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Abstract: Two iterative algorithms are suggested for approximating a solution of the split common
fixed point problem involved in pseudo-contractive operators without Lipschitz assumption.
We prove that the sequence generated by the first algorithm converges weakly to a solution of
the split common fixed point problem and the second one converges strongly. Moreover, the sequence
{xn} generated by Algorithm 3 strongly converges to z = projS0, which is the minimum-norm
solution of problem (1). Numerical examples are included.
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1. Introduction

The split common fixed point problem was investigated in 2009 by Censor Y. and Segal A. [1].
Further research on this problem discussed in works by the authors of [2–12]. More specifically, given
two Hilbert space H1 and H2, nonlinear operators U : H1 → H1 and T : H2 → H2 and a bounded
linear operator A: H1 → H2. Let x ∈ H1 be a solution of split common fixed point problem satisfying

x ∈ F(U) and Ax ∈ F(T) (1)

where F(U) and F(T) mean the fixed point sets. If U and T are both metric projects, problem (1)
is actually problem (2) [13,14], and further development of this topic made by [15–19]. To be more
specific, given two nonempty closed convex sets C ⊂ H1 and Q ⊂ H2 and A is above mentioned. Let
x ∈ H1 be a solution of split feasibility problem satisfying

x ∈ C and Ax ∈ Q, (2)

These two problems ((1) and (2)) have received much attention, and have been extensively
investigated due to applications in signal processing, image reconstruction, [14], and intensity
modulated radiation therapy [20]. Recently, Yen L. et al. [21] learn the problem (2) and applying it to
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a model in electricity production, they successfully established a Nash–Cournot equilibrium model
with minimal environmental cost. Wang J. et al. [22] study the linear convergence of CQ algorithm for
solving the problem (2) and investigate an application in gene regulatory network inference.

For solving the problem (1), Censor Y. and Segal A. [1] suggested the following scheme.

xn+1 = U(xn − τA∗(I − T)Axn), (3)

where τ is a fixed stepsize and A∗ is the adjoint operator of A. Algorithm (3) was originally designed
to solved problem (1) for directed operators. Noting that if the stepsize τ is chosen in (0, 2/‖A‖2),
then the iterative sequence {xn} generated by (3) weakly converges to a solution of the problem (1).
Subsequently, iterative schemes and these variants [10,23] were explored to the demicontractive
operators, quasi-nonexpansive operators and finite many directed operators.

Very recently, Wang F. [23] has been devoting himself to the study of problems (1). Accordingly,
he proposed a new method for solving the problems (1) so that the variable stepsize does not need to
compute the norm ‖A‖:

xn+1 = xn − ρn((I −U)xn + A∗(I − T)Axn), (4)

where {ρn} ⊂ (0, ∞) is chosen such that

ρn =
‖(I −U)xn‖2 + ‖(I − T)Axn‖2

‖(I −U)xn + A∗(I − T)Axn‖2 , (5)

Wang obtained the weak convergence of algorithm (4).
In this paper, we extend a previous author’s results from the demicontractive operators

[8,10,24], firmly-nonexpansive operators [25], quasi-nonexpansive operators [26], directed operators
[1], nonexpansive operators [27], and strictly pseudo-contractive operators [28] to the more general
pseudo-contractive operators. Subsequently, two algorithms are suggested based on (4) and (5) to solve
the problem (1). Weak and strong convergence of the proposed algorithms are obtained.

2. Preliminaries

LetH be a real Hilbert space equipped up its inner product 〈·, ·〉 and norm ‖ · ‖ [8]. The notation
xn ⇀ x means weak convergence and xn → x means strong one. The notation Fix(T) stands for the
set of fixed points of the operator T. The symbol ωw(xn) denotes the weak ω-limit set of {xn}, that is,

ωw(xn) = {x : xni ⇀ x for some subsequence {xni} of {xn}}.

Let C be a nonempty closed convex subset of H. Recall that the projection PC from H onto C
defined by

‖x− PCx‖ = min{‖x− y‖ : y ∈ C, x ∈ H}.

