

$$
G(x, y)=b_{3}(x) y^{3}+\left(b_{4}(x)+b_{2}(x)\right) y^{2}+b_{1}(x) y+b_{0}(x)
$$

We will show that $G(x, y)<2 \sqrt{3}$ holds for $(x, y) \in R$.
When $x=0$, we have $G(0, y)=-8\left(1-y^{2}\right) \leq 0$, for $y \in[-1,1]$. And, when $x=1$, we have $G(1, y) \equiv 0$.
Now, let $x \in(0,1)$ be fixed and put $b_{i}=b_{i}(x)(i \in\{0,1,2,3,4\})$. Then $b_{3}<0$. Define a function g_{x} by $g_{x}(y)=G(x, y)$. Note that

$$
\begin{equation*}
g_{x}(-1)=0 \quad \text { and } \quad g_{x}(1)=4 x^{2}\left(1-x^{2}\right)\left(5-2 x^{2}\right) \leq 0 \tag{13}
\end{equation*}
$$

Also,

$$
\begin{equation*}
g_{x}^{\prime}(y)=3 b_{3} y^{2}+2\left(b_{4}+b_{2}\right) y+b_{1}=0 \tag{14}
\end{equation*}
$$

occurs at $y=\zeta_{1}$ or ζ_{2}, where

$$
\zeta_{i}=\frac{-\left(b_{4}+b_{2}\right)+(-1)^{i+1} \sqrt{\left(b_{4}+b_{2}\right)^{2}-3 b_{1} b_{3}}}{3 b_{3}}, \quad i \in\{1,2\}
$$

It is trivial that $\zeta_{1}<0<\zeta_{2}$. Furthermore, since $b_{3}<0, g_{x}$ has the local minimum at $y=\zeta_{1}$. Let $\alpha=0.322818 \cdots$ be a zero of polynomial q, where

$$
q(y)=8-10 y-42 y^{2}-14 y^{3}+7 y^{4} .
$$

Note that $\zeta_{2} \geq 1$ holds for x satisfying

$$
2\left(1-x^{2}\right) q(x)=b_{1}+2\left(b_{4}+b_{2}\right)+3 b_{3} \geq 0
$$

Hence we obtain

$$
\begin{cases}\zeta_{2} \geq 1, & \text { when } x \in(0, \alpha] \\ \zeta_{2} \leq 1, & \text { when } x \in[\alpha, 1)\end{cases}
$$

(a) When $x \in(0, \alpha]$, since $\zeta_{2} \geq 1, g_{x}$ is convex in $[-1,1]$. So, it holds that

$$
g_{x}(y) \leq \max \left\{g_{x}(-1), g_{x}(1)\right\}, \quad y \in[-1,1] .
$$

Hence, by (13), we get $g_{x}(y) \leq 0<2 \sqrt{3}$ for $y \in[-1,1]$.
(b) When $x \in[\alpha, 1), g_{x}$ has its local maximum $g_{x}\left(\zeta_{2}\right)$. Using the fact that ζ_{2} is a solution of the equation given by (14) leads us to

$$
g_{x}\left(\zeta_{2}\right)=\left(\frac{2}{3} b_{1}-\frac{2\left(b_{2}+b_{4}\right)^{2}}{9 b_{3}}\right) \zeta_{2}+\left(b_{0}-\frac{b_{1}\left(b_{2}+b_{4}\right)}{9 b_{3}}\right)
$$

We claim that $g_{x}\left(\zeta_{2}\right)-3<0$ holds for all $x \in[\alpha, 1)$. A compuation gives

$$
g_{x}\left(\zeta_{2}\right)-3=\frac{1}{9 b_{3}}(1-x)(1+x)^{3}\left[-2(1-x)(1+x) \kappa_{1} \zeta_{2}+x \kappa_{2}\right]
$$

where

$$
\kappa_{1}=64-128 x+204 x^{2}+464 x^{3}+249 x^{4}-14 x^{5}+7 x^{6}
$$

and

$$
\kappa_{2}=910-11 x-1340 x^{2}-414 x^{3}+752 x^{4}+398 x^{5}-64 x^{6}+12 x^{7} .
$$

Since $b_{3}<0, g_{x}\left(\zeta_{2}\right)-3<0$ is equivalent to

$$
\begin{equation*}
2\left(1-x^{2}\right) \kappa_{1} \sqrt{\left(b_{4}+b_{2}\right)^{2}-3 b_{1} b_{3}}<-3 x \kappa_{2} b_{3}-2\left(1-x^{2}\right) \kappa_{1}\left(b_{4}+b_{2}\right) \tag{15}
\end{equation*}
$$

We can see that the right-side of the above equation is positive for all $x \in[\alpha, 1)$. Thus, by squaring both sides of (15), we have $g_{x}\left(\zeta_{2}\right)<0$ is equivalent to $\Psi>0$, where

$$
\Psi=\left[3 x \kappa_{2} b_{3}+2\left(1-x^{2}\right) \kappa_{1}\left(b_{4}+b_{2}\right)\right]^{2}-4\left(1-x^{2}\right)^{2} \kappa_{1}^{2}\left[\left(b_{4}+b_{2}\right)^{2}-3 b_{1} b_{3}\right] .
$$

By a simple calculation we have

$$
\begin{equation*}
\Psi=-27 x^{2}(10-x)^{2}(1-x)^{2}(1+x)^{6} \Lambda_{x} \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
\Lambda_{x}:= & 22528-90112 x-143980 x^{2}+177084 x^{3}+333021 x^{4}-21120 x^{5}-258308 x^{6} \\
& -143200 x^{7}+452 x^{8}+28728 x^{9}+37512 x^{10}+24288 x^{11}+9748 x^{12}+2720 x^{13} \\
& +968 x^{14}-48 x^{15}+36 x^{16} .
\end{aligned}
$$

Since $\Lambda_{x}<0$ holds for all $x \in[\alpha, 1)$, from (16), $\Psi>0$, this implies

$$
\begin{equation*}
g_{x}\left(\zeta_{2}\right)<3 . \tag{17}
\end{equation*}
$$

Finally, since

$$
g_{x}(y) \leq \max \left\{g_{x}(-1), g_{x}(1), g_{x}\left(\zeta_{2}\right)\right\}, \quad y \in[-1,1]
$$

it follows from (13) and (17) that $g_{x}(y)<3<2 \sqrt{3}$ holds for all $y \in[-1,1]$. Thus the proof of Proposition 1 is completed.

