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Abstract: In this paper, based on the very recent work by Nandal et al. (Nandal, A.; Chugh, R.;
Postolache, M. Iteration process for fixed point problems and zeros of maximal monotone operators.
Symmetry 2019, 11, 655.), we propose a new generalized viscosity implicit rule for finding a common
element of the fixed point sets of a finite family of nonexpansive mappings and the sets of zeros
of maximal monotone operators. Utilizing the main result, we first propose and investigate a
new general system of generalized equilibrium problems, which includes several equilibrium and
variational inequality problems as special cases, and then we derive an implicit iterative method to
solve constrained multiple-set split convex feasibility problem. We further combine forward-backward
splitting method and generalized viscosity implicit rule for solving monotone inclusion problem.
Moreover, we apply the main result to solve convex minimization problem.

Keywords: generalized viscosity implicit rule; zero point; fixed point; system of generalized
equilibrium problems; constrained multiple-set split convex feasibility problem; monotone inclusion
problem; minimization problem
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1. Introduction

A problem which appears very often in different areas of mathematics and physical sciences
consists of finding an element in the intersection of closed and convex subsets of a Hilbert space.
This problem is generally named as convex feasibility problem (CFP). The applications of CFP lie in the
center of various disciplines such as sensor networking [1], radiation therapy treatment planning [2],
computerized tomography [3], and image restoration [4].

The multiple-sets split feasibility problem (MSSFP) is stated as finding a point belonging to
a family of closed convex subsets in one space whose image under a bounded linear transformation
belongs to another family of closed convex subsets in the image space. It generalizes the CFP
and the split feasibility problem (SFP). The MSSFP was firstly introduced by Censor et al. [5] to
model the inverse problem of the Intensity-Modulated Radiation Therapy. Recently, Buong [6]
studied several iterative algorithms for solving MSSFP, which solves a certain variational inequality.
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Masad and Reich [7] generalized the MSSFP to the constrained multiple set split convex feasibility
problem (CMSSCFP), in which several bounded linear operators are involved. For other new results in
this direction, we address the reader to the works of Yao et al. [8–14]

Equilibrium problem (EP) theory includes many important mathematical problems, for instance,
variational inequality problems, optimization problems, saddle point problems, Nash equilibrium
problems and fixed point problems [15–17]. This problem has been generalized in several interesting
and important problems. In 2010, Ceng and Yao [18] introduced and studied a system of generalized
Equilibrium problem (SGEP). Several iterative methods have been proposed by a number of authors
to solve SGEP (see, e.g., [19–23]).

Monotone inclusion problem with multivalued maximal monotone mapping and inverse-strongly
monotone mapping is among the very important and extensively studied problems in recent
years. This problem includes various important problems such as convex minimization problem,
variational inequality problem, linear inverse problem and split feasibility problem. One of most
popular methods for solving this inclusion problem is the forward-backward splitting method [24–27].

In a very recent paper [28], Nandal, Chugh and Postolache introduced an iterative algorithm to
study fixed point problem of nonexpansive mappings and zero point problem of maximal monotone
mappings. Then, applicability of the algorithm was shown by discussing and solving different
kinds of problems; for instance, general system of variational inequalities, convex feasibility problem,
zero point problem of inverse strongly monotone and maximal monotone mapping, split feasibility
and its connected problems were solved under weaker control conditions on the parameters.

On the other hand, the implicit midpoint rule, the variational iteration method and the Taylor
series method are some powerful methods for solving various important kinds of differential equations.
The variational iteration method was first introduced by He [29–31]. In [32], Khuri and Sayfy
established relation between variational iteration method and the fixed point theory. Very recently,
He and Ji [33] suggested a simple approach using Taylor series technology to solve approximately
the Lane-Emden equation. The major method for solving ODEs (in particular, stiff equations) is the
implicit midpoint rule (see [34–39]). For instance, consider the initial value problem for the time
dependent ODE x′(t) = g(x(t)) with initial condition x(0) = x0. It is known that if g : Rn → Rn is
Lipschitz continuous and uniformly smooth, then the implicit method which is given by the implicit
midpoint rule:

xn+1 = xn + hg
(

xn + xn+1

2

)
,

converges to the solution of the above mentioned initial value problem as h → 0 uniformly over
t ∈ [0, t̃) for any fixed t̃ > 0. If we take g = I− T, where T is a nonlinear mapping, then the equilibrium
problem associated with the above mentioned initial value problem reduces to the fixed point problem
Tx = x. Therefore, Alghamdi et al. [40] established the implicit midpoint rule for nonexpansive
mappings in Hilbert space and also proved that their iterative method can be applied to find periodic
solution of a nonlinear time dependent evolution equation. In [41], Xu et al. combined viscosity
approximation method and implicit midpoint rule to approximate a fixed point of a nonexpansive
mapping. Recently, Ke and Ma [42] established generalized viscosity implicit rule of nonexpansive
mappings by replacing the midpoint with any point of the interval [xn, xn+1].

Inspired by the above work, we introduce and study a new generalized viscosity implicit iterative
rule based on Nandal, Chugh and Postolache’s [28] iterative method for approximating a common
element of the fixed point sets of nonexpansive mappings and the sets of zeros of maximal monotone
mappings. Then, we introduce and analyze a new general system of generalized equilibrium problems
and apply our main result to solve this problem. Moreover, we utilize our main result to solve
constrained multiple set split convex feasibility problem, monotone inclusion problem and convex
minimization problem.
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2. Preliminaries

In this paper, H is assumed a real Hilbert space with the inner product 〈·, ·〉and the norm ‖ · ‖.
Here, Fix(S) is used to denote the fixed point set of a mapping S. The strong and weak convergence
of a sequence {xn} to x shall be denoted by xn → x and xn ⇀ x, respectively. Assume that D ⊂ H is
a closed convex set then the nearest point projection (metric projection) from H onto D is denoted by
PD, that is, for each u ∈ H, ‖u− PDu‖ ≤ ‖u− v‖, ∀ v ∈ D. In addition, for given u ∈ H and w ∈ D

w = PDu⇔ 〈u− w, v− w〉 ≤ 0, ∀ v ∈ D. (1)

The following is a well known result of Hilbert space

‖λr + (1− λ)s‖2 = λ‖r‖2 + (1− λ)‖s‖2 − λ(1− λ)‖r− s‖2, (2)

for all r, s ∈ H and λ ∈ [0, 1].
Next, we recall the definitions of some important operators, which we use below.

Definition 1. An operator G : H → H is said to be

(1) Nonexpansive if ‖Gr− Gs‖ ≤ ‖r− s‖ ∀ r, s ∈ H.
(2) Contraction if there exist a constant k ∈ (0, 1) such that ‖Gr− Gs‖ ≤ k‖r− s‖, ∀ r, s ∈ H.
(3) α-averaged if there exist a constant α ∈ (0, 1) and a nonexpansive mapping S such that

G = (1− α)I + αS.
(4) θ-inverse strongly monotone (for short, θ-ism) if there exists θ > 0 such that

〈Gr− Gs, r− s〉 ≥ θ‖Gr− Gs‖2 ∀ r, s ∈ H.

(5) Firmly nonexpansive if 〈Gr− Gs, r− s〉 ≥ ‖Gr− Gs‖2 ∀ r, s ∈ H.

Note that metric projection PD is an example of firmly nonexpansive and, further, every firmly
nonexpansive is (1/2)-averaged in Hilbert space.

A set valued operator B : H → 2H is called maximal monotone, if B is monotone, i.e.,
〈r1 − s1, r− s〉 ≥ 0 ∀ r, s ∈ dom(B), r1 ∈ Br and s1 ∈ Bs, and there does not exist any other monotone
operator whose graph properly includes graph of B. Further, a maximal monotone operator B and
µ > 0 generate an operator given as:

JB
µ := (I + µB)−1 : H → H,

which is known as resolvent of B. It is well known [43] that, if B : H → 2H is maximal monotone and
µ > 0, then JB

µ is firmly nonexpansive and Fix(JB
µ ) = B−10 = {r ∈ H : 0 ∈ Br}.

Next, we consider a sequence {Vn} of nonexpansive mappings, which is called strongly
nonexpansive sequence [44] if

xn − yn − (Vnxn −Vnyn)→ 0,

whenever {xn}, {yn} ⊂ H such that {xn − yn} is bounded and ‖xn − yn‖ − ‖Vnxn −Vnyn‖ → 0. In
addition, note that definition of strongly nonexpansive mapping [45] can be obtained by taking Vn = V
∀ n ∈ N.