Propsition 1 ([10]). Given x ∈ H and z ∈ C.
(1) z = PCx ⇔ 〈x− z, y− z〉 ≤ 0, for all y ∈ C.
(2) z = PCx ⇔ ‖x− z‖2 ≤ ‖x− y‖2 − ‖y− z‖2, for all y ∈ C.
(3) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 , for all y ∈ H, which hence implies that PC is nonexpansive.

Definition 1 ([4]). Let T : H → H be a nonlinear operator.

• T is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H;
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• T is called firmly nonexpansive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T)x− (I − T)y‖2, ∀x, y ∈ H

or equivalently

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, ∀x, y ∈ H.

Also, the mapping I − T is firmly nonexpansive.

• T is called strictly pseudo-contractive if there exists k < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T)x− (I − T)y‖2, ∀x, y ∈ H

• L-Lipschitzian if there exists L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ H;

Definition 2 ([24]). Let T : H → H be a nonlinear operator with Fix(T) 6= ∅.

• T is called demicontractive if there exists a constant k ∈ [0, 1) such that

‖Tx− x∗‖2 ≤ ‖x− x∗‖2 + k‖x− Tx‖2, ∀(x, x∗) ∈ H× Fix(T)

or equivalently

〈x− Tx, x− x∗〉 ≥ 1− k
2
‖x− Tx‖2, ∀(x, x∗) ∈ H× Fix(T);

• T is called directed if

‖Tx− x∗‖2 ≤ ‖x− x∗‖2 − ‖x− Tx‖2, ∀(x, x∗) ∈ H× Fix(T)

which is equivalent to

〈x− Tx, x− x∗〉 ≥ ‖x− Tx‖2, ∀(x, x∗) ∈ H× Fix(T);

Definition 3 ([4]). Let T : H → H be a nonlinear operator.
T is called pseudo-contractive if

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2, ∀x, y ∈ H.

It is well known that T is a pseudo-contractive operator if and only if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T) x− (I − T) y‖ , ∀x, y ∈ H.

Propsition 2 ([29]). Let T be a pseudo-contractive operator with the nonempty fixed point set Fix(T), then the
following conclusion holds.

〈Tx− x, Tx− x∗〉 ≤ ‖Tx− x‖2 , ∀(x, x∗) ∈ H× Fix(T).
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Generally speaking, pseudo-contractive operators are also assumed to be L-Lipschitzian with L >

1. Next, to overcome the L-Lipschitzian property, the authors of [29] assume that the pseudo-contractive
operator T satisfies the following condition.

〈Tx− x, Tx− x∗〉 ≤ 0, ∀(x, x∗) ∈ H× Fix(T). (6)

Definition 4 ([23]). Let T : H → H be a nonlinear operator with Fix(T) 6= ∅. Then, I − T is said to be
demiclosed at zero, if, for any {xn} inH, there holds the following implication:

xn ⇀ x

(I − T)xn → 0

]
⇒ x ∈ Fix(T)

The demiclosedness for pseudo-contractive operators in the following will often be used.

Lemma 1 ([29]). LetH be a real Hilbert space, C a closed convex subset ofH. Let T : C → C be a continuous
pseudo-contractive operator. Then
(1) Fix(T) is a closed convex subset of C,
(2) (I − T) is demiclosed at zero.

To attain weak convergence result, the following result is useful.

Lemma 2 ([10]). Let H be a Hilbert space and {xn} be a bounded sequence in H such that there exists a
nonempty closed convex set C ∈ H satisfying
(1) for every w ∈ C, limn→∞ ‖xn − w‖ exists;
(2) each weak cluster point of the sequence {xn} is in C.

Then {xn} converges weakly to a point in C. More specifically, x∗ = limn→∞PSxn .

To attain strong convergence result, we need to use the following lemmas.

Lemma 3 ([8]). Let {an} be a sequence of nonnegative real numbers satisfying the property

an+1 ≤ (1− γn)an + σn, n ≥ 0.

where {γn} ⊂ (0,1) and {σn} are such that
(1) ∑∞

n=0 γn = ∞;
(2) either lim supn→∞

σn
γn
≤ 0 or ∑∞

n=0 |σn| < ∞.
Then {an} converges to zero.