Proposition 2. Let

$$
\Omega=\left\{(x, y) \in[0,1 / 2) \times[0,1): 0 \leq x \leq \frac{y}{1+y}\right\} \subset R
$$

Define a function $F_{2}: \Omega \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
F_{2}(x, y)=\frac{1-x}{8+y-x(17+y)} H_{1}(x, y) \tag{18}
\end{equation*}
$$

where $H_{1}(x, y)=\sum_{n=0}^{3} d_{n}(y) x^{n}$ with

$$
\begin{gathered}
d_{3}(y)=(1+y)^{2}\left(1-6 y+y^{2}\right), \quad d_{2}(y)=17+24 y+10 y^{2}-3 y^{4} \\
d_{1}(y)=-8-26 y-y^{2}+12 y^{3}+3 y^{4} \quad \text { and } \quad d_{0}(y)=y\left(8+y-8 y^{2}-y^{3}\right) .
\end{gathered}
$$

Then $F_{2}(x, y) \leq(2 / 9) \sqrt{3}$ holds for all $(x, y) \in \Omega$.
Proof. First of all, we note that F_{2} is well-defined, since $8+y-x(17+y)>0$ holds for all $(x, y) \in \Omega$.
Differentiating F_{2} with respect to x twice gives

$$
\begin{equation*}
\frac{1}{2}[8+y-x(17+y)]^{3} \frac{\partial^{2} F_{2}}{\partial x^{2}}(x, y)=\sum_{n=0}^{4} \tilde{d}_{n}(y) x^{n} \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{d}_{4}(y)=-3\left(1-6 y+y^{2}\right)\left(17+18 y+y^{2}\right)^{2} \\
& \tilde{d}_{3}(y)=-4\left(884+3197 y+4605 y^{2}+2062 y^{3}-302 y^{4}-75 y^{5}-3 y^{6}\right), \\
& \tilde{d}_{2}(y)=6\left(1024+2344 y+2421 y^{2}+956 y^{3}-202 y^{4}-60 y^{5}-3 y^{6}\right) \\
& \tilde{d}_{1}(y)=-12(8+y)^{2}\left(4+7 y+5 y^{2}+y^{3}-y^{4}\right) \\
& \tilde{d}_{0}(y)=512+1088 y+960 y^{2}-176 y^{3}-83 y^{4}-30 y^{5}-3 y^{6} .
\end{aligned}
$$

Fix now $y \in[0,1)$ and put $y_{0}=y /(1+y) \in[0,1 / 2)$. Let us define a function $g_{y}:\left[0, y_{0}\right] \rightarrow \mathbb{R}$ by $g_{y}(x)=\sum_{n=0}^{4} \tilde{d}_{n}(y) x^{n}$. Then we have

$$
\begin{equation*}
g_{y}^{\prime}(x)=-12(1+y)[8+y-x(17+y)]^{2} \varphi(x) \tag{20}
\end{equation*}
$$

where

$$
\varphi(x)=4+3 y+2 y^{2}-y^{3}+(1+y)\left(1-6 y+y^{2}\right) x
$$

Since $-4 \leq 1-6 y+y^{2} \leq 1$, we have

$$
\varphi(x) \geq 4+3 y+2 y^{2}-y^{3}-4 x(1+y) \geq 4-y+2 y^{2}-y^{3}>0, \quad x \in\left[0, y_{0}\right]
$$

Thus, by (20), we get $g_{y}^{\prime}(x)<0$, when $x \in\left[0, y_{0}\right]$. So g_{y} is decreasing on the interval $\left[0, y_{0}\right]$, which yields

$$
g_{y}(x) \geq g_{y}\left(y_{0}\right)=\frac{64(1-y)\left(8-7 y+2 y^{2}+33 y^{3}\right)}{(1+y)^{2}} \geq 0, \quad x \in\left[0, y_{0}\right]
$$

Since $8+y-x(17+y)>0$ holds for all $(x, y) \in \Omega$, by (19), $F_{2}(x, \cdot)$ is convex on $\left[0, y_{0}\right]$. This gives us that

$$
F_{2}(x, y) \leq \max \left\{F_{2}(0, y), F_{2}\left(y_{0}, y\right)\right\}=F_{2}(0, y)=y-y^{3} \leq \frac{2}{9} \sqrt{3}, \quad(x, y) \in \Omega
$$

as we asserted.

Proposition 3. Define a function F_{3} by

$$
\begin{equation*}
F_{3}(x, y)=\frac{9(1-x)(1+y)}{8-y+x(1+y)} H_{2}(x, y) \tag{21}
\end{equation*}
$$

where $H_{2}(x, y)=\sum_{n=0}^{3} k_{n}(y) x^{n}$ with

$$
\begin{aligned}
& k_{3}(y)=(1+y)^{3}, \quad k_{2}(y)=1+7 y+3 y^{2}-3 y^{3} \\
& k_{1}(y)=8-2 y-15 y^{2}+3 y^{3} \quad \text { and } \quad k_{0}(y)=-y\left(8-9 y+y^{2}\right) .
\end{aligned}
$$

Then $F_{3}(x, y) \leq 2 \sqrt{3}$ holds for all $(x, y) \in R$.
Proof. First of all, by simple calculations, the equation $\left(\partial F_{3} / \partial x\right)(x, y)=0$ gives us

$$
\begin{equation*}
(1-x)(8-y+x(1+y)) \frac{\partial H_{2}}{\partial x}(x, y)=9 H_{2}(x, y) \tag{22}
\end{equation*}
$$

