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Abstract: A fuzzy set is an extension of an existing set using fuzzy logic. Soft set theory is a
generalization of fuzzy set theory. Fuzzy and soft set theory are good mathematical tools for dealing
with uncertainty in a parametric manner. The aim of this article is to introduce the concept of
makgeolli structures using fuzzy and soft set theory and to apply it to BCK/BCI-algebras. The notion
of makgeolli algebra and makgeolli ideal in BCK/BCI-algebras is defined, and several properties
are investigated. It deals with the relationship between makgeolli algebra and makgeolli ideal,
and several examples are given. Characterization of makgeolli algebra and makgeolli ideal are
discussed, and a new makgeolli algebra from old one is established. A condition for makgeolli
algebra to be makgeolli ideal in BCK-soft universe is considered, and we give example to show that
makgeolli ideal is not makgeolli algebra in BCI-soft universe. Conditions for makgeolli ideal to be
makgeolli algebra in BCI-soft universe are provided.
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1. Introduction

There are many things inherently uncertain, inaccurate, and ambiguous in the real world.
Zadeh [1] pointed out: “Various problems in system identification involve characteristics which
are essentially nonprobabilistic in nature,” and he introduced fuzzy set theory as an alternative to
probability theory (see the work by the authors of [2]). Zadeh [3] outlined the uncertainty, which is an
attribute of information, by trying to address it more generally. It is difficult to deal with uncertainties
by traditional mathematical tools. However, one can use a wider range of existing theories, such as
theory of (intuitionistic) fuzzy sets, theory of interval mathematics, theory of vague sets, probability
theory, and theory of rough sets for dealing with uncertainties. However, Molodtsov [4] pointed
out all of these theories have their own difficulties. According to Maji et al. [5] and Molodtsov [4],
these difficulties can be attributed to the inadequacy of the parametric tools of theory. Molodtsov [4]
tried to overcome these difficulties. He introduced the concept of soft set as a new mathematical tool
for dealing with uncertainties, and pointed out several directions for its applications. Globally, interest
in soft set theory and its application has been growing rapidly in recent years. Soft set theory has
been applied to decision making problem (see works by the authors of [5–12]), groups, rings, fields
and modules (see works by the authors of [13–17]), BCK/BCI-algebras, etc. (see works by the authors
of [18–27]).

In this paper, we introduce the notion of makgeolli structures using fuzzy and soft set theory
and apply it to BCK/BCI-algebras. We define the concept of makgeolli algebra and makgeolli ideal in
BCK/BCI-algebras, and investigate several properties. We deal with the relation between makgeolli
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algebra and makgeolli ideal, and consider several examples. We discuss characterization of makgeolli
algebra and makgeolli ideal. We make a new makgeolli algebra from old one. We provide a condition
for makgeolli algebra to be makgeolli ideal in BCK-soft universe. We give example to show that
makgeolli ideal is not makgeolli algebra in BCI-soft universe, and provide conditions for makgeolli
ideal to be makgeolli algebra in BCI-soft universe.

2. Preliminaries

In 1978 and 1980, K. Iséki [28,29] introduced a BCK/BCI-algebra, which is an important class of
logical algebras.

By a BCI-algebra, we mean a set X with a a binary operation ∗ and special element 0 which
satisfies the following conditions.

(I) (∀u, v, w ∈ X) (((u ∗ v) ∗ (u ∗ w)) ∗ (w ∗ v) = 0),
(II) (∀u, v ∈ X) ((u ∗ (u ∗ v)) ∗ v = 0),
(III) (∀u ∈ X) (u ∗ u = 0),
(IV) (∀u, v ∈ X) (u ∗ v = 0, v ∗ u = 0 ⇒ u = v).

If a BCI-algebra X satisfies the following identity,

(V) (∀u ∈ X) (0 ∗ u = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following conditions.