Next, we collect several lemmas, which we use in our results.

Lemma 1 (Lemma 1, [28]). Let h : H → H be a β-ism operator on H. Then, I − 2βh is nonexpansive.

Lemma 2 (Lemma 2.5, [46]). Let {un} ⊂ [0, ∞), {ωn} ⊂ [0, 1] and {vn} be three real sequences satisfying

un+1 ≤ (1−ωn)un + ωnvn, ∀ n ≥ 0.



Mathematics 2019, 7, 773 4 of 24

Suppose that
∞
∑

n=0
ωn = ∞ and lim supn→∞ vn ≤ 0. Then, lim

n→∞
un = 0.

Lemma 3 (Corollary 3.13, [44]). Let D ⊂ H be a nonempty set and suppose that {σn} ⊂ [0, 1] satisfy
lim inf

n→∞
σn > 0. Then, a sequence {Vn} of mappings of D into H defined by Vn = σn I + (1 − σn)Gn,

is a strongly nonexpansive sequence, where Gn : D → H is a nonexpansive mapping for each n ∈ N and I is
the identity mapping on D.

Lemma 4 (Example 3.2, [44]). In a Hilbert space, every sequence of firmly nonexpansive mappings is a strongly
nonexpansive sequence.

Lemma 5 (Theorem 3.4, [44]). Let D, K ⊂ H be nonempty sets. Suppose {Gn} and {Vn} are two strongly
nonexpansive sequences where Gn : D → H and Vn : K → H are such that Vn(K) ⊂ D for each n ∈ N. Then,
{GnVn} is a strongly nonexpansive sequence.

Lemma 6 (Lemma 2.1, [45]). If {Gi : 1 ≤ i ≤ p} are strongly nonexpansive mappings and
p⋂

i=1
Fix(Gi) 6= ∅,

then
p⋂

i=1
Fix(Gi) = Fix(GpGp−1 . . . G2G1).

Lemma 7 (Propositions 2.1 and 2.2, [47]). The composition of finitely many averaged mappings is
averaged. That is, if {Gi : 1 ≤ i ≤ p} are averaged mappings, then G1 . . . Gp is also averaged. Furthermore,

if
p⋂

i=1
Fix(Gi) 6= ∅, then

p⋂
i=1

Fix(Gi) = Fix(GpGp−1 . . . G2G1).

Lemma 8 (Theorem 10.4, [48]). Let D ⊂ H be a nonempty closed convex set and G : D → D be
a nonexpansive mapping. Then, I−G is demiclosed at 0, that is, if {xn} ⊂ D with xn ⇀ z and (I−G)xn → 0,
then z ∈ Fix(G).

Lemma 9 (The Resolvent Identity; (Remark 1.3.48, [49])). For each µ, σ > 0,

JB
µ x = JB

σ

(
σ

µ
x +

(
1− σ

µ

)
JB
µ x
)

.

Note that Lemma 9 uses the homotopy technology, which is also widely used in the homotopy
perturbation method [50,51].

Lemma 10 (Lemma 3.1, [52]). Let {hn} be a sequence of real numbers such that there exists a subsequence
{ni} of {n} such that hni < hni+1 for all i ∈ N. Then, there exists a nondecreasing sequence {mq} ⊂ N such
that mq → ∞ and the following properties are satisfied by all (sufficiently large) numbers q ∈ N:

hmq ≤ hmq+1, hq ≤ hmq+1.

In fact,
mq = max

{
j ≤ q : hj < hj+1

}
.

3. Main Results

Theorem 1. Let H be a real Hilbert space. Let {Ti}m
i=1 and V be nonexpansive self-mappings on H and

B1, B2 : H → 2H be maximal monotone mappings such that

Γ :=
m⋂

i=1

Fix(Ti)
⋂

Fix(V)
⋂

B−1
1 0

⋂
B−1

2 0 6= ∅.
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Let g : H → H be a contraction with coefficient k ∈ (0, 1) and let {xn} be a generalized viscosity implicit
rule defined by x0 ∈ H and 

zn = λnxn + (1− λn)xn+1,
yn = αng(xn) + (1− αn)JB2

µn Vnzn,
xn+1 = JB1

ρn Tn
mTn

m−1 . . . Tn
2 Tn

1 yn,
(3)

for all n ≥ 0, where Vn = (1− βn)I + βnV, Tn
i = (1− γi

n)I + γi
nTi for i = 1, 2, . . . , m and {λn} ⊂ [a, b]

for some a, b ∈ (0, 1). Suppose that {αn}, {βn} and
{

γi
n
}

are sequences in (0, 1) and {ρn} and {µn} are
sequences of positive numbers satisfying the following conditions:

(i) lim
n→∞

αn = 0,
∞
∑

n=0
αn = ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) 0 < lim infn→∞ γi

n ≤ lim supn→∞ γi
n < 1, for all i = 1, 2, . . . , m; and

(iv) for all sufficiently large n, min {ρn, µn} > ε for some ε > 0.

Then, the sequence {xn} converges strongly to x∗ ∈ Γ where x∗ is the unique fixed point of the contraction
PΓg.

Proof. First, we show that {xn} is bounded.
Let x∗ ∈ Γ. Set Wn = JB1

ρn Tn
m . . . Tn

2 Tn
1 and Sn = JB2

µn Vn. Clearly, Wn and Sn are nonexpansive
mappings for each n ≥ 0. By Lemmas 3 and 4, for each n ≥ 0, Wn and Sn are composition of strongly
nonexpansive mappings. Therefore, from Lemma 6, we get

∅ 6= Γ =
m⋂

i=1

Fix(Ti)
⋂

Fix(V)
⋂

B−1
1 0

⋂
B−1

2 0,

=
m⋂

i=1

Fix(Tn
i )
⋂

Fix(Vn)
⋂

Fix(JB1
ρn )

⋂
Fix(JB2

µn )

= Fix(Wn)
⋂

Fix(Sn).

From Equation (3), we have

‖xn+1 − x∗‖ = ‖Wnyn − x∗‖
≤ ‖yn − x∗‖
= ‖αn(g(xn)− g(x∗)) + αn(g(x∗)− x∗) + (1− αn)(Snzn − x∗)‖
≤ αn‖g(xn)− g(x∗)‖+ αn‖g(x∗)− x∗‖+ (1− αn)‖Snzn − x∗‖
≤ αnk‖xn − x∗‖+ αn‖g(x∗)− x∗‖+ (1− αn)‖zn − x∗‖
≤ αnk‖xn − x∗‖+ αn‖g(x∗)− x∗‖+ (1− αn)‖λn(xn − x∗) + (1− λn)(xn+1 − x∗)‖
≤ αnk‖xn − x∗‖+ αn‖g(x∗)− x∗‖+ (1− αn)λn‖xn − x∗‖+ (1− αn)(1− λn)‖xn+1 − x∗‖ ,

which implies that

(λn + αn(1− λn))‖xn+1 − x∗‖ ≤ (αnk + λn − αnλn)‖xn − x∗‖+ αn‖g(x∗)− x∗‖.

Therefore, we obtain

‖xn+1 − x∗‖ ≤ αnk + λn − αnλn

λn + αn(1− λn)
‖xn − x∗‖+ αn

λn + αn(1− λn)
‖g(x∗)− x∗‖

=

[
1− αn(1− k)

λn + αn(1− λn)

]
‖xn − x∗‖+ αn(1− k)

λn + αn(1− λn)

(
1

(1− k)
‖g(x∗)− x∗‖

)
.
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Thus, we have

‖xn+1 − x∗‖ ≤ max
{
‖xn − x∗‖, 1

1− k
‖g(x∗)− x∗‖

}
.

By induction, we have

‖xn+1 − x∗‖ ≤ max
{
‖x0 − x∗‖, 1

1− k
‖g(x∗)− x∗‖

}
.