Also, the equation $\left(\partial F_{3} / \partial y\right)(x, y)=0$ holds when

$$
\begin{equation*}
-(1+y)(8-y+x(1+y)) \frac{\partial H_{2}}{\partial y}(x, y)=9 H_{2}(x, y) \tag{23}
\end{equation*}
$$

Assume that the function F_{3} has its critical point at $\left(x_{0}, y_{0}\right) \in \operatorname{int} R$. Since $8-y_{0}+x_{0}\left(1+y_{0}\right) \neq 0$, from (22) and (23), we have

$$
\left(1-x_{0}\right) \frac{\partial H_{2}}{\partial x}\left(x_{0}, y_{0}\right)+\left(1+y_{0}\right) \frac{\partial H_{2}}{\partial y}\left(x_{0}, y_{0}\right)=0
$$

or, equivalently, $y_{0}=x_{0} /\left(1-x_{0}\right)$. However, it holds that

$$
\left(1-x_{0}\right)\left(8-y_{0}+x_{0}\left(1+y_{0}\right)\right) \frac{\partial H_{2}}{\partial x}\left(x_{0}, y_{0}\right)-9 H_{2}\left(x_{0}, y_{0}\right)=64\left(1-x_{0}\right) \neq 0
$$

since $x_{0} \in(0,1)$. This contradicts to (22). Hence F_{3} does not have any critical points in int R. Thus F_{3} has its maximum on ∂R.

We now consider F_{3} on ∂R.
(a) On the side $x=1$, we have $F_{3}(1, y) \equiv 0$.
(b) On the side $y=-1$, we have $F_{3}(x,-1) \equiv 0$.
(c) On the side $y=1$, we have

$$
\begin{equation*}
F_{3}(x, 1)=\frac{-36 x\left(3-7 x+4 x^{3}\right)}{7+2 x}=: \varphi(x), \quad x \in[0,1] \tag{24}
\end{equation*}
$$

Since the inequality $2\left(7+56 x-126 x^{2}+72 x^{4}\right)>0$ holds for all $x \in[0,1]$, it follows that $\varphi(x)<2$ $(x \in[0,1])$. This inequality with (24) implies $F_{3}(x, 1)<2<2 \sqrt{3}$ holds for $x \in[0,1]$.
(d) On the side $x=0$, we have

$$
\begin{equation*}
F_{3}(0, y)=-9 y\left(1-y^{2}\right)=: \psi(y) \tag{25}
\end{equation*}
$$

And the inequality $F_{3}(0, y) \leq 2 \sqrt{3}(y \in[-1,1])$ comes directly from (25) and

$$
\psi(y) \leq \psi(-1 / \sqrt{3})=2 \sqrt{3}, \quad y \in[-1,1] .
$$

From (a)-(d), for all $(x, y) \in \partial R$, the inequality $F_{3}(x, y) \leq 2 \sqrt{3}$ holds. Thus the proof of Proposition 3 is completed.

Proposition 4. For F_{1} defined by (12), the inequality

$$
F_{1}(x, y) \geq-8
$$

holds for $(x, y) \in[0,1] \times[-1,0]$.
Proof. Define a function $G:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by

$$
G(x, y)=F(x,-y)-b_{4}(x) y^{4}+8=l_{3}(x) y^{3}+l_{2}(x) y^{2}+l_{1}(x) y+l_{0}(x)
$$

where $l_{3}(x)=-b_{3}(x), l_{2}(x)=b_{2}(x), l_{1}(x)=-b_{1}(x)$ and $l_{0}(x)=b_{0}(x)+8$. Then we have

$$
F(x, y)+8 \geq G(x,-y), \quad(x, y) \in[0,1] \times[-1,0]
$$

We note that, when $x=0, G(0, y)=7 y^{2} \geq 0$ holds for $y \in[-1,1]$. And, when $x=1, G(1, y) \equiv 8>0$.
Let $x \in(0,1)$ be fixed and put $l_{i}=l_{i}(x)(i \in\{0,1,2,3\})$. Define a function $g_{x}:[0,1] \rightarrow \mathbb{R}$ by $g_{x}(y)=G(x, y)$. We will show that the inequality $g_{x}(y) \geq 0$ holds for all $y \in[0,1]$.

Note that $l_{3}>0$ and $l_{1}<0$. Let

$$
\zeta_{i}=\frac{-l_{2}+(-1)^{i} \sqrt{l_{2}^{2}-3 l_{1} l_{3}}}{l_{3}}, \quad i=1,2
$$

be the roots of the equation

$$
g_{x}^{\prime}(y)=3 l_{3} y^{2}+2 l_{2} y+l_{1}=0
$$

Then it is easily seen that $\zeta_{1}<0<\zeta_{2}$. Moreover $\zeta_{2}<1$ holds. Indeed, $\zeta_{2}<1$ is equivalent to $l_{1} l_{3}+3 l_{3}^{2}+2 l_{2} l_{3}>0$. And a computation gives

$$
\begin{equation*}
l_{1} l_{3}+3 l_{3}^{2}+2 l_{2} l_{3}=-2 x(1-x)^{2}(1+x)^{4} \varphi(x) \tag{26}
\end{equation*}
$$

where

$$
\varphi(x)=-70-73 x-52 x^{2}-34 x^{3}-16 x^{4}+2 x^{5}
$$

Since $\varphi(x)<0$, by (26), we get $l_{1} l_{3}+3 l_{3}^{2}+2 l_{2} l_{3}>0$ and $\zeta_{2}<1$. Therefore, we have

$$
\begin{equation*}
g_{x}(y) \geq g_{x}\left(\zeta_{2}\right), \quad y \in[0,1] \tag{27}
\end{equation*}
$$