(∀u ∈ X) (u ∗ 0 = u) , (1)

(∀u, v, w ∈ X) (u ≤ v ⇒ u ∗ w ≤ v ∗ w, w ∗ v ≤ w ∗ u) , (2)

(∀u, v, w ∈ X) ((u ∗ v) ∗ w = (u ∗ w) ∗ v) (3)

where u ≤ v if, and only if, u ∗ v = 0. A subset S of a BCK/BCI-algebra X is called a subalgebra of X if
u ∗ v ∈ S for all u, v ∈ S. A subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies

0 ∈ I, (4)

(∀u ∈ X) (∀v ∈ I) (u ∗ v ∈ I ⇒ u ∈ I) . (5)

We refer the reader to the books by the authors of [30,31] for further information regarding
BCK/BCI-algebras.

Let U be a universal set and E a set of parameters, respectively. A pair (α, E) is called a soft set
over a universe U (see [4]) where α is a mapping given by

α : E→ P(U).

In other words, a soft set over U is a parameterized family of subsets of the universe U. For ε ∈ A,
α(ε) may be considered as the set of ε-approximate elements of the soft set (α, A). Clearly, a soft set is
not a set. For illustration, Molodtsov considered several examples in the work by the authors of [4].

Given a nonempty subset A of E, denote by (α, A) a soft set (α, E) over U satisfying the
following condition.

α(x) = ∅ for all x /∈ A. (6)

3. Makgeolli Structures

In what follows, let E be a set of parameters and U a universal set unless otherwise specified. We
say that the pair (U, E) is a soft universe.
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Definition 1. Let A and B be subsets of E. A makgeolli structure on U (related to A and B) is a structure of
the form

M(A,B,U) := {〈(a, b, x); MA(a), GB(b), `(x)〉 | (a, b, x) ∈ A× B×U} (7)

where MA := (M, A) and GB := (G, B) are soft sets over U and ` is a fuzzy set in U.

For the sake of simplicity, the makgeolli structure in (7) will be denoted byM(A,B,U) = (MA, GB, `).
The makgeolli structureM(A,A,U) = (MA, GA, `) on U related to a subset A of E is simply denoted by
M(A,U) = (MA, GA, `).

Example 1. Miss K (say) and Mr. J (say) are going to buy a house to live in after marriage. They are looking for
the most reasonable house, considering its price, environment, and distance from the neighborhood (for example,
hospital). There are six houses U = {hi | i = 1, 2, 3, 4, 5, 6}. They are considering two parameter sets
A = {ε1, ε2, ε3} and B = {δ1, δ2, δ3} where each parameter εi and δi, i = 1, 2, 3, stands for

ε1: expensive, ε2: intermediate price, ε3: cheap,

δ1: beautiful, δ2: green surround, δ3: pristine area,

and consider the distance from the neighborhood given by

` : U → [0, 1], x 7→



0.4 if x = h1,
0.7 if x = h2,
0.6 if x = h3,
0.2 if x = h4,
0.5 if x = h5,
0.1 if x = h6.

Here, for example, `(h1) = 0.4 means that the distance from house to the neighborhood is 4 km. Suppose that
MA(ε1) = {h1, h2}, MA(ε2) = {h2, h3, h4}, MA(ε3) = {h1, h4, h6}, GB(δ1) = {h2, h4, h6}, GB(δ2) =

{h3, h4, h5} and GB(δ3) = {h3, h4, h5, h6} Then the makgeolli structureM(A,B,U) = (MA, GB, `) on U is
given by Table 1.

Table 1. Tabular representation of the makgeolli structureM(A,B,U) = (MA, GB, `).