This shows that {xn} is bounded and so are {g(xn)} and {yn}.
From Equations (2) and (3), we have

‖xn+1 − x∗‖2 ≤ ‖yn − x∗‖2

= ‖αn(g(xn)− x∗) + (1− αn)(Snzn − x∗)‖2

≤ αn‖g(xn)− x∗‖2 + (1− αn)‖Snzn − x∗‖2

≤ αn‖g(xn)− x∗‖2 + (1− αn)‖zn − x∗‖2

= αn‖g(xn)− x∗‖2 + (1− αn)‖λn(xn − x∗) + (1− λn)(xn+1 − x∗)‖2

= αn‖g(xn)− x∗‖2 + (1− αn)λn‖xn − x∗‖2 + (1− αn)(1− λn)‖xn+1 − x∗‖2

− (1− αn)λn(1− λn)‖xn+1 − xn‖2,

which yields that

(1− αn)λn(1− λn)‖xn+1 − xn‖2 ≤ αn

(
‖g(xn)− x∗‖2 − ‖xn+1 − x∗‖2

)
+ (1− αn)λn

(
‖xn − x∗‖2 − ‖xn+1 − x∗‖2

)
. (4)

Since the fixed point set of nonexpansive mapping is closed and convex, the set Γ is nonempty
closed and convex subset of H. Hence, the metric projection PΓ is well defined. In addition, since PΓg :
H → H is a contraction mapping, there exist x∗ ∈ Γ such that x∗ = PΓg(x∗).

Now, we prove that xn → x∗.
For this purpose, we examine two possible cases.

Case 1. Assume that there exists n0 ∈ N such that the real sequence {‖xn − x∗‖} is nonincreasing for all
n ≥ n0. Since {‖xn − x∗‖} is bounded, {‖xn − x∗‖} is convergent. From Equation (4), we have

xn+1 − xn → 0 as n→ ∞. (5)

From the nonexpansiveness of Wn, we have

0 ≤ ‖yn − x∗‖ − ‖Wnyn − x∗‖
≤ αn‖g(xn)− x∗‖+ (1− αn)‖Snzn − x∗‖ − ‖xn+1 − x∗‖
≤ αn‖g(xn)− x∗‖+ ‖zn − x∗‖ − ‖xn+1 − x∗‖
≤ αn‖g(xn)− x∗‖+ λn‖xn − x∗‖+ (1− λn)‖xn+1 − x∗‖ − ‖xn+1 − x∗‖
= αn‖g(xn)− x∗‖+ λn(‖xn − x∗‖ − ‖xn+1 − x∗‖). (6)

Since {‖xn − x∗‖} is convergent, αn → 0 and {λn} is bounded, we have

‖yn − x∗‖ − ‖Wnyn − x∗‖ → 0 as n→ ∞.
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Using Lemma 5, {Wn} is strongly nonexpansive sequence, therefore, we have

yn −Wnyn → 0 as n→ ∞. (7)

From the definition of xn, we have

‖xn − Snxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ ‖yn − Snxn‖
≤ ‖xn − xn+1‖+ ‖Wnyn − yn‖+ ‖αn(g(xn)− Sn(xn)) + (1− αn)(Snzn − Snxn)‖
≤ ‖xn − xn+1‖+ ‖Wnyn − yn‖+ αn‖g(xn)− Sn(xn)‖+ (1− αn)‖zn − xn‖
= ‖xn − xn+1‖+ ‖Wnyn − yn‖+ αn‖g(xn)− Sn(xn)‖+ (1− αn)(1− λn)‖xn+1 − xn‖.

Thus, by Equations (5) and (7), and αn → 0, we obtain

xn − Snxn → 0 as n→ ∞. (8)

Note that

‖Snzn − xn‖ ≤ ‖Snzn − Snxn‖+ ‖Snxn − xn‖
≤ ‖zn − xn‖+ ‖Snxn − xn‖
= (1− λn)‖xn+1 − xn‖+ ‖Snxn − xn‖.

From Equations (5) and (8), it follows that

xn − Snzn → 0 as n→ ∞. (9)

Moreover, we have

‖yn − xn‖ ≤ αn‖g(xn)− xn‖+ (1− αn)‖Snzn − xn‖ → 0 as n→ ∞. (10)

Next, we show that

xn −Wnxn → 0 as n→ ∞. (11)

From the definition of xn, we have

‖xn −Wnxn‖ ≤ ‖xn −Wnyn‖+ ‖Wnyn −Wnxn‖
≤ ‖xn − xn+1‖+ ‖yn − xn‖.

In view of Equations (5) and (10), we obtain Equation (11).
Moreover, we have

‖xn+1 − x∗‖ = ‖Wnyn − x∗‖
≤ ‖Wnyn −Wnxn‖+ ‖Wnxn − x∗‖
≤ ‖yn − xn‖+ ‖Wnxn − x∗‖. (12)

From the nonexpansiveness of Tn
i Tn

i−1 . . . Tn
1 for each i = 1, 2, . . . , m and Equation (12), we have

0 ≤ ‖xn − x∗‖ − ‖Tn
i Tn

i−1 . . . Tn
1 xn − x∗‖

≤ ‖xn − x∗‖ − ‖Wnxn − x∗‖
≤ ‖xn − x∗‖ − ‖xn+1 − x∗‖+ ‖yn − xn‖. (13)
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In view of the fact that {‖xn − x∗‖} is convergent and using Equation (10), we obtain

‖xn − x∗‖ − ‖Tn
i Tn

i−1 . . . Tn
1 xn − x∗‖ → 0 as n→ ∞.

In addition, by using Lemma 5,
{

Tn
i Tn

i−1 . . . Tn
1
}

is strongly nonexpansive sequence for each
i = 1, 2, . . . , m. Therefore, we have

xn − Tn
i Tn

i−1 . . . Tn
1 xn → 0 as n→ ∞ for each i = 1, 2, . . . , m. (14)

Now, consider

‖xn − JB1
ρn xn‖ ≤ ‖xn − JB1

ρn Tn
mTn

m−1 . . . Tn
1 xn‖+ ‖JB1

ρn Tn
mTn

m−1 . . . Tn
1 xn − JB1

ρn xn‖
≤ ‖xn −Wnxn‖+ ‖Tn

mTn
m−1 . . . Tn

1 xn − xn‖

It follows from Equations (11) and (14) that

xn − JB1
ρn xn → 0 as n→ ∞. (15)

Choose a fixed number s such that ε > s > 0 and using Lemma 9, for all sufficiently large n, we have

‖xn − JB1
s xn‖ ≤ ‖xn − JB1

ρn xn‖+ ‖JB1
ρn xn − JB1

s xn‖

= ‖xn − JB1
ρn xn‖+ ‖JB1

s

(
s

ρn
xn +

(
1− s

ρn

)
JB1
ρn xn

)
− JB1

s xn‖

≤ ‖xn − JB1
ρn xn‖+ ‖

s
ρn

xn +

(
1− s

ρn

)
JB1
ρn xn − xn‖

= ‖xn − JB1
ρn xn‖+

(
1− s

ρn

)
‖JB1

ρn xn − xn‖

≤ 2‖xn − JB1
ρn xn‖.

In view of Equation (15), we obtain

xn − JB1
s xn → 0 as n→ ∞. (16)

Next, we show that

xn − Tn
i xn → 0 as n→ ∞ for each i = 1, 2, . . . , m. (17)

Clearly, from Equation (14) for i = 1, Equation (17) holds. Now, for i = 2, . . . , m, we see that

‖xn − Tn
i xn‖ ≤ ‖xn − Tn

i Tn
i−1 . . . Tn

1 xn‖+ ‖Tn
i Tn

i−1 . . . Tn
1 xn − Tn

i xn‖
≤ ‖xn − Tn

i Tn
i−1 . . . Tn

1 xn‖+ ‖Tn
i−1 . . . Tn

1 xn − xn‖.

Thus, using Equation (14), we obtain Equation (17).
Notice that

xn − Tn
i xn = γi

n(xn − Tixn)

It follows from given Condition (iii) and Equation (17) that

xn − Tixn → 0 as n→ ∞ for each i = 1, 2, . . . , m. (18)

From Equation (3), we have

‖xn+1 − x∗‖ ≤ ‖yn − x∗‖
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= ‖αn(g(xn)− x∗) + (1− αn)(Snzn − x∗)‖
≤ αn‖g(xn)− x∗‖+ ‖Snzn − x∗‖
≤ αn‖g(xn)− x∗‖+ ‖Snzn − Snxn‖+ ‖Snxn − x∗‖
≤ αn‖g(xn)− x∗‖+ ‖zn − xn‖+ ‖Snxn − x∗‖
= αn‖g(xn)− x∗‖+ (1− λn)‖xn+1 − xn‖+ ‖Snxn − x∗‖. (19)

Moreover, using Equation (19) and nonexpansiveness of Vn, we have

0 ≤ ‖xn − x∗‖ − ‖Vnxn − x∗‖
≤ ‖xn − x∗‖ − ‖Snxn − x∗‖
≤ ‖xn − x∗‖ − ‖xn+1 − x∗‖+ αn‖g(xn)− x∗‖+ (1− λn)‖xn+1 − xn‖. (20)

Since {‖xn − x∗‖} is convergent, using αn → 0 and Equation (5), we obtain

‖xn − x∗‖ − ‖Vnxn − x∗‖ → 0 as n→ ∞.