On the other hand, simple calculations give us that

$$
\begin{aligned}
g_{x}\left(\zeta_{2}\right) & =\frac{1}{9 l_{3}}\left[\left(6 l_{1} l_{3}-2 l_{2}^{2}\right) \zeta_{2}+\left(9 l_{0} l_{3}-l_{1} l_{2}\right)\right] \\
& =\frac{-1}{9 l_{3}}(1-x)(1+x)^{3}\left[2\left(1-x^{2}\right) \kappa_{1} \zeta_{2}+x \kappa_{2}\right]
\end{aligned}
$$

where

$$
\kappa_{1}=49-126 x+255 x^{2}+472 x^{3}+204 x^{4}-24 x^{5}+16 x^{6}
$$

and

$$
\kappa_{2}=-70+97 x-1352 x^{2}-429 x^{3}+746 x^{4}+401 x^{5}-56 x^{6}+15 x^{7}
$$

Since $l_{3}>0, g_{x}\left(\zeta_{2}\right) \geq 0$ holds, if

$$
\begin{equation*}
2\left(1-x^{2}\right) \kappa_{1} \zeta_{2}+x \kappa_{2} \leq 0 . \tag{28}
\end{equation*}
$$

Moreover (28) is equivalent to $\Psi \geq 0$, where

$$
\Psi=\left[2\left(1-x^{2}\right) \kappa_{1} l_{2}-3 x \kappa_{2} l_{3}\right]^{2}-4\left(1-x^{2}\right)^{2} \kappa_{1}^{2}\left(l_{2}^{2}-3 l_{1} l_{3}\right) .
$$

We represent Ψ by

$$
\begin{equation*}
\Psi=-27 x^{4}(10-x)^{2}(1-x)^{2}(1+x)^{6} \tilde{\Lambda}_{x}, \tag{29}
\end{equation*}
$$

where

$$
\begin{align*}
\tilde{\Lambda}_{x}= & -17052+84812 x-222415 x^{2}-10212 x^{3}+78990 x^{4}-226456 x^{5} \\
& -152793 x^{6}+198120 x^{7}+169280 x^{8}-11796 x^{9}-33413 x^{10}+1068 x^{11} \tag{30}\\
& +2790 x^{12}-1008 x^{13}+117 x^{14} .
\end{align*}
$$

Since $\tilde{\Lambda}_{x}<0$ holds for all $x \in(0,1)$, from (29), $\Psi \geq 0$ is true. We thus have $g_{x}\left(\zeta_{2}\right) \geq 0$. Finally, it follows from (27) that $g_{x}(y) \geq 0$ holds for all $y \in[0,1]$. The proof of Proposition 4 is completed.

Proposition 5. For a function F_{4} defined by

$$
\begin{equation*}
F_{4}(x, y)=F_{1}(-x, y) \tag{31}
\end{equation*}
$$

where F_{1} is defined by (12), we have

$$
F_{4}(x, y) \geq-8, \quad(x, y) \in[0,1] \times[-1 / 3,1] .
$$

Proof. It is easily checked that $F_{4}(x, y) \geq-8$ holds for $y \in[-1 / 3,1]$ when $x=0$ or $x=1$. Let $x \in(0,1)$ be fixed and put $m_{i}=b_{i}(-x)(i \in\{0,1,2,3,4\})$. Define a function $g_{x}:[-1 / 3,1] \rightarrow \mathbb{R}$ by $g_{x}(y)=F_{4}(x, y)$.

First, we will show that $g_{x}(y) \geq-8$ holds for $y \in[-1 / 3,0]$. Since $m_{3}>0$ and $m_{4}>0$, we have $m_{4} y^{4} \geq 0$ and $m_{3} y^{3} \geq-m_{3} y^{2} / 3$ for $y \in[-1 / 3,0]$. Hence, we obtain

$$
\begin{equation*}
g_{x}(y)+8 \geq \varphi_{x}(-y), \quad y \in[-1 / 3,0] \tag{32}
\end{equation*}
$$

where $\varphi_{x}:[0,1 / 3] \rightarrow \mathbb{R}$ is the function defined by

$$
\varphi_{x}(y)=\left(-\frac{1}{3} m_{3}+m_{2}\right) y^{2}-m_{1} y+m_{0}+8, \quad y \in[0,1 / 3] .
$$

Since $m_{1}<0$ and

$$
-\frac{1}{3} m_{3}+m_{2}=\frac{1}{3}\left(1-x^{2}\right)^{2}\left(21-4 x+14 x^{2}\right)>0, \quad x \in(0,1)
$$

we get

$$
\varphi_{x}^{\prime}(y)=2\left(-\frac{1}{3} m_{3}+m_{2}\right) y-m_{1}>0, \quad y \in[0,1 / 3]
$$

Therefore φ_{x} is increasing on $[0,1 / 3]$ and we get

$$
\varphi_{x}(y) \geq \varphi_{x}(0)=m_{0}+8=x^{2}\left(16-6 x-8 x^{2}+6 x^{3}\right) \geq 0, \quad y \in[0,1 / 3]
$$

Thus, by (32), $g_{x}(y) \geq-8$ holds for $y \in[-1 / 3,0]$.
Next, we will show that $g_{x}(y) \geq-8$ holds for $y \in[0,1]$. For this, define a function $\psi_{x}:[0,1] \rightarrow \mathbb{R}$ by

$$
\psi_{x}(y)=g_{x}(y)-m_{4} y^{4}+8=m_{3} y^{3}+m_{2} y^{2}+m_{1} y+m_{0}+8
$$

It is sufficient to show that $\psi_{x}(y) \geq 0$ holds for $y \in[0,1]$, since

$$
g_{x}(y)+8 \geq \psi_{x}(y), \quad y \in[0,1]
$$

Let

$$
\zeta_{i}=\frac{-m_{2}+(-1)^{i} \sqrt{m_{2}^{2}-3 m_{1} m_{3}}}{3 m_{3}}, \quad i \in\{1,2\}
$$

be the roots of the equation

$$
\psi_{x}^{\prime}(y)=3 m_{3} y^{2}+2 m_{2} y+m_{1}=0
$$

Clearly, $\zeta_{1}<0$. Thus we have

$$
\begin{equation*}
\psi_{x}(y) \geq \min \left\{\psi_{x}(1), \psi_{x}\left(\zeta_{2}\right)\right\}, \quad y \in[0,1] \tag{33}
\end{equation*}
$$