Lemma 4 ([4]). Let {un} be a sequence of real numbers. Assume {un} does not decrease at infinity, that is,
there exists at least a subsequence {unk} of {un} such that unk ≤ unk+1 for all k ≥ 0. For every n ≥ N0, define
an {τ(n)} as

τ(n) = max{i ≤ n : uni < uni+1}.

Then τ(n)→ ∞ as n→ ∞ and for all n ≥ N0,

max{uτ(n), un} ≤ uτ(n)+1.

In the following two sections, we consider the problem (1) for pseudo-contractive operators
without Lipschitz assumption. For problem (1), the standard assumptions are usually the following.

• the problem (1) is consistent, notation S means the solution set;
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• both T and U are continuous pseudo-contractive operators without Lipschitz assumption.

3. Weak Convergence Theorem

Next come the iterative scheme for approximating a solution of the problem (1) involved in
pseudo-contractive operators without Lipschitz assumption.

Algorithm 1. Initial guess x0 is arbitrary chosen and assume that xn has been constructed. If

‖(I −U)xn + A∗(I − T)Axn‖ = 0, (7)

then stop (i.e., xn solves the problem (1)); otherwise, calculate the next xn+1 by the formula [23]:

xn+1 = xn − ρn((I −U)xn + A∗(I − T)Axn),

where the stepsize sequence τn is chosen as

ρn =
‖(I −U)xn‖2 + ‖(I − T)Axn‖2

‖(I −U)xn + A∗(I − T)Axn‖2 ,

We need two lemmas to complete the convergence analysis of our proposed algorithm. The first
lemma shows that the proposed algorithm is well defined.

Lemma 5. Assume that (7) holds for n ≥ 0, then xn solves the problem (1).

Proof. For any w ∈ S and (6), we have

0 = 〈(I −U)xn + A∗(I − T)Axn, xn − w〉
= 〈xn −Uxn, xn −Uxn〉+ 〈(I − T)Axn, Axn − TAxn〉
+ 〈xn −Uxn, Uxn − w〉+ 〈(I − T)Axn, TAxn − Aw〉
≥ ‖xn −Uxn‖2 + ‖Axn − TAxn‖2.

Hence, xn = Uxn and Axn = TAxn, and the proof is thus complete.

Lemma 6. Assume that the sequence xn satisfies

lim
n→∞

(
‖xn −Uxn‖2 + ‖(I − T)Axn‖2)2

‖xn −Uxn + A∗(I − T)Axn‖2 = 0,

then it follows that
lim

n→∞
‖xn −Uxn‖ = lim

n→∞
‖(I − T)Axn‖ = 0,

Proof. By our hypothesis, we have(
‖xn −Uxn‖2 + ‖(I − T)Axn‖2)2

‖xn −Uxn + A∗(I − T)Axn‖2 ≥
(
‖xn −Uxn‖2 + ‖(I − T)Axn‖2)2

2(‖xn −Uxn‖2 + ‖A∗(I − T)Axn‖2)

≥‖xn −Uxn‖2 + ‖(I − T)Axn‖2

2max(1, ‖A‖2)

Hence, the desired assertion follows.

The second lemma analyzes the convergence of the proposed algorithm. Now the weakly
convergence of Algorithm 1 presented below.
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Theorem 1. Let {xn} be the sequence generated by Algorithm 1. Then, {xn} converges weakly to a solution x∗

of problem (1), where x∗ = limn→∞PSxn .

Proof. For any w ∈ S, by the expression of yn, from (6), we obtain

〈yn, xn − w〉 = 〈(I −U)xn + A∗(I − T)Axn, xn − w〉
= 〈xn −Uxn, xn −Uxn〉+ 〈(I − T)Axn, Axn − TAxn〉
+ 〈xn −Uxn, Uxn − w〉+ 〈(I − T)Axn, TAxn − Aw〉
≥ ‖xn −Uxn‖2 + ‖Axn − TAxn‖2.