In addition, by using Lemma 3, {Vn} is strongly nonexpansive sequence. Therefore, we have

xn −Vnxn → 0 as n→ ∞. (21)

Notice that
xn −Vnxn = βn(xn −Vxn).

It follows from given Condition (ii) and Equation (21) that

xn −Vxn → 0 as n→ ∞. (22)

Now, consider

‖xn − JB2
µn xn‖ ≤ ‖xn − JB2

µn Vnxn‖+ ‖JB2
µn Vnxn − JB2

µn xn‖
≤ ‖xn − Snxn‖+ ‖Vnxn − xn‖.

It follows from Equations (8) and (21) that

xn − JB2
µn xn → 0 as n→ ∞.

Now, following the same way as for Equation (16), we obtain

xn − JB2
s xn → 0 as n→ ∞. (23)

Put U := 1
m+3

(
m
∑

i=1
Ti + V + JB1

s + JB2
s

)
. U being a convex combination of nonexpansive mappings is

nonexpansive and

Fix(U) =
m⋂

i=1

Fix(Ti)
⋂

Fix(V)
⋂

B−1
1 0

⋂
B−1

2 0 = Γ.

We observe

‖xn −Uxn‖ =
∥∥∥∥∥xn −

1
m + 3

(
m

∑
i=1

Tixn + Vxn + JB1
s xn + JB2

s xn

)∥∥∥∥∥
=

∥∥∥∥∥ 1
m + 3

(
mxn −

m

∑
i=1

Tixn

)
+

1
m + 3

(xn −Vxn) +
1

m + 3

(
xn − JB1

s xn

)
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+
1

m + 3

(
xn − JB2

s xn

)∥∥∥∥
≤ 1

m + 3

m

∑
i=1
‖xn − Tixn‖+

1
m + 3

‖xn −Vxn‖+
1

m + 3
‖xn − JB1

s xn‖

+
1

m + 3
‖xn − JB2

s xn‖

In view of Equations (16), (18), (22) and (23), we obtain

xn −Uxn → 0 as n→ ∞. (24)

As {xn} is bounded, take a subsequence {xni} such that xni ⇀ z ∈ H. Then, by Equation (24) and
Lemma 8, z ∈ Fix(U) = Γ, which results that

lim sup
n→∞

〈g(x∗)− x∗, xn − x∗〉 = lim
i→∞
〈g(x∗)− x∗, xni − x∗〉

= 〈g(x∗)− x∗, z− x∗〉
= 〈g(x∗)− PΓg(x∗), z− PΓg(x∗)〉
≤ 0, (25)

where the last inequality follows from Equation (1).
Finally, we show that xn → x∗ as n→ ∞. In fact, we have

‖xn+1 − x∗‖2 = ‖Wnyn − x∗‖2

≤ ‖yn − x∗‖2

= ‖αn(g(xn)− x∗) + (1− αn)(Snzn − x∗)‖2

= α2
n‖g(xn)− x∗‖2 + (1− αn)

2‖Snzn − x∗‖2 + 2αn(1− αn) 〈g(xn)− x∗, Snzn − x∗〉
≤ α2

n‖g(xn)− x∗‖2 + (1− αn)
2‖zn − x∗‖2 + 2αn(1− αn) 〈g(xn)− g(x∗), Snzn − x∗〉

+ 2αn(1− αn) 〈g(x∗)− x∗, Snzn − x∗〉
≤ (1− αn)

2‖zn − x∗‖2 + 2αn(1− αn)‖g(xn)− g(x∗)‖.‖Snzn − x∗‖+ En

≤ (1− αn)
2‖zn − x∗‖2 + 2αn(1− αn)k‖xn − x∗‖.‖zn − x∗‖+ En,

where En = α2
n‖g(xn)− x∗‖2 + 2αn(1− αn) 〈g(x∗)− x∗, Snzn − x∗〉.

It turns out that

(1− αn)
2‖zn − x∗‖2 + 2kαn(1− αn)‖xn − x∗‖.‖zn − x∗‖+ (En − ‖xn+1 − x∗‖2) ≥ 0.

Solving this quadratic inequality for ‖zn − x∗‖, we get

‖zn − x∗‖ ≥ 1
2(1− αn)2 {−2kαn(1− αn)‖xn − x∗‖

+
√

4k2α2
n(1− αn)2‖xn − x∗‖2 − 4(1− αn)2(En − ‖xn+1 − x∗‖2)

}
=
−kαn‖xn − x∗‖+

√
k2α2

n‖xn − x∗‖2 + ‖xn+1 − x∗‖2 − En

1− αn
.

Note that

‖zn − x∗‖ = ‖λn(xn − x∗) + (1− λn)(xn+1 − x∗)‖
≤ λn‖xn − x∗‖+ (1− λn)‖xn+1 − x∗‖.
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Therefore, we have

λn‖xn − x∗‖+ (1− λn)‖xn+1 − x∗‖

≥ −kαn‖xn − x∗‖+
√

k2α2
n‖xn − x∗‖2 + ‖xn+1 − x∗‖2 − En

1− αn
.

This implies that√
k2α2

n‖xn − x∗‖2 + ‖xn+1 − x∗‖2 − En

≤ (λn − αnλn + kαn)‖xn − x∗‖+ (1− αn)(1− λn)‖xn+1 − x∗‖,

that is,

k2α2
n‖xn − x∗‖2 + ‖xn+1 − x∗‖2 − En

≤ (λn − αnλn + kαn)
2‖xn − x∗‖2 + (1− αn)

2(1− λn)
2‖xn+1 − x∗‖2

+ 2(λn − αnλn + kαn)(1− αn)(1− λn)‖xn − x∗‖.‖xn+1 − x∗‖
≤ (λn − αnλn + kαn)

2‖xn − x∗‖2 + (1− αn)
2(1− λn)

2‖xn+1 − x∗‖2

+ (λn − αnλn + kαn)(1− αn)(1− λn)
[
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

]
,

which gives the inequality[
1− (1− αn)

2(1− λn)
2 − (1− αn)(1− λn)(λn − αnλn + kαn)

]
‖xn+1 − x∗‖2

≤
[
(λn − αnλn + kαn)

2 + (1− αn)(1− λn)(λn − αnλn + kαn)− k2α2
n

]
‖xn − x∗‖2 + En,

that is,

[1− (1− αn)(1− λn)(1− (1− k)αn)] ‖xn+1 − x∗‖2

≤
[
(λn − αnλn + kαn)(1− (1− k)αn)− k2α2

n

]
‖xn − x∗‖2 + En.

It follows that

‖xn+1 − x∗‖2 ≤ (λn − αnλn + kαn)(1− (1− k)αn)− k2α2
n

1− (1− αn)(1− λn)(1− (1− k)αn)
‖xn − x∗‖2

+
En

1− (1− αn)(1− λn)(1− (1− k)αn)
. (26)

Note that λn ≤ b implies that
1− λn ≥ 1− b.

Consequently, we have

1− (1− αn)(1− λn)(1− (1− k)αn) ≤ 1− (1− αn)(1− b)(1− (1− k)αn). (27)

Let

vn =
1

αn

{
1− (λn − αnλn + kαn)(1− (1− k)αn)− k2α2

n
1− (1− αn)(1− λn)(1− (1− k)αn)

}
=

(
1− (1− (1− k)αn)2 + k2α2

n
αn

)(
1

1− (1− αn)(1− λn)(1− (1− k)αn)

)
. (28)
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Using Equation (27) in Equation (28), we have

vn ≥
(

1− (1− (1− k)αn)2 + k2α2
n

αn

)(
1

1− (1− αn)(1− b)(1− (1− k)αn)

)
,

that is,
vn ≥ un ∀ n ≥ 0,

where

un =

(
1− (1− (1− k)αn)2 + k2α2

n
αn

)(
1

1− (1− αn)(1− b)(1− (1− k)αn)

)
=

2(1− k) + (2k− 1)αn

1− (1− αn)(1− b)(1− (1− k)αn)
.

Note that

lim
n→∞

un =
2(1− k)

b
> 0.