Since

$$
\psi_{x}(1)=7+2 x-19 x^{2}-4 x^{3}+29 x^{4}+2 x^{5}-9 x^{6}>0, \quad x \in(0,1)
$$

it is enough to show that $\psi_{x}\left(\zeta_{2}\right) \geq 0$ holds. A similar argument with the proof of Proposition 4 , for $x \in(0,1), \psi_{x}\left(\zeta_{2}\right) \geq 0$ holds if $\tilde{\Lambda}_{-x}<0$, where $\tilde{\Lambda}_{x}$ is the quantity defined by (30). It can be checked that $\tilde{\Lambda}_{x}<0$ holds for all $x \in(-1,0)$. Consequently, $\psi_{x}\left(\zeta_{2}\right) \geq 0$, when $x \in(0,1)$, follows. Hence, by (33), $\psi_{x}(y) \geq 0$ holds for $y \in[0,1]$. It completes the proof of Proposition 5.

3. The Proof of Thereom 1

By using all lemmas and propositions in Section 2, we can prove Theorem 1 as follows.
Proof of Theorem 1. Let $f \in \mathcal{S} \mathcal{R}^{*}$ be of the form (1). Then by (3) there exists a $\omega \in \mathcal{B}_{0}$ of the form (8) such that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+\omega(z)}{1-\omega(z)} \tag{34}
\end{equation*}
$$

Substituting the series (1) and (8) into (34), by equating the coefficients we get

$$
\begin{equation*}
18 H_{3,1}(f)=3 \beta_{1}^{4} \beta_{2}+6 \beta_{1}^{3} \beta_{3}+10 \beta_{1} \beta_{2} \beta_{3}-8 \beta_{3}^{2}-11 \beta_{1}^{2} \beta_{2}^{2}+9\left(\beta_{2}-\beta_{1}^{2}\right) \beta_{4} \tag{35}
\end{equation*}
$$

Since $H_{3,1}(f)=H_{3,1}(\tilde{f})$, where $\tilde{f}(z)=-f(-z) \in \mathcal{S R}^{*}$, we may assume that $\beta_{1} \in[0,1]$.
The inequality (5) will be proved case by case as in the following Table 1.
Table 1. An outline of the proof

Cases	Conditions	Used Results for the Proof
I	$\beta_{1}=1$	Schwarz's lemma
II(a)	$\beta_{2}=1-\beta_{1}^{2}, \beta_{1} \in[0,1)$	Lemma 1
II(b)	$\beta_{2}=\beta_{1}^{2}-1, \beta_{1} \in[0,1)$	Lemma 1
III(a)	$\left\|\beta_{2}\right\| \neq 1-\beta_{1}^{2}, \beta_{1} \in[0,1), \beta_{2} \geq \beta_{1}^{2}$	Lemma 2 and 3, Proposition 1 and 2
III(b)	$\left\|\beta_{2}\right\| \neq 1-\beta_{1}^{2}, \beta_{1} \in[0,1), \beta_{2} \leq \beta_{1}^{2}$	Lemma 2 and 3, Proposition 1 and 3
IV(a)	$\left\|\beta_{2}\right\| \neq 1-\beta_{1}^{2}, \beta_{1} \in[0,1), \beta_{2} \geq \beta_{1}^{2}$	Lemma 2 and 3, Proposition 5
IV(b)	$\left\|\beta_{2}\right\| \neq 1-\beta_{1}^{2}, \beta_{1} \in[0,1), \beta_{2} \leq \beta_{1}^{2}$	Lemma 2 and 3, Proposition 4 and 5

I. When $\beta_{1}=1$, then by Schwarz's lemma, $\beta_{n}=0$ for all $n \geq 2$. Thus, by (35), $H_{3,1}(f)=0$.
II. When $\omega \in \mathcal{B}_{0}$ be such that $\left|\beta_{2}\right|=1-\beta_{1}^{2}$ and $\beta_{1} \in[0,1)$. Let $p=(1+\omega) /(1-\omega) \in \mathcal{P}$ be of the form (6). From the relations

$$
c_{1}=2 \beta_{1} \quad \text { and } \quad c_{2}=2\left(\beta_{1}^{2}+\beta_{2}\right)
$$

it follows from that $c_{1} \in[0,2)$ and $2 c_{2}=c_{1}^{2}+\left(4-c_{1}^{2}\right) \zeta$, where $\zeta= \pm 1 \in \mathbb{T}$.
II(a) Assume that $\zeta=1$. Then, by Lemma 1, $p=p_{1}$, where

$$
p_{1}(z)=\frac{1+2 \tau z+z^{2}}{1-z^{2}}=1+2 \tau z+2 z^{2}+2 \tau z^{3}+\cdots, \quad z \in \mathbb{D}
$$

with $\tau \in[0,1)$. And, from $p=(1+\omega) /(1-\omega)$, we have

$$
\begin{equation*}
\beta_{1}=\tau, \quad \beta_{2}=1-\tau^{2}, \quad \beta_{3}=-\tau+\tau^{3} \quad \text { and } \quad \beta_{4}=\tau^{2}-\tau^{4} \tag{36}
\end{equation*}
$$

Substituting (36) into (35), we get

$$
\begin{equation*}
H_{3,1}(f)=-\frac{2}{9} \tau^{2}\left(5-7 \tau^{2}+2 \tau^{4}\right)=: g\left(\tau^{2}\right) \tag{37}
\end{equation*}
$$

where

$$
g(x)=-\frac{2}{9} x(1-x)(5-2 x)
$$

It can be easily checked that $g(x) \leq g(0)=0$, for $x \in[0,1)$. Moreover, since $g^{\prime}(x)=0$ occurs only when $x=x_{1}:=(7-\sqrt{19}) / 6=0.440184 \cdots \in[0,1)$ and $g^{\prime \prime}\left(x_{1}\right)=4 \sqrt{19} / 9>0$, it holds that

$$
g(x) \geq g\left(x_{1}\right)=\frac{1}{243}(28-19 \sqrt{19}) \geq-\frac{4}{9}, \quad x \in[0,1)
$$