X h1 h2 h3 h4 h5 h6

(MA(ε1), GB(δ1), `(x)) (1, 0, 0.4) (1, 1, 0.7) (0, 0, 0.6) (0, 1, 0.2) (0, 0, 0.5) (0, 1, 0.1)
(MA(ε1), GB(δ2), `(x)) (1, 0, 0.4) (1, 0, 0.7) (0, 1, 0.6) (0, 1, 0.2) (0, 1, 0.5) (0, 0, 0.1)
(MA(ε1), GB(δ3), `(x)) (1, 0, 0.4) (1, 0, 0.7) (0, 1, 0.6) (0, 1, 0.2) (0, 1, 0.5) (0, 1, 0.1)
(MA(ε2), GB(δ1), `(x)) (0, 0, 0.4) (1, 1, 0.7) (1, 0, 0.6) (1, 1, 0.2) (0, 0, 0.5) (0, 1, 0.1)
(MA(ε2), GB(δ2), `(x)) (0, 0, 0.4) (1, 0, 0.7) (1, 1, 0.6) (1, 1, 0.2) (0, 1, 0.5) (0, 0, 0.1)
(MA(ε2), GB(δ3), `(x)) (0, 0, 0.4) (1, 0, 0.7) (1, 1, 0.6) (1, 1, 0.2) (0, 1, 0.5) (0, 1, 0.1)
(MA(ε3), GB(δ1), `(x)) (1, 0, 0.4) (0, 1, 0.7) (0, 0, 0.6) (1, 1, 0.2) (0, 0, 0.5) (1, 1, 0.1)
(MA(ε3), GB(δ2), `(x)) (1, 0, 0.4) (0, 0, 0.7) (0, 1, 0.6) (1, 1, 0.2) (0, 1, 0.5) (1, 0, 0.1)
(MA(ε3), GB(δ3), `(x)) (1, 0, 0.4) (0, 0, 0.7) (0, 1, 0.6) (1, 1, 0.2) (0, 1, 0.5) (1, 1, 0.1)

The Gothic component (1, 1, 0.2) in Table 1 means that the house h4 is intermediate price, beautiful, and it is
2km away from the neighborhood (for example, hospital).
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Definition 2. Let (U, E) be a soft universe and letM(A,B,U) = (MA, GB, `) and N(A,B,U) = (NA, HB, ) be
makgeolli structures on U. The intersection ofM(A,B,U) and N(A,B,U) is defined to be a makgeolli structure
(MeN )(A,B,U) = (MA∩̃NA, GB∪̃HB, ` ∧ ) on U in which

MA∩̃NA : A→ P(U), a 7→ MA(a) ∩ NA(a),

GB∪̃HB : B→ P(U), b 7→ GB(b) ∪ HB(b),

` ∧  : U → [0, 1], x 7→ min{`(x), (x)}.

4. Applications in BCK/BCI-Algebras

A BCK/BCI-soft universe is defined as a soft universe (U, E) in which U and E are
BCK/BCI-algebras with binary operations “∗” and “ ”, respectively.

Definition 3. Let (U, E) be a BCK/BCI-soft universe and let A and B be subsets of E. A makgeolli structure
M(A,B,U) = (MA, GB, `) on U is called a makgeolli algebra over U if it satisfies:

(∀a1, a2 ∈ A) (a1  a2 ∈ A ⇒ MA(a1  a2) ⊇ MA(a1) ∩MA(a2)) ,

(∀b1, b2 ∈ B) (b1  b2 ∈ B ⇒ GB(b1  b2) ⊆ GB(b1) ∪ GB(b2)) ,

(∀x, y ∈ U)(∀t, r ∈ (0, 1])
(

x
t ∈ `, y

r ∈ ` ⇒ x∗y
min{t,r} ∈ `

) (8)

where x
t ∈ ` means `(x) ≥ t.

Example 2. Assume that there are five houses in the universal set U, which is given by

U = {hi | i = 0, 1, 2, 3, 4}.

Then (U, ∗, h0) is a BCK-algebra in which the operation ∗ is given by Table 2.

Table 2. Cayley table for the binary operation “∗”.

∗ h0 h1 h2 h3 h4

h0 h0 h0 h0 h0 h0
h1 h1 h0 h0 h1 h0
h2 h2 h1 h0 h2 h0
h3 h3 h3 h3 h0 h3
h4 h4 h4 h4 h4 h0

Let E = {ε0, ε1, ε2, ε3} be a set of parameters in which each element εi, i = 0, 1, 2, 3, stands for

ε0: beautiful, ε1: in good location, ε2: cheap, ε3: pristine area.