Letting ξ satisfy

0 < ξ <
2(1− k)

b
,

there exists an integer N large enough such that un > ξ for all n ≥ N and, consequently, we have vn > ξ for
all n ≥ N. Hence, we have

(λn − αnλn + kαn)(1− (1− k)αn)− k2α2
n

1− (1− αn)(1− λn)(1− (1− k)αn)
≤ 1− ξαn,

for all n ≥ N. Therefore, from Equation (26), we have, for all n ≥ N,

‖xn+1 − x∗‖2 ≤ (1− ξαn)‖xn − x∗‖2 +
En

1− (1− αn)(1− λn)(1− (1− k)αn)
. (29)

Note that

En = α2
n‖g(xn)− x∗‖2 + 2αn(1− αn) 〈g(x∗)− x∗, Snzn − x∗〉

En = αn

[
αn‖g(xn)− x∗‖2 + 2(1− αn) 〈g(x∗)− x∗, Snzn − xn〉+ 2(1− αn) 〈g(x∗)− x∗, xn − x∗〉

]
≤ αn

[
αn‖g(xn)− x∗‖2 + 2(1− αn)‖g(x∗)− x∗‖.‖Snzn − xn‖+ 2(1− αn) 〈g(x∗)− x∗, xn − x∗〉

]
.

Thus, by Equations (9) and (25) and by given condition on {αn} and {λn}, we have

lim sup
n→∞

En

ξαn (1− (1− αn)(1− λn)(1− (1− k)αn))

≤ lim sup
n→∞

αn‖g(xn)− x∗‖2 + 2(1− αn)‖g(x∗)− x∗‖.‖Snzn − xn‖+ 2(1− αn) 〈g(x∗)− x∗, xn − x∗〉
ξ (1− (1− αn)(1− λn)(1− (1− k)αn))

≤ 0. (30)

From Equations (29) and (30) and Lemma 2, we have xn → x∗ as n→ ∞.

Case 2. Assume that there exists a subsequence
{

nj
}

of {n} such that

‖xnj − x∗‖ < ‖xnj+1 − x∗‖,
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for all j ∈ N. Then, by Lemma 10, there exists a nondecreasing sequence of integers
{

mq
}
⊂ N such that

mq → ∞ as q→ ∞ and

‖xmq − x∗‖ ≤ ‖xmq+1 − x∗‖ and ‖xq − x∗‖ ≤ ‖xmq+1 − x∗‖ (31)

for all q ∈ N. Now, using Equation (31) in Equation (4), we have

(1− αmq)λmq(1− λmq)‖xmq+1 − xmq‖2 ≤ αmq

(
‖g(xmq)− x∗‖2 − ‖xmq+1 − x∗‖2

)
.

Using given conditions on {αmq} and {λmq} with boundedness of {xmq} and {g(xmq)}, we obtain

xmq+1 − xmq → 0 as q→ ∞.

Similarly, using Equation (31) in Equation (6), we obtain

0 ≤ ‖ymq − x∗‖ − ‖Wmq ymq − x∗‖

≤ αmq‖g(xmq)− x∗‖+ λmq

(
‖xmq − x∗‖ − ‖xmq+1 − x∗‖

)
≤ αmq‖g(xmq)− x∗‖.

As αmq → 0 and {g(xmq)} is bounded, we obtain

‖ymq − x∗‖ − ‖Wmq ymq − x∗‖ → 0 as q→ ∞.

By the same argument as in Case 1, we obtain

ymq −Wmq ymq → 0, xmq − Smq xmq → 0, xmq − Smq zmq → 0,

ymq − xmq → 0, xmq −Wmq xmq → 0 as q→ ∞. (32)

From Equation (13), we obtain

0 ≤ ‖xmq − x∗‖ − ‖Tmq
i T

mq
i−1 . . . T

mq
1 xmq − x∗‖

≤ ‖xmq − x∗‖ − ‖xmq+1 − x∗‖+ ‖ymq − xmq‖

≤ ‖ymq − xmq‖.

Using ymq − xmq → 0, we have

‖xmq − x∗‖ − ‖Tmq
i T

mq
i−1 . . . T

mq
1 xmq − x∗‖ → 0 as q→ ∞.

Again, using the same argument as in Case 1, we obtain

xmq − T
mq
i T

mq
i−1 . . . T

mq
1 xmq → 0, xmq − JB1

ρmq
xmq → 0, xmq − JB1

s xmq → 0,

xmq − T
mq
i xmq → 0, xmq − Tixmq → 0 as q→ ∞.

Using Equation (31) in Equation (20), we have

0 ≤ ‖xmq − x∗‖ − ‖Vmq xmq − x∗‖
≤ ‖xmq − x∗‖ − ‖xmq+1 − x∗‖+ αmq‖g(xmq)− x∗‖+ (1− λmq)‖xmq+1 − xmq‖

≤ αmq‖g(xmq)− x∗‖+ (1− λmq)‖xmq+1 − xmq‖
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As αmq → 0, xmq+1 − xmq → 0, {λmq} and
{

g(xmq)
}

are bounded, we obtain

‖xmq − x∗‖ − ‖Vmq xmq − x∗‖ → 0 as q→ ∞.

Following similar arguments as in Case 1, we have

xmq −Vmq xmq → 0, xmq −Vxmq → 0, xmq − JB2
µmq

xmq → 0,

xmq − JB2
s xmq → 0, xmq −Uxmq → 0 and

lim sup
q→∞

〈
g(x∗)− x∗, xmq − x∗

〉
≤ 0. (33)

Now, from Equation (29), we have

‖xmq+1 − x∗‖2 ≤ (1− ξαmq)‖xmq − x∗‖2 +
Emq

1− (1− αmq)(1− λmq)(1− (1− k)αmq)
, (34)

where

Emq = α2
mq‖g(xmq)− x∗‖2 + 2αmq(1− αmq)

〈
g(x∗)− x∗, Smq zmq − x∗

〉
≤ αmq

[
αmq‖g(xmq)− x∗‖2 + 2(1− αmq)‖g(x∗)− x∗‖.‖Smq zmq − xmq‖

+2(1− αmq)
〈

g(x∗)− x∗, xmq − x∗
〉]

. (35)

Applying Equation (31) in Equation (34), we have

ξαmq‖xmq − x∗‖2 ≤ ‖xmq − x∗‖2 − ‖xmq+1 − x∗‖2 +
Emq

1− (1− αmq)(1− λmq)(1− (1− k)αmq)
,

ξαmq‖xmq − x∗‖2 ≤
Emq

1− (1− αmq)(1− λmq)(1− (1− k)αmq)
.

Using the fact that αmq > 0 and Equation (35), we obtain

ξ‖xmq − x∗‖2 ≤ 1
1− (1− αmq)(1− λmq)(1− (1− k)αmq)

[
αmq‖g(xmq)− x∗‖2

+2(1− αmq)‖g(x∗)− x∗‖.‖Smq zmq − xmq‖+ 2(1− αmq)
〈

g(x∗)− x∗, xmq − x∗
〉]

.

Then, using αmq → 0, and Equations (32) and (33), we get

‖xmq − x∗‖ → 0 as q→ ∞.

This together with Equation (34) implies that ‖xmq+1 − x∗‖ → 0 as q→ ∞.
However,

‖xq − x∗‖ ≤ ‖xmq+1 − x∗‖,

for all q ∈ N, which gives that xq → x∗as q→ ∞.