Consequently,

‖xn+1 − w‖2 = ‖xn − w‖2 − 2ρn〈yn, xn − w〉+ ρ2
n‖yn‖2

≤ ‖xn − w‖2 −
(
‖xn −Uxn‖2 + ‖(I − T)Axn‖2)2

‖xn −Uxn + A∗(I − T)Axn‖2

In particular, ‖xn+1 − w‖ ≤ ‖xn − w‖, so {xn} is Féjer-monotone w.r.s. S.
Since {xn} is Féjer-monotone, so {‖xn − z‖} is nonincreasing. Hence, {xn} is bounded, and so is

the sequence {Axn}. Moreover,

∞

∑
n=0

(
‖xn −Uxn‖2 + ‖(I − T)Axn‖2)2

‖xn −Uxn + A∗(I − T)Axn‖2 < ∞.

In particular, we have

lim
n→∞

(
‖xn −Uxn‖2 + ‖(I − T)Axn‖2)2

‖xn −Uxn + A∗(I − T)Axn‖2 = 0.

By Lemma 6, this yields limn→∞ ‖xn −Uxn‖ = limn→∞ ‖(I − T)Axn‖ = 0. From Lemma 1 and
Lemma 2, sequence {xn} weakly converges to x∗ of problem (1).

Now, we use the result to solve the problem (2).

Algorithm 2. An initial guess x0 is arbitrarily chosen and we assume that xn has been constructed. If

‖(I − PC)xn + A∗(I − PQ)Axn‖ = 0,

then stop (i.e., {xn} solves the problem (2)); otherwise, calculate the next xn+1 by the formula [23]

xn+1 = xn − ρn((I − PC)xn + A∗(I − PQ)Axn), (8)

where the stepsize sequence τn is chosen as

ρn =
‖(I − PC)xn‖2 + ‖(I − PQ)Axn‖2

‖(I − PC)xn + A∗(I − PQ)Axn‖2 ,

Theorem 2. Let {xn} be the sequence generated by (8). Then, {xn} converges weakly to a solution x∗

of problem (2).

4. Strong Convergence Theorem

We proposed a damped algorithm so that the strong convergence is obtained.
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Algorithm 3. Initial guess x0 is arbitrarily chosen and we assume xn has been constructed. If

‖(I −U)xn + A∗(I − T)Axn‖ = 0,

then stop (i.e., xn solves the problem (1)); otherwise, calculate the next xn+1 by the formula:

xn+1 = (1− δn)xn + δn(1− γn)(xn − ρn((I −U)xn + A∗(I − T)Axn)),

where the stepsize sequence τn is chosen as

ρn =
‖(I −U)xn‖2 + ‖(I − T)Axn‖2

‖(I −U)xn + A∗(I − T)Axn‖2 ,

Theorem 3. Assume the parameters satisfy the following conditions.

(i) limn→∞ γn = 0, ∑∞
n=0 γn = +∞;

(ii) 0 < lim infn→∞ δn(1− γn) ≤ lim supn→∞ δn(1− γn) < 1.

Then the sequence {xn} generated by Algorithm 3 strongly converges to z = projS0, which is the
minimum-norm solution of problem (1).

Proof. Let un = xn − ρn((I −U)xn + A∗(I − T)Axn). Analogously,

‖un − w‖2 ≤ ‖xn − w‖2 −
(
‖xn −Uxn‖2 + ‖(I − T)Axn‖2)2

‖xn −Uxn + A∗(I − T)Axn‖2 (9)

By (9), we obtain

‖xn+1 − w‖2 ≤(1− δn)‖xn − w‖2 + δn ‖(1− γn)un − w‖2

≤(1− δn)‖xn − w‖2 + δn(1− γn) ‖xn − w‖2 + γnδn‖w‖2

≤max
{
‖xn − w‖2, ‖w‖2

}
,

(10)

which shows the boundedness of {xn}. Returning to (9) and (10), we have

δn(1− γn)

((
‖xn −Uxn‖2 + ‖(I − T)Axn‖2)2

‖xn −Uxn + A∗(I − T)Axn‖2

)
≤ (1− γnδn)‖xn − w‖2 + γnδn‖w‖2 − ‖xn+1 − w‖2.