If we give a binary operation to E by Table 3,

Table 3. Cayley table for the binary operation “ ”.

 ε0 ε1 ε2 ε3

ε0 ε0 ε0 ε0 ε0
ε1 ε1 ε0 ε1 ε1
ε2 ε2 ε2 ε0 ε2
ε3 ε3 ε3 ε3 ε0
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Then (E, , ε0) is a BCK-algebra. If we take two sets, A = {ε0, ε2, ε3} and B = {ε0, ε3} of E, then A
and B are subalgebras of E. LetM(A,B,U) = (MA, GB, `) be a makgeolli structure on U given as follows:

MA : A→ P(U), x 7→


{hi | i = 0, 1, 2, 3, 4} if x = ε0,
{hi | i = 0, 2, 3} if x = ε2,
{hi | i = 1, 2, 4} if x = ε3,

GB : B→ P(U), x 7→
{
{h3} if x = ε0,
{h3, h4} if x = ε3,

` : U → [0, 1], x 7→



0.8 if x = h0,
0.5 if x = h1,
0.5 if x = h2,
0.6 if x = h3,
0.3 if x = h4.

It is routine to check thatM(A,B,U) = (MA, GB, `) is a makgeolli algebra over U.

Proposition 1. Let (U, E) be a BCK/BCI-soft universe. For any subalgebras A and B of E, every makgeolli
algebraM(A,B,U) = (MA, GB, `) over U satisfies the following conditions.

(∀(a, b, x) ∈ A× B×U)
(

MA(a) ⊆ MA(0), GB(b) ⊇ GB(0), 0
`(x) ∈ `

)
. (9)

Proof. If we take a1 = a2 = a and b1 = b2 = b in (8), then a a = 0 ∈ A and b b = 0 ∈ B. Hence

MA(0) = MA(a a) ⊇ MA(a) ∩MA(a) = MA(a),

GB(0) = GB(b b) ⊆ GB(b) ∪ GB(b) = GB(b).

Since x
`(x) ∈ ` for all x ∈ U, we have 0

`(x) =
x∗x

min{`(x),`(x)} ∈ ` for all x ∈ U.

Theorem 1. Let (U, E) be a BCK/BCI-soft universe and let A and B be subsets of E. Then a makgeolli structure
M(A,B,U) = (MA, GB, `) on U is an makgeolli algebra over U if and only if the following assertions are valid.

(∀a1, a2 ∈ A) (a1  a2 ∈ A ⇒ MA(a1  a2) ⊇ MA(a1) ∩MA(a2)) ,

(∀b1, b2 ∈ B) (b1  b2 ∈ B ⇒ GB(b1  b2) ⊆ GB(b1) ∪ GB(b2)) ,

(∀x, y ∈ U) (`(x ∗ y) ≥ min{`(x), `(y)}) .

(10)

Proof. Assume that

x
t ∈ `, y

r ∈ ` ⇒ x∗y
min{t,r} ∈ ` (11)

for all x, y ∈ U and t, r ∈ (0, 1]. Since x
`(x) ∈ ` and y

`(y) ∈ ` for all x, y ∈ U, it follows from (11) that
x∗y

min{`(x),`(y)} ∈ `. Thus `(x ∗ y) ≥ min{`(x), `(y)}.
Conversely, let x, y ∈ U and t, r ∈ (0, 1] be such that x

t ∈ ` and y
r ∈ `. Then `(x) ≥ t and `(y) ≥ r.

Hence `(x ∗ y) ≥ min{`(x), `(y)} ≥ min{t, r}, and so x∗y
min{t,r} ∈ `. This completes the proof.

Proposition 2. Let (U, E) be a BCK/BCI-soft universe. For any makgeolli algebraM(A,B,U) = (MA, GB, `)
over U related to subalgebras A and B of E, the following are equivalent.