4. Applications

We apply our main result in this section to solve a number of important problems.
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4.1. New General System of Generalized Equilibrium Problems

Let {Ci}N
i=1 be nonempty closed convex subsets of a Hilbert space H. Let, for each i = 1, 2, . . . , N,

Ξi : Ci × Ci → R be a bifunction and Ai : H → H be a nonlinear mapping. Consider the following
problem of finding (x∗1 , x∗2 , . . . , x∗N) ∈ C1 × C2 . . .× CN such that

Ξ1(x∗1 , x1) +
〈

A1x∗2 , x1 − x∗1
〉
+ 1

θ1

〈
x∗1 − x∗2 , x1 − x∗1

〉
≥ 0, ∀ x1 ∈ C1,

Ξ2(x∗2 , x2) +
〈

A2x∗3 , x2 − x∗2
〉
+ 1

θ2

〈
x∗2 − x∗3 , x2 − x∗2

〉
≥ 0, ∀ x2 ∈ C2,

...
ΞN−1(x∗N−1, xN−1) +

〈
AN−1x∗N , xN−1 − x∗N−1

〉
+ 1

θN−1

〈
x∗N−1 − x∗N , xN−1 − x∗N−1

〉
≥ 0, ∀ xN−1 ∈ CN−1,

ΞN(x∗N , xN) +
〈

AN x∗1 , xN − x∗N
〉
+ 1

θN

〈
x∗N − x∗1 , xN − x∗N

〉
≥ 0, ∀ xN ∈ CN ,

(36)

where θi > 0 for each i = 1, 2, . . . , N. Here, Ω is used to denote the solution set of Equation (36). Next,
we discuss some special cases of the problem in Equation (36) as follows:

(1) If N = 2, C1 = C2 = C, then the problem in Equation (36) reduces to the following general system
of generalized equilibrium problems of finding (x∗1 , x∗2) ∈ C× C such that{

Ξ1(x∗1 , x1) +
〈

A1x∗2 , x1 − x∗1
〉
+ 1

θ1

〈
x∗1 − x∗2 , x1 − x∗1

〉
≥ 0, ∀ x1 ∈ C,

Ξ2(x∗2 , x2) +
〈

A2x∗1 , x2 − x∗2
〉
+ 1

θ2

〈
x∗2 − x∗1 , x2 − x∗2

〉
≥ 0, ∀ x2 ∈ C,

which was introduced and studied by Ceng and Yao [18].
(2) If Ξ1 = Ξ2 = . . . = ΞN = Ξ, A1 = A2 = . . . = AN = A, C1 = C2 = . . . = CN = C,

x∗1 = x∗2 = . . . = x∗N = x, then the problem in Equation (36) reduces to the following generalized
equilibrium problem of finding x ∈ C such that

Ξ(x, x1) + 〈Ax, x1 − x〉 ≥ 0, ∀ x1 ∈ C, (37)

which was introduced and studied by Takahashi and Takahashi [53].
(3) If A1 = A2 = . . . = AN = 0, C1 = C2 = . . . = CN = C, x∗1 = x∗2 = . . . = x∗N = x, then the

problem in Equation (36) reduces to the following system of equilibrium problems of finding
x ∈ C such that

Ξi(x, y) ≥ 0, ∀ y ∈ C, ∀ i = 1, 2, . . . , N, (38)

which was considered by Combettes and Hirstoaga [54].
(4) If A = 0 in Equation (37) or N = 1 in Equation (38), then we obtain equilibrium problem of

finding x ∈ C such that
Ξ(x, y) ≥ 0, ∀ y ∈ C.

The set of solutions of equilibrium problem is denoted by EP(Ξ).
(5) If Ξ1 = Ξ2 = . . . = ΞN = 0, then the problem in Equation (36) reduces to the following general

system of variational inequalities of finding (x∗1 , x∗2 , . . . , x∗N) ∈ C1 × C2 . . .× CN such that

〈
θ1 A1x∗2 + x∗1 − x∗2 , x− x∗1

〉
≥ 0 ∀ x ∈ C1,〈

θ2 A2x∗3 + x∗2 − x∗3 , x− x∗2
〉
≥ 0 ∀ x ∈ C2,

...〈
θN−1 AN−1x∗N + x∗N−1 − x∗N , x− x∗N−1

〉
≥ 0 ∀ x ∈ CN−1,〈

θN AN x∗1 + x∗N − x∗1 , x− x∗N
〉
≥ 0 ∀ x ∈ CN ,

(39)

which was considered and investigated by Nandal, Chugh and Postolache [28].
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(6) If N = 2, C1 = C2 = C, then the problem in Equation (39) reduces to the following system of
variational inequalities of finding (x∗1 , x∗2) ∈ C× C such that{ 〈

θ1 A1x∗2 + x∗1 − x∗2 , x− x∗1
〉
≥ 0 ∀ x ∈ C,〈

θ2 A2x∗1 + x∗2 − x∗1 , x− x∗2
〉
≥ 0 ∀ x ∈ C,

which was introduced and considered by Ceng et al. [55].
(7) If N = 2, C1 = C2 = C, A1 = A2 = A, then the problem in Equation (39) reduces to the following

system of variational inequalities of finding (x∗1 , x∗2) ∈ C× C such that{ 〈
θ1 Ax∗2 + x∗1 − x∗2 , x− x∗1

〉
≥ 0 ∀ x ∈ C,〈

θ2 Ax∗1 + x∗2 − x∗1 , x− x∗2
〉
≥ 0 ∀ x ∈ C,

(40)

which was introduced and studied by Verma [56].
(8) If x∗1 = x∗2 = x∗ in Equation (40), then the problem in Equation (40) reduces to the classical

variational inequality of finding x∗ ∈ C such that

〈Ax∗, x− x∗〉 ≥ 0 ∀ x ∈ C.

The set of solutions of classical variational inequality problem is denoted by VI(C, A).

It is clear from above mentioned special cases that the problem in Equation (36) is very general
and includes a number of equilibrium and variational inequality problems, which shows the special
significance of this problem.

To study problem in Equation (36), we need following assumptions for a bifunction Ξ : C× C →
R.

(P1) Ξ(u, u) = 0 for all u ∈ C;
(P2) Ξ is monotone, i.e., Ξ(u, v) + Ξ(v, u) ≤ 0 for all u, v ∈ C;
(P3) lim

t→0+
Ξ(tu + (1− t)v, w) ≤ Ξ(v, w) for all u, v, w ∈ C; and

(P4) for each fixed u ∈ C, v 7→ Ξ(u, v) is a convex and lower semicontinuous function.

Lemma 11 (Lemma 2.12, [54]). Let C ⊂ H be a nonempty closed convex set and Ξ : C × C → R be
a bifunction satisfying (P1)–(P4). Then, for any θ > 0 and u ∈ H, there exists w ∈ C such that

Ξ(w, v) +
1
θ
〈v− w, w− u〉 ≥ 0, ∀ v ∈ C.

Furthermore, if =Ξ
θ (u) = {w ∈ C : Ξ(w, v) + 1

θ 〈v− w, w− u〉 ≥ 0, ∀ v ∈ C}, then

(a) =Ξ
θ is a single valued map;

(b) =Ξ
θ is firmly nonexpansive;

(c) Fix(=Ξ
θ ) = EP(Ξ); and

(d) EP(Ξ) is closed and convex.

Lemma 12. Let {Ci}N
i=1 be nonempty closed convex subsets of a Hilbert space H. Let, for each i = 1, 2, . . . , N,

Ξi : Ci × Ci → R be a bifunction satisfying Conditions (P1)–(P4) and Ai : H → H be a nonlinear mapping.
Then, for given x∗i ∈ Ci, i = 1, 2, . . . , N, (x∗1 , x∗2 , . . . , x∗N) ∈ C1 × C2 . . .× CN is a solution of the problem in
Equation (36) if and only if x∗1 is a fixed point of the mapping T : H → H defined by

T = =Ξ1
θ1
(I − θ1 A1)=Ξ2

θ2
(I − θ2 A2) . . .=ΞN−1

θN−1
(I − θN−1 AN−1)=ΞN

θN
(I − θN AN).
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Proof. Observe that Equation (36) can be written as

Ξ1(x∗1 , x1) +
1
θ1

〈
x∗1 − (I − θ1 A1)x∗2 , x1 − x∗1

〉
≥ 0, ∀ x1 ∈ C1,

Ξ2(x∗2 , x2) +
1
θ2

〈
x∗2 − (I − θ2 A2)x∗3 , x2 − x∗2

〉
≥ 0, ∀ x2 ∈ C2,

...
ΞN−1(x∗N−1, xN−1) +

1
θN−1

〈
x∗N−1 − (I − θN−1 AN−1)x∗N , xN−1 − x∗N−1

〉
≥ 0, ∀ xN−1 ∈ CN−1,

ΞN(x∗N , xN) +
1

θN

〈
x∗N − (I − θN AN)x∗1 , xN − x∗N

〉
≥ 0, ∀ xN ∈ CN ,

m

=Ξ1
θ1
(I − θ1 A1)x∗2 = x∗1

=Ξ2
θ2
(I − θ2 A2)x∗3 = x∗2

...
=ΞN−1

θN−1
(I − θN−1 AN−1)x∗N = x∗N−1

=ΞN
θN

(I − θN AN)x∗1 = x∗N

m

x∗1 = =Ξ1
θ1
(I − θ1 A1)=Ξ2

θ2
(I − θ2 A2) . . .=ΞN−1

θN−1
(I − θN−1 AN−1)=ΞN

θN
(I − θN AN)x∗1 .