So, from (37), the inequality (5) holds.
II(b) Now assume that $\zeta=-1$. Then, by Lemma 1 again, we get $p=p_{2}$, where

$$
\begin{aligned}
p_{2}(z) & =\frac{1-z^{2}}{1-2 \tau z+z^{2}} \\
& =1+2 \tau z+\left(-2+4 \tau^{2}\right) z^{2}+\left(-6 \tau+8 \tau^{3}\right) z^{3}+\left(2-16 \tau^{2}+16 \tau^{4}\right) z^{4}+\cdots, \quad z \in \mathbb{D}
\end{aligned}
$$

with $\tau \in[0,1)$. Thus, we have

$$
\begin{equation*}
\beta_{1}=\tau, \quad \beta_{2}=\tau^{2}-1, \quad \beta_{3}=\tau^{3}-\tau \quad \text { and } \quad \beta_{4}=\tau^{4}-\tau^{2} . \tag{38}
\end{equation*}
$$

Substituting (38) into (35), we get $H_{3,1}(f)=0$ and the inequality (5) holds.
III. Let now $\left|\beta_{2}\right| \neq 1-\beta_{1}^{2}$ and $\beta_{1} \neq 1$.

At first, we will show that the second inequality in (5) holds. Since β_{1}, β_{2} and β_{3} are real, by Lemma 2 for $s \in[0,1]$ and $t, u \in[-1,1]$ we have

$$
\begin{equation*}
\beta_{1}=s, \quad \beta_{2}=\left(1-s^{2}\right) t, \quad \beta_{3}=\left(1-s^{2}\right)\left(u\left(1-t^{2}\right)-s t^{2}\right) \tag{39}
\end{equation*}
$$

Substituting (39) into (10) and (11), we have

$$
\begin{equation*}
\Psi_{U}=\left(1-s^{2}\right)\left[1-u^{2}-u(u+2 s) t-\left(1-u^{2}\right) t^{2}+(u+s)^{2} t^{3}\right] \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{L}=\left(1-s^{2}\right)\left[-1+u^{2}-u(u+2 s) t+\left(1-u^{2}\right) t^{2}+(u+s)^{2} t^{3}\right] . \tag{41}
\end{equation*}
$$

We also have $(s, t) \notin C$, where C is a curve defined by

$$
C=\{(s, t) \in R: s=1 \text { or } t= \pm 1\} \subset \partial R .
$$

III(a) Consider the case $\beta_{2} \geq \beta_{1}^{2}$, i.e., $(s, t) \in \Omega_{1}$, where Ω_{1} is the set defined by

$$
\Omega_{1}=\left\{(s, t) \in[0,1 / \sqrt{2}) \times[0,1): \frac{s^{2}}{1-s^{2}} \leq t<1\right\}
$$

so that $\Omega_{1} \cap C=\varnothing$. In this case, by (40), we have

$$
\begin{align*}
18 H_{3,1}(f) & \leq 3 \beta_{1}^{4} \beta_{2}+6 \beta_{1}^{3} \beta_{3}+10 \beta_{1} \beta_{2} \beta_{3}-8 \beta_{3}^{2}-11 \beta_{1}^{2} \beta_{2}^{2}+9\left(\beta_{2}-\beta_{1}^{2}\right) \Psi_{U} \\
& =-\left(1-s^{2}\right)(1+t) \Phi(s, t, u), \quad(s, t, u) \in \Omega_{1} \times[-1,1] \tag{42}
\end{align*}
$$

where

$$
\begin{equation*}
\Phi(s, t, u)=\Phi_{0}+\Phi_{1} u+\Phi_{2} u^{2} \tag{43}
\end{equation*}
$$

with

$$
\begin{aligned}
& \Phi_{0}=\Phi_{0}(s, t):=-9(1-t) t-s^{4} t\left(3+2 t-t^{2}\right)+s^{2}\left(9+2 t^{2}-t^{3}\right) \\
& \Phi_{1}=\Phi_{1}(s, t):=-2 s(1-t)\left[(5-t) t+s^{2}\left(3+4 t+t^{2}\right)\right] \\
& \Phi_{2}=\Phi_{2}(s, t):=\left(1-t^{2}\right)\left[8+t-s^{2}(17+t)\right]
\end{aligned}
$$

We note that $\Phi_{2}>0$, since

$$
8+t-s^{2}(17+t) \geq \frac{8(1-t)}{1+t}>0, \quad(s, t) \in \Omega_{1}
$$

Let $u_{1}=-\Phi_{1} /\left(2 \Phi_{2}\right)$ be the root of the equation $(\partial \Phi / \partial u)(s, t, u)=0$. Then it can be seen that $u_{1} \geq-1$. Indeed, we note that $2 \Phi_{2}-\Phi_{1}=2(1-t) Y(s, t)$, where $Y(s, t)=\lambda_{2}(s) t^{2}+\lambda_{1}(s) t+\lambda_{0}(s)$, where

$$
\lambda_{2}(s)=(1-s)^{2}(1+s), \quad \lambda_{1}(s)=9+5 s-18 s^{2}+4 s^{3}
$$

and

$$
\lambda_{0}(s)=8-17 s^{2}+3 s^{3}
$$

Since $\lambda_{i}(s) \geq 0$ when $s \in[0,1 / \sqrt{2})$ for $i \in\{1,2\}$, we have

$$
Y(s, t) \geq Y\left(s, \frac{s^{2}}{1-s^{2}}\right)=\frac{8\left(1+s-s^{2}\right)}{1+s} \geq 0, \quad(s, t) \in \Omega_{1}
$$