(1)


(∀a ∈ A) (MA(a) = MA(0)) ,
(∀b ∈ B) (GB(b) = GB(0)) ,
(∀x ∈ U) (`(x) = `(0)) .
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(2)


(∀a1, a2 ∈ A) (MA(a2) ⊆ MA(a1  a2)) ,
(∀b1, b2 ∈ B) (GB(b2) ⊇ GB(b1  b2)) ,
(∀x, y ∈ U) (`(x ∗ y) ≥ `(y)) .

Proof. Suppose that (1) is true. Using (10), we have

(∀a1, a2 ∈ A) (MA(a2) = MA(0) ∩MA(a2) = MA(a1) ∩MA(a2) ⊆ MA(a1  a2)) ,

(∀b1, b2 ∈ B) (GB(b2) = GB(0) ∪ GB(b2) = GB(b1) ∪ GB(b2) ⊇ GB(b1  b2)) ,

(∀x, y ∈ U) (`(y) = min{`(0), `(y)} = min{`(x), `(y)} ≤ `(x ∗ y)) .

Assume that (2) is valid. Since a 0 = a for all a ∈ E, we have MA(0) ⊆ MA(a 0) = MA(a)
for all a ∈ A and GB(0) ⊇ GB(b  0) = GB(b) for all b ∈ B. Since x ∗ 0 = x for all x ∈ U, we have
`(0) ≤ `(x ∗ 0) = `(x) for all x ∈ U. It follows from (9) that we have (1).

Proposition 3. Let (U, E) be a BCI-soft universe. Then every makgeolli algebraM(A,B,U) = (MA, GB, `)
over U related to subalgebras A and B of E satisfies the following conditions.

(∀a1, a2 ∈ A) (MA(a1  (0 a2)) ⊇ MA(a1) ∩MA(a2)) ,

(∀b1, b2 ∈ B) (GB(b1  (0 b2)) ⊆ GB(b1) ∪ GB(b2)) ,

(∀x, y ∈ U) (`(x ∗ (0 ∗ y)) ≥ min{`(x), `(y)}) .

(12)

Proof. Using Proposition 1, we have

MA(a1  (0 a2)) ⊇ MA(a1) ∩MA(0 a2)

⊇ MA(a1) ∩MA(0) ∩MA(a2)

= MA(a1) ∩MA(a2),

GB(b1  (0 b2)) ⊆ GB(b1) ∪ GB(0 b2)

⊆ GB(b1) ∪ GB(0) ∪ GB(b2)

= GB(b1) ∪ GB(b2),

`(x ∗ (0 ∗ y)) ≥ min{`(x), `(0 ∗ y)} ≥ min{`(x), min{`(0), `(y)}} = min{`(x), `(y)}

for all a1, a2 ∈ A, b1, b2 ∈ B and x, y ∈ U.

Theorem 2. Let (U, E) be a BCK/BCI-soft universe and let M(A,B,U) = (MA, GB, `) and N(A,B,U) =

(NA, HB, ) be makgeolli algebras over U related to subalgebras A and B of E. Then the intersection ofM(A,B,U)

and N(A,B,U) is a makgeolli algebra over U.

Proof. For any a1, a2 ∈ A, b1, b2 ∈ B and x, y ∈ U, we have

(MA∩̃NA)(a1  a2) = MA(a1  a2) ∩ NA(a1  a2)

⊇ (MA(a1) ∩MA(a2)) ∩ (NA(a1) ∩ NA(a2))

= (MA(a1) ∩ NA(a1)) ∩ (MA(a2) ∩ NA(a2))

= (MA∩̃NA)(a1) ∩ (MA∩̃NA)(a2),
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(GB∪̃HB)(b1  b2) = GB(b1  b2) ∪ HB(b1  b2)

⊆ (GB(b1) ∪ GB(b2)) ∪ (HB(b1) ∪ HB(b2))

= (GB(b1) ∪ HB(b1)) ∪ (GB(b2) ∪ HB(b2))

= (GB∪̃HB)(b1) ∪ (GB∪̃HB)(b2),

(` ∧ )(x ∗ y) = min{`(x ∗ y), (x ∗ y)}
≥ min{min{`(x), `(y)}, min{(x), (y)}}
≥ min{min{`(x), (x)}, min{`(y), (y)}}
≥ min{(` ∧ )(x), (` ∧ )(y)}.