Theorem 2. Let {Ci}N
i=1 be nonempty closed convex subsets of a Hilbert space H. Let, for each i = 1, 2, . . . , N,

Ξi : Ci × Ci → R be a bifunction satisfying Conditions (P1)–(P4) and Ai be a ηi-ism self-mapping on H.
Assume that Ω = Fix(T) 6= ∅, where T is defined in Lemma 12. Let {xn} be a sequence defined by x0 ∈ H and{

yn = (1− αn)(λnxn + (1− λn)xn+1),
xn+1 = =Ξ1

θ1
(I − θ1 A1)=Ξ2

θ2
(I − θ2 A2) . . .=ΞN−1

θN−1
(I − θN−1 AN−1)=ΞN

θN
(I − θN AN)yn, ∀ n ≥ 0

where θi ∈ (0, 2ηi) and {λn} ⊂ [a, b] for some a, b ∈ (0, 1). Suppose {αn} ⊂ (0, 1) satisfying lim
n→∞

αn = 0

and
∞
∑

n=0
αn = ∞. Then, the sequence {xn} converges strongly to a point x∗ ∈ Ω.

Proof. First, we prove that T = =Ξ1
θ1
(I − θ1 A1)=Ξ2

θ2
(I − θ2 A2) . . .=ΞN−1

θN−1
(I − θN−1 AN−1)=ΞN

θN
(I −

θN AN) is an averaged map. Observe that I − θi Ai =
(

1− θi
2ηi

)
I + θi

2ηi
(I − 2ηi Ai), where θi

2ηi
∈ (0, 1).

Then, applying Lemma 1, I− 2ηi Ai is nonexpansive and therefore, I− θi Ai is averaged for θi ∈ (0, 2ηi),
i = 1, 2, . . . , N. In addition, Lemma 11 implies that =Ξi

θi
is firmly nonexpansive, that is, 1/2-averaged

for each i = 1, 2, . . . , N. Hence, Lemma 7 implies that T is averaged on H and, therefore, T =

(1− γ)I + γT1, for some γ ∈ (0, 1) and a nonexpansive mapping T1 where Fix(T1) = Fix(T). Taking
m = 1, B1 = B2 = g = 0, V = I and γ1

n = γ in Theorem 1 yields the conclusion of Theorem 2.

4.2. Constrained Multiple-Set Split Convex Feasibility Problem (CMSSCFP)

Let H1 and H2 be two real Hilbert spaces. Let {Ci}
p
i=1 and

{
Qj
}q

j=1 be nonempty closed convex
subsets of H1 and H2, respectively. Let, for each j = 1, 2, . . . , q, Uj : H1 → H2 be a bounded linear
operator and let K be another closed convex subset of H1. The constrained multiple-set split convex
feasibility problem (CMSSCFP) [7] is formulated as finding a point x∗ ∈ K such that

x∗ ∈
p⋂

i=1

Ci and Ujx∗ ∈ Qj for each j = 1, 2, . . . , q. (41)
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This problem extends the multiple set split feasibility problem (MSSFP) [5], which is formulated
as finding a point x∗ ∈ H1 such that

x∗ ∈
p⋂

i=1

Ci and Ux∗ ∈
q⋂

j=1

Qj, (42)

where U : H1 → H2 is a bounded linear operator. It is clearly seen that by taking Uj = U for each
j = 1, 2, . . . , q, CMSSCFP reduces to MSSFP.

If p = q = 1 then MSSFP reduces to the split feasibility problem (SFP), which is formulated as
finding a point x∗ ∈ H1 such that

x∗ ∈ C and Ux∗ ∈ Q.

Recently, Buong [6] proposed the following algorithm to solve MSSFP

xn+1 = (I − ηδnF)P1(I − ξU∗(I − P2)U)xn,

where P1 = PC1 . . . PCp or P1 =
p
∑

i=1
αiPCi and P2 = PQ1 . . . PQq or P2 =

q
∑

j=1
β jPQj and F be strongly

monotone and Lipschitz continuous map. He proved that this algorithm converges to a solution of the
following variational inequality problem: find x∗ ∈ Γ such that

〈Fx∗, x∗ − p〉 ≤ 0, ∀ p ∈ Γ,

where Γ is solution set of the MSSFP in Equation (42).
Now, we present an implicit iterative method to solve the CMSSCFP in Equation (41). We use Ψ

to denote the solution set of the CMSSCFP in Equation (41).

Theorem 3. Let F be a θ-ism self-mapping on H1. Assume that Ψ
⋂

F−10 is nonempty. Let {xn} be a sequence
defined by x0 ∈ H1 and 

yq+1
n = (1− αn)(λnxn + (1− λn)xn+1),

yj
n = (I − ξ

j
nU∗j (I − PQj)Uj)yi+1

n , 1 ≤ j ≤ q,
xn+1 = (I − ηδnF)P1y1

n, ∀ n ≥ 0,

where P1 = PC1 . . . PCp and {λn} ⊂ [a, b] for some a, b ∈ (0, 1). Suppose {αn} ⊂ (0, 1), {ηδn} ⊂ (0, 2θ) and

{ξ j
n} ⊂ (0, 2/‖Uj‖2) (1 ≤ j ≤ q) satisfying

(i) lim
n→∞

αn = 0,
∞
∑

n=0
αn = ∞;

(ii) 0 < lim inf
n→∞

ηδn ≤ lim sup
n→∞

ηδn < 2θ; and

(iii) 0 < lim inf
n→∞

ξ
j
n ≤ lim sup

n→∞
ξ

j
n < 2

/
‖Uj‖2, (1 ≤ j ≤ q).

Then, the sequence {xn} converges strongly to a point x∗ ∈ Ψ
⋂

F−10, which is also a solution of
VI(Ψ, F).

Proof. Let x̂ solve the CMSSCFP in Equation (41), i.e., x̂ ∈ Ψ; then, x̂ ∈
p⋂

i=1
Ci and Uj x̂ ∈ Qj for each

j = 1, 2, . . . , q.
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Note that Uj x̂ ∈ Qj is equivalent to PQj(Uj x̂) = Uj x̂ i.e., (I − PQj)Uj x̂ = 0. Therefore, U∗j (I −
PQj)Uj x̂ = 0 means x̂ ∈ (U∗j (I − PQj)Uj)

−10 for each j = 1, 2, . . . , q. Thus,

Ψ ⊆
( p⋂

i=1

Ci

)⋂ q⋂
j=1

(U∗j (I − PQj)Uj)
−10

 .

Now, let x̂ ∈
( p⋂

i=1
Ci

)⋂( q⋂
j=1

(U∗j (I − PQj)Uj)
−10

)
, which implies

x̂ ∈ (U∗j (I − PQj)Uj)
−10 for each j = 1, 2, . . . , q. (43)

Choose z ∈ Ψ. Therefore, Ujz ∈ Qj for each j = 1, 2, . . . , q.〈
(I − PQj)Uj x̂, Ujz− PQj Uj x̂

〉
≤ 0 for each j = 1, 2, . . . , q. (44)

Using Equations (43) and (44), for each j = 1, 2, . . . , q, we have

‖(I − PQj)Uj x̂‖2 =
〈
(I − PQj)Uj x̂, Uj x̂−Ujz

〉
+
〈
(I − PQj)Uj x̂, Ujz− PQj Uj x̂

〉
≤
〈
(I − PQj)Uj x̂, Uj x̂−Ujz

〉
≤
〈

U∗j (I − PQj)Uj x̂, x̂− z
〉
= 0.

Therefore, Uj x̂ ∈ Fix(PQj) = Qj for each j = 1, 2, . . . , q.

Thus, x̂ ∈ Ψ. Hence, Ψ =

( p⋂
i=1

Ci

)⋂( q⋂
j=1

(U∗j (I − PQj)Uj)
−10

)
.

Next, we rewrite I − ηδnF as

I − ηδnF =

(
1− ηδn

2θ

)
I +

ηδn

2θ
(I − 2θF)

and for each j = 1, 2, . . . , q, I − ξ
j
nU∗j (I − PQj)Uj as

I − ξ
j
nU∗j (I − PQj)Uj =

(
1−

(
ξ

j
n‖Uj‖2

2

))
I +

(
ξ

j
n‖Uj‖2

2

)(
I −

(
2
‖Uj‖2

)
U∗j (I − PQj)Uj

)
.