(11)
Two possible cases are considered.
Case one. Suppose m > 0 and n ≥ m such that {‖xn − w‖} is nonincreasing. So, we have the

existence of limn→∞ ‖xn − w‖. This, together with (11) and conditions (i) and (ii), such that

lim
n→∞

(
‖xn −Uxn‖2 + ‖(I − T)Axn‖2)2

‖xn −Uxn + A∗(I − T)Axn‖2 = 0.

By Lemma 6, this yields limn→∞ ‖xn −Uxn‖ = limn→∞ ‖(I− T)Axn‖ = 0. As shown in Theorem
1, we can get succession {xni} of {xn} such that xni ⇀ p.

By the definition of un, we deduce that

lim
n→∞

‖un − xn‖ = 0.

Let zn = (1− γn)un = (1− γn)(xn − ρn((I −U)xn + A∗(I − T)Axn)), n ≥ 0. Then

‖zn − xn‖ ≤ (1− γn)‖un − xn‖+ γn‖xn‖.
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Furthermore, we obtain from (i) and the properties of {xn} that

lim
n→∞

‖zn − xn‖ = 0.

This together with xni ⇀ p implies that zni ⇀ p. So,

lim sup
n→∞

〈w, zn − w〉 = lim
i→∞
〈w, zni − w〉 = 〈w, p− w〉 ≥ 0. (12)

From (9) and (10):

‖xn+1 − w‖2 ≤(1− δn)‖xn − w‖2 + δn

(
(1− γn)‖un − w‖2 + 2〈γn(−w), zn − w〉

)
≤(1− γnδn)‖xn − w‖2 + 2γnδn〈−w, zn − w〉.

(13)

We deduce xn → z from Lemma 3 and Equations (12) and (13).
Case two. Suppose n0 ≥ 0, we have

‖xn0 − w‖ ≤ ‖xn0+1 − w‖.

Setting vn = {‖xn − w‖}, then we have

vn0 ≤ vn0+1.

For all n ≥ n0, we now describe

τ(n) = max{l ≥ 1 : n0 ≤ l ≤ n, vl ≤ vl+1}.

So {τ(n)} is non-decresing satisfying

lim
n→∞

τ(n) = ∞ and vτ(n) ≤ vτ(n)+1.

As shown in Case 1, we get

lim
n→∞

‖zτ(n) − xτ(n)‖ = 0.

This implies that

ωw(zτ(n)) ⊂ S.

Thus, we obtain
lim sup

n→∞
〈w, zτ(n) − w〉 ≥ 0. (14)

By vτ(n) ≤ vτ(n)+1, we have from (13) that

v2
τ(n) ≤ (1− γτ(n)δτ(n))v

2
τ(n) + 2γτ(n)δτ(n)〈−w, zτ(n) − w〉, (15)

then
v2

τ(n) ≤ 2〈−w, zτ(n) − w〉. (16)

Combining (14) and (16), we get

lim sup
n→∞

vτ(n) ≤ 0
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and then
lim

n→∞
vτ(n) = 0. (17)

By (15),

lim sup
n→∞

v2
τ(n)+1 ≤ lim sup

n→∞
v2

τ(n).

Using the above inequality and (17), we have

lim
n→∞

vτ(n)+1 = 0.

By Lemma 4, this yields

0 ≤ vn ≤ max{vτ(n), vτ(n)+1},

therefore, vn → 0, i.e., xn → z.

Algorithm 4. Initial guess x0 is arbitrarily chosen and we assume xn has been constructed. If

‖(I − PC)xn + A∗(I − PQ)Axn‖ = 0,

then stop (i.e., xn solves problem (2)); otherwise, calculate the next xn+1 by the formula

xn+1 = (1− δn)xn + δn(1− γn)(xn − ρn((I − PC)xn + A∗(I − PQ)Axn), (18)

where the stepsize sequence τn is chosen as

ρn =
‖(I − PC)xn‖2 + ‖(I − PQ)Axn‖2

‖(I − PC)xn + A∗(I − PQ)Axn‖2 ,

Theorem 4. Assume the parameters satisfy the following conditions.