Hence, we get $2 \Phi_{2}-\Phi_{1} \geq 0$ and it follows from $\Phi_{2}>0$ that $u_{1} \geq-1$.
(i) Assume that $u_{1} \geq 1$. Then we have

$$
\Phi(s, t, u) \geq \Phi(s, t, 1)=\Phi_{0}+\Phi_{1}+\Phi_{2}, \quad(s, t, u) \in \Omega_{1} \times[-1,1]
$$

Therefore, by (42), it holds that

$$
\begin{equation*}
18 H_{3,1}(f) \leq-\left(1-s^{2}\right)(1+t)\left(\Phi_{0}+\Phi_{1}+\Phi_{2}\right)=F_{1}(s, t), \quad(s, t) \in \Omega_{1} \tag{44}
\end{equation*}
$$

where F_{1} is the function defined by (12). From Proposition 1 and (44), we thus have $H_{3,1}(f) \leq \sqrt{3} / 9$.
(ii) Assume that $-1 \leq u_{1} \leq 1$. Then we have

$$
\Phi(s, t, u) \geq \Phi\left(s, t, u_{1}\right)=\Phi_{0}-\frac{\Phi_{1}^{2}}{4 \Phi_{2}}, \quad(s, t, u) \in \Omega_{1} \times[-1,1]
$$

Therefore, by (42), it holds that

$$
18 H_{3,1}(f) \leq-\left(1-s^{2}\right)(1+t)\left(\Phi_{0}-\frac{\Phi_{1}^{2}}{4 \Phi_{2}}\right)=9 F_{2}\left(s^{2}, t\right), \quad(s, t) \in \Omega_{1}
$$

where F_{2} is the function defined by (18). Therefore, by Proposition 2, $H_{3,1}(f) \leq \sqrt{3} / 9$ holds.
III(b) Consider the case $\beta_{2} \leq \beta_{1}^{2}$, i.e., $(s, t) \in \Omega_{2}$, where Ω_{2} is the set defined by $\Omega_{2}=\operatorname{cl}\left(R \backslash \Omega_{1}\right) \backslash C$. Then, from (41), we have

$$
\begin{align*}
18 H_{3,1}(f) & \leq 3 \beta_{1}^{4} \beta_{2}+6 \beta_{1}^{3} \beta_{3}+10 \beta_{1} \beta_{2} \beta_{3}-8 \beta_{3}^{2}-11 \beta_{1}^{2} \beta_{2}^{2}+9\left(\beta_{2}-\beta_{1}^{2}\right) \Psi_{L} \\
& =-\left(1-s^{2}\right)(1+t) \hat{\Phi}(s, t, u), \quad(s, t, u) \in \Omega_{2} \times[-1,1] \tag{45}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{\Phi}(s, t, u)=\hat{\Phi}_{0}+\hat{\Phi}_{1} u+\hat{\Phi}_{2} u^{2} \tag{46}
\end{equation*}
$$

with

$$
\begin{aligned}
& \hat{\Phi}_{0}=\hat{\Phi}_{0}(s, t):=9(1-t) t-s^{4} t\left(3+2 t-t^{2}\right)-s^{2}\left(9-20 t^{2}+t^{3}\right) \\
& \hat{\Phi}_{1}=\hat{\Phi}_{1}(s, t):=-2 s(1-t)\left[(5-t) t+s^{2}\left(3+4 t+t^{2}\right)\right] \\
& \hat{\Phi}_{2}=\hat{\Phi}_{2}(s, t):=(1-t)^{2}\left[8-t+s^{2}(1+t)\right]
\end{aligned}
$$

Using the inequality $s^{2} \geq t /(1+t)$, we have $\hat{\Phi}_{2} \geq 8(1-t)^{2}>0$ for $(s, t) \in \Omega_{2}$. Let $u_{2}=-\hat{\Phi}_{1} /\left(2 \hat{\Phi}_{2}\right)$ be the root of the equation $(\partial \hat{\Phi} / \partial u)(s, t, u)=0$. Then, by a similar procedure with Part III(a), it can be seen that $u_{2} \geq-1$.
(i) Assume that $u_{2} \geq 1$. Then we have

$$
\hat{\Phi}(s, t, u) \geq \hat{\Phi}(s, t, 1)=\hat{\Phi}_{0}+\hat{\Phi}_{1}+\hat{\Phi}_{2}, \quad(s, t, u) \in \Omega_{2} \times[-1,1] .
$$

Therefore, by (45), it holds that

$$
18 H_{3,1}(f) \leq-\left(1-s^{2}\right)(1+t)\left(\hat{\Phi}_{0}+\hat{\Phi}_{1}+\hat{\Phi}_{2}\right)=F_{1}(s, t), \quad(s, t) \in \Omega_{2}
$$

where F_{1} is the function defined by (12). Thus, by Proposition $1, H_{3,1}(f) \leq \sqrt{3} / 9$ holds.
(ii) Assume that $-1 \leq u_{2} \leq 1$. Then we have

$$
\hat{\Phi}(s, t, u) \geq \hat{\Phi}\left(s, t, u_{2}\right)=\hat{\Phi}_{0}-\frac{\hat{\Phi}_{1}^{2}}{4 \hat{\Phi}_{2}}, \quad(s, t, u) \in \Omega_{2} \times[-1,1]
$$