Using Lemma 15 in [28], U∗j (I − PQj)Uj is 1
/
‖Uj‖2-ism. It follows from Lemma 1, I − 2θF and

I −
(
2
/
‖Uj‖2)U∗j (I − PQj)Uj are nonexpansive. Since the metric projection PCi is (1/2)-averaged,

therefore Lemma 7 implies that P1 = PC1 . . . PCp is averaged mapping. Now, taking m = q + 2,

Tn
m = I − ηδnF, Tn

m−1 = P1, Tn
m−1−j = I − ξ

j
nU∗j (I − PQj)Uj (1 ≤ j ≤ q), V = I and B1 = B2 = g = 0

in Theorem 1 proves that {xn} converges strongly to x∗ ∈ Fix(I − 2θF)

⋂
Fix(P1)

q⋂
j=1

Fix
(

I −
(

2
/
‖Uj‖2

)
U∗j (I − PQj)Uj

)
.

It can be easily proven that Fix(I − 2θF) = F−10 and

Fix
(

I −
(

2
/
‖Uj‖2

)
U∗j (I − PQj)Uj

)
=
(

U∗j (I − PQj)Uj

)−1
0.
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In addition, Fix(P1) =
p⋂

i=1
(PCi ) =

p⋂
i=1

Ci.

That is,
xn → x∗ ∈ Ψ

⋂
F−10.

In addition, note that Ψ
⋂

F−10 ⊂ VI(Ψ, F). Thus, x∗ is also a solution of VI(Ψ, F).

Remark 1. Theorem 3 generalizes and extends Buong’s result ([6] (Theorem 3.2)) in many directions. Theorem 3
extends the MSSFP studied in Buong [6] to the related, more general problem, CMSSCFP. In addition, we have
considered F an inverse strongly monotone operator in Theorem 3, which is more general from the strongly
monotone and Lipschitz continuous operator F taken in Buong’s result ([6] (Theorem 3.2)).

4.3. Monotone Inclusion and Fixed Point Problem

Let S : H → H and B : H → 2H be two operators. Consider the inclusion problem of finding
x̂ ∈ H such that

0 ∈ Sx̂ + Bx̂. (45)

The solution set of Equation (45) is denoted by (S+ B)−10. A popular method for solving Equation
(45) is the forward-backward splitting method, which can be expressed via recursion:

xn+1 = JB
r (xn − rSxn), n ≥ 0,

where r > 0. Now, we combine forward-backward splitting method and generalized viscosity implicit
rule for finding a common element of set of solutions of Equation (45) and fixed point sets of a finite
family of nonexpansive mappings.

Theorem 4. Let H be a real Hilbert space. Let {Ti}m
i=1 be nonexpansive self-mappings on H. Let S be a θ-ism of

H into itself and let B : H → 2H be maximal monotone mapping such that Γ :=
m⋂

i=1
Fix(Ti)

⋂
(S+ B)−10 6= ∅.

Let g : H → H be a contraction with coefficient k ∈ (0, 1) and let {xn} be a sequence defined by x0 ∈ H and
zn = λnxn + (1− λn)xn+1,
yn = αng(xn) + (1− αn)JB

rn(zn − rnSzn),
xn+1 = Tn

mTn
m−1 . . . Tn

2 Tn
1 yn,

(46)

for all n ≥ 0, where Tn
i = (1− γi

n)I + γi
nTi for i = 1, 2, . . . , m and {λn} ⊂ [a, b] for some a, b ∈ (0, 1).

Suppose that {αn},
{

γi
n
}
⊂ (0, 1) and {rn} ⊂ (0, 2θ), satisfying:

(i) lim
n→∞

αn = 0,
∞
∑

n=0
αn = ∞;

(ii) 0 < lim inf
n→∞

rn ≤ lim sup
n→∞

rn < 2θ; and

(iii) 0 < lim inf
n→∞

γi
n ≤ lim sup

n→∞
γi

n < 1, for all i = 1, 2, . . . , m.

Then, the sequence {xn} converges strongly to x∗ ∈ Γ, where x∗ is the unique fixed point of the contraction
PΓg.

Proof. Firstly, we rewrite I − rnS as

I − rnS =
(

1− rn

2θ

)
I +

rn

2θ
(I − 2θS)
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and rn
2θ ∈ (0, 1). By applying Lemma 1, I − 2θS is nonexpansive and, therefore, for each n ≥ 0, I − rnS

is averaged for {rn} ⊂ (0, 2θ). Furthermore, it follows from [44] (Lemma 5.8) that for any r > 0

∅ 6= (S + B)−10 = Fix(JB
r (I − rS)).

By putting B1 = 0, B2 = B, V = I − 2θS, and βn = rn
2θ in Theorem 1, the conclusion follows

immediately.

Remark 2. Theorem 4 improves and extends Chang et al.’s result [27] (Theorem 3.2). By taking T1 = T2 =

. . . = Tm = I, rn = r in Theorem 4, we obtain Theorem 3.2 of [27] with more relaxed conditions on the
parameters. In addition, contraction coefficient k is bounded in (0, 1/2) in [27] (Theorem 3.2), which we relax to
(0, 1).

4.4. Convex Minimization Problem

Suppose f : H → R is a convex smooth function and h : H → R is a proper convex and lower
semicontinuous function. In this subsection, we study the following convex minimization problem:
find x∗ ∈ H such that

f (x∗) + h(x∗) = min
x∈H
{ f (x) + h(x)} . (47)

Using Fermat’s rule, the problem in Equation (47) can be transformed into the following equivalent
problem:

find x∗ ∈ H such that 0 ∈ ∇ f (x∗) + ∂h(x∗), (48)

where ∇ f is a gradient of f and ∂h is a subdifferential of h.

Theorem 5. Assume that f : H → R is a convex and differentiable function, and its gradient is 1/θ-Lipschitz
continuous where θ ∈ (0, ∞). In addition, assume that h : H → R is a proper convex and lower semicontinuous
function such that f + h attains a minimizer. Let g : H → H be a contraction with coefficient k ∈ (0, 1) and let
{xn} be a sequence defined by x0 ∈ H and

xn+1 = αng(xn) + (1− αn)J∂h
rn (I − rn∇ f )(λnxn + (1− λn)xn+1), ∀ n ≥ 0, (49)

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1). Suppose {αn} ⊂ (0, 1) and rn ∈ (0, 2θ) satisfy the
following conditions:

(i) lim
n→∞

αn = 0,
∞
∑

n=0
αn = ∞; and

(ii) 0 < lim inf
n→∞

rn ≤ lim sup
n→∞

rn < 2θ.

Then, {xn} converges strongly to a minimizer of f + h.

Proof. Since ∇ f is 1/θ-Lipschitz continuous, it follows from Corollary 10 of [57] that ∇ f is θ-ism.
Moreover, ∂h is maximal monotone (see [58] (Theorem A)). Taking T1 = T2 = . . . = Tm = I, S = ∇ f
and B = ∂h in Theorem 4, we obtain the conclusion of Theorem 5 from Theorem 4.

Remark 3. If we take rn = r in Theorem 5, we obtain Theorem 4.2 of [27] as special case with improved
conditions on the parameters.

5. Concluding Remarks

The base of this paper is the work done by Nandal, Chugh and Postolache [28] and
Ke and Ma’s [42] generalized viscosity implicit rule for solving fixed point problems. Under mild
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conditions, strong convergence of the proposed method is proved. Furthermore, we consider a new
general system of generalized equilibrium problems, which is generalization of several equilibrium
and variational inequality problems considered in Ceng and Yao [18], Takahashi and Takahashi [53],
Combettes and Hirstoaga [54], Nandal et al. [28], Ceng et al. [55] and Verma [56]. Theorem 3 extends the
multiple set split feasibility problem (MSSFP) studied by Buong [6] to a related more general problem,
the constrained multiple-set split convex feasibility problem (CMSSCFP), which in addition extends
F from a strongly monotone and Lipschitz continuous operator to an inverse strongly monotone
operator. Then, we combine the forward-backward splitting method and generalized viscosity implicit
rule in Theorem 4 to solve monotone inclusion problem. Theorem 4 improves and extends Chang et
al.’s result [27] (Theorem 3.2). Finally, we derive Theorem 5 to solve convex minimization problem,
which extends [27] (Theorem 4.2). Further, our work can be extended to fractal calculus [59]. We have
made an attempt to solve a number of problems of nonlinear analysis as application of the presented
algorithm, however, finding real world applications is still an open question.
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