• limn→∞ γn = 0, ∑∞
n=0 γn = +∞;

• 0 < lim infn→∞ δn(1− γn) ≤ lim supn→∞ δn(1− γn) < 1.

Then the sequence {xn} generated by (18) strongly converges to z = projS0, which is the minimum-norm
solution of the sproblem (2).

5. Numerical Example

Now, we illustrate the theoretical result by numerical examples.
Let H = R, inner product 〈x, y〉 = xy, and norm | · |. Let x ∈ C, C = [0,+∞) and

Ux = x + 4
x+1 − 1. Clearly, Fix(U) = 3. It now

〈x− y, Ux−Uy〉 = 〈x− y, x +
4

x + 1
− y− 4

y + 1
〉 ≤ |x− y|2

for all x, y ∈ C. Hence, U is a pseudo-contractive operator. So is Tx = x + 3
x+2 − 1. Truly, both U and T

are satisfy the condition (6). For more detail of condition (6), please see the work by the authors of [29].
Let x ∈ R, Ax = 1

3 x, n ≥ 1, αn = 1
n , βn = 1

8 , then 3 is the approximation point of the Algorithm 1.
Obviously, A∗ = A, Fix(U) = 3, Fix(T) = 1 and S = {3}. Next, we rewrite Algorithm 1:

xn+1 = xn −
3(xn + 6)(xn − 3)
(4xn + 19)(xn + 1)

− 3(xn + 1)(xn − 3)
(4xn + 19)(xn + 6)

, n ≥ 1.
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Choosing initial values x1 = 5 and x1 = 1, respectively, we can see from Figure 1 and the
numerical results in Table 1 that the theoretical result of Theorem 1 was demonstrated.
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Figure 1. Weak convergence of {xn}.

Table 1. The values of the sequence xn.

n xn xn

1 5.000000000000000 1.000000000000000
2 4.634032634032634 1.987577639751553
3 4.318344257776301 2.331041217153439
4 4.050603724176485 2.536578840898608
5 3.827440529292961 2.671476773834111
... ... ...
27 3.001367761622588 2.999614025877529
28 3.001011222409336 2.999714678296111
29 3.000747602653792 2.999789081412396
30 3.000552695614674 2.999844081577622

Analogously, we now rewrite Algorithm 3 as follows.

xn+1 =
7
8

xn +
n− 1

8n

(
xn −

3(xn + 6)(xn − 3)
(4xn + 19)(xn + 1)

− 3(xn + 1)(xn − 3)
(4xn + 19)(xn + 6)

)
, n ≥ 1.

Also, choosing initial values x1 = 5 and x1 = 1, respectively, we can see from Figure 2 and the
numerical results in Table 2 that the theoretical result of Theorem 3 was demonstrated.
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Figure 2. Strong convergence of {xn}.

Table 2. The values of the sequence xn.

n xn xn

1 5.000000000000000 1.000000000000000
2 4.375000000000000 0.875000000000000
3 4.084269250864560 0.890072601010101
4 3.895009196768486 0.944633146701975
5 3.754974188264774 1.012848796437149
... ... ...

197 2.930979205568247 2.929539367125689
198 2.931392607026035 2.930001859115338
199 2.931801371854751 2.930458028257748
200 2.932205567529454 2.930908000516816

We can see from Figures 1 and 2 that the rate of weak convergence may be faster than the strong
one by comparing the iteration steps.

6. Conclusions

In this paper, we investigated the problem (1) involved in pseudo-contractive operators without
Lipschitz assumption. By extending someone’s results from [1,8,10,24–28] to the more general
pseudo-contractive operators, we constructed two algorithm for solving the problem (1). Weak
and strong convergence theorems are obtained under some mild hypotheses. Besides, we get the
minimum-norm solution of problem (1); this is another interesting point. The results of this paper can
be applied to engineering, network, and biotechnology.
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