Therefore, by (45), it holds that

$$
18 H_{3,1}(f) \leq-\left(1-s^{2}\right)(1+t)\left(\hat{\Phi}_{0}-\frac{\hat{\Phi}_{1}^{2}}{4 \hat{\Phi}_{2}}\right)=F_{3}\left(s^{2}, t\right), \quad(s, t) \in \Omega_{2}
$$

where F_{3} is the function defined by (21). Therefore, by Proposition 3, we obtain $H_{3,1}(f) \leq \sqrt{3} / 9$.
Next, we will show that the first inequality in (5) holds.
$\operatorname{IV}(\mathbf{a})$ Consider the case $\beta_{2} \geq \beta_{1}^{2}$. Then we have

$$
\begin{equation*}
18 H_{3,1}(f) \geq-\left(1-s^{2}\right)(1+t) \hat{\Phi}(s, t, u), \quad(s, t, u) \in \Omega_{1} \times[-1,1] \tag{47}
\end{equation*}
$$

where $\hat{\Phi}$ is the function defined by (46). Since $\hat{\Phi}_{1} \leq 0$ and $\hat{\Phi}_{2}>0$, it holds that

$$
\begin{aligned}
\hat{\Phi}(s, t, u) & \leq \max \{\hat{\Phi}(s, t,-1), \hat{\Phi}(s, t, 1)\} \\
& =\hat{\Phi}(s, t,-1)=\hat{\Phi}_{2}-\hat{\Phi}_{1}+\hat{\Phi}_{0}, \quad(s, t, u) \in \Omega_{1} \times[-1,1]
\end{aligned}
$$

Hence, from (47), we obtain

$$
\begin{equation*}
H_{3,1}(f) \geq-\left(1-s^{2}\right)(1+t)\left(\hat{\Phi}_{2}-\hat{\Phi}_{1}+\hat{\Phi}_{0}\right)=F_{4}(s, t), \quad(s, t) \in \Omega_{1} \tag{48}
\end{equation*}
$$

where F_{4} is the function defined by (31). Thus, by Proposition 5 and (48), we get $H_{3,1}(f) \geq-4 / 9$.
$\operatorname{IV}(\mathbf{b})$ We consider the case $\beta_{2} \leq \beta_{1}^{2}$. Then we have

$$
18 H_{3,1}(f) \geq-\left(1-s^{2}\right)(1+t) \Phi(s, t, u), \quad(s, t, u) \in \Omega_{2} \times[-1,1]
$$

where Φ is the function defined by (43).
For $t \in[-1 / 3,0]$, let

$$
s_{t}=\frac{t^{2}-5 t}{t^{2}+4 t+3}
$$

so that $0=s_{0} \leq s_{t} \leq s_{-1 / 3}=1$ holds for $t \in[-1 / 3,0]$. And let

$$
\Omega_{3}=\left\{(s, t) \in \Omega_{2}: s \leq s_{t}\right\} \quad \text { and } \quad \Omega_{4}=\left\{(s, t) \in \Omega_{2}: s \geq s_{t}\right\}
$$

We note that $\Omega_{3} \subset[0,1] \times[-1,0]$ and $\Omega_{4} \subset[0,1] \times[-1 / 3,1]$. Then $\Phi_{1} \geq 0$ when $(s, t) \in \Omega_{3}$, and $\Phi_{1} \leq 0$ when $(s, t) \in \Omega_{4}$.
(i) For the case $(s, t) \in \Omega_{3}$, since $\Phi_{1} \geq 0$ and $\Phi_{2} \geq 0$, we have

$$
\Phi(s, t, u) \leq \Phi(s, t, 1)=\Phi_{2}+\Phi_{1}+\Phi_{0}, \quad(s, t, u) \in \Omega_{3} \times[-1,1]
$$

and, therefore, we get

$$
18 H_{3,1}(f) \geq-\left(1-s^{2}\right)(1+t)\left(\Phi_{2}+\Phi_{1}+\Phi_{0}\right)=F_{1}(s, t), \quad(s, t) \in \Omega_{3}
$$

where F_{1} is the function defined by (12). Since $\Omega_{3} \subset[0,1] \times[-1,0]$, Proposition 4 gives us that $H_{3,1}(f) \geq-4 / 9$ holds.
(ii) For the case $(s, t) \in \Omega_{4}$, we have

$$
18 H_{3,1}(f) \geq-\left(1-s^{2}\right)(1+t)\left(\Phi_{2}-\Phi_{1}+\Phi_{0}\right)=F_{4}(s, t), \quad(s, t) \in \Omega_{4}
$$

where F_{4} is the funciton defined by (31). Since $\Omega_{4} \subset[0,1] \times[-1 / 3,1]$, Proposition 5 gives us that $H_{3,1}(f) \geq-4 / 9$ holds. Thus the proof of Theorem 1 is now completed.

4. Conclusions

In the present paper, we obtained that the sharp inequalities $-4 / 9 \leq H_{3,1}(f) \leq \sqrt{3} / 9$ hold for f in the class $\mathcal{S} \mathcal{R}^{*}$, i.e., starlike functions with real coefficients. Therefore, it follows that $\left|H_{3,1}(f)\right| \leq 4 / 9$ holds for $f \in \mathcal{S} \mathcal{R}^{*}$ and this inequality is sharp with the extremal function $f_{1} \in \mathcal{S} \mathcal{R}^{*}$, where $f_{1}(z)=z\left(1-z^{3}\right)^{-2 / 3}$. So it can be naturally expected that the sharp inequality $\left|H_{3,1}(f)\right| \leq 4 / 9$ would hold for all $f \in \mathcal{S}^{*}$.

Author Contributions: Writing-Original Draft Preparation, Y.J.S.; Writing—Review \& Editing, O.S.K.
Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP; Ministry of Science, ICT \& Future Planning) (No. NRF-2017R1C1B5076778).

Acknowledgments: The authors would like to express their thanks to the referees for their valuable comments and suggestions.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983.
2. Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619-625.
3. Babalola, K.O. On H3(1) Hankel determinants for some classes of univalent functions. In Inequality Theory and Applications; Cho, Y.J., Ed.; Nova Science Publishers: New York, NY, USA, 2010; Volume 6, pp. 1-7.
4. Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediter. J. Math. 2017, 14, 19. [CrossRef]
5. Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767-780. [CrossRef]
6. Pommerenke, C. Univalent Functions; Vandenhoeck and Ruprecht: Göttingen, Germany, 1975.
7. Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307-314. [CrossRef]
8. Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α, β)-convex functions. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1981, 35, 125-143.
9. Kwon, O.S.; Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the fifth coefficient of strongly starlike functions with real coefficients. Bull. Malay. Math. Sci. Soc. 2019, 42, 1719-1735. [CrossRef]