Therefore (MeN )(A,B,U) = (MA∩̃NA, GB∪̃HB, ` ∧ ) is a makgeolli algebra over U.

Let (U, E) be a BCK/BCI-soft universe. Gin a makgeolli structureM(A,B,U) = (MA, GB, `) on U
related to A and B, consider the following sets.

EA(MA; α) = {a ∈ A | MA(a) ⊇ α},
EB(GB; β) = {b ∈ B | GB(b) ⊆ β},
U (`; t) = {x ∈ U | `(x) ≥ t}

where α and β are subsets of U and t ∈ [0, 1].

Theorem 3. Let (U, E) be a BCK/BCI-soft universe. Then a makgeolli structureM(A,B,U) = (MA, GB, `) on
U related to subalgebras A and B of E is a makgeolli algebra over U if and only if the nonempty sets EA(MA; α)

and EB(GB; β) are subalgebras of E, and the nonempty set U (`; t) is a subalgebra of U for all α, β ∈ P(U) and
t ∈ [0, 1].

Proof. Suppose thatM(A,B,U) = (MA, GB, `) is a makgeolli algebra over U. Let a1, a2 ∈ EA(MA; α),
b1, b2 ∈ EB(GB; β) and x, y ∈ U (`; t) for all α, β ∈ P(U) and t ∈ [0, 1]. Then MA(a1) ⊇ α, MA(a2) ⊇ α,
GB(b1) ⊆ β, GB(b2) ⊆ β, `(x) ≥ t and `(y) ≥ t. It follows from (10) that

MA(a1  a2) ⊇ MA(a1) ∩MA(a2) ⊇ α,

GB(b1  b2) ⊆ GB(b1) ∪ GB(b2) ⊆ β,

`(x ∗ y) ≥ min{`(x), `(y)} ≥ t.

Hence a1  a2 ∈ EA(MA; α), b1  b2 ∈ EB(GB; β) and x ∗ y ∈ U (`; t). Therefore, EA(MA; α), EB(GB; β)

and U (`; t) are subalgebras of U.
Conversely, letM(A,B,U) = (MA, GB, `) be a makgeolli structure on U such that the nonempty sets

EA(MA; α) and EB(GB; β) are subalgebras of E, and the nonempty set U (`; t) is a subalgebra of U for all
α, β ∈ P(U) and t ∈ [0, 1]. Let a1, a2 ∈ A, b1, b2 ∈ B and x, y ∈ U be such that MA(a1) = αa1 , MA(a2) =

αa2 , GB(b1) = βb1 , GB(b2) = βb2 , `(x) = tx and `(y) = ty. Taking α = αa1 ∩ αa2 , β = βb1 ∪ βb2

and t = min{tx, ty} imply that a1, a2 ∈ EA(MA; α), b1, b2 ∈ EB(GB; β) and x, y ∈ U (`; t). Thus
a1  a2 ∈ EA(MA; α), b1  b2 ∈ EB(GB; β), and x ∗ y ∈ U (`; t), which imply that

MA(a1  a2) ⊇ α = αa1 ∩ αa2 = MA(a1) ∩MA(a2),

GB(b1  b2) ⊆ β = βb1 ∪ βb2 = GB(b1) ∪ GB(b2),

`(x ∗ y) ≥ t = min{tx, ty} = min{`(x), `(y)}.

ThereforeM(A,B,U) = (MA, GB, `) is a makgeolli algebra over U by Theorem 1.
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Let (U, E) be a soft universe. Given a makgeolli structureM(A,B,U) = (MA, GB, `) on U related to
subsets A and B of E, letM∗

(A,B,U) = (M∗A, G∗B, `∗) be a makgeolli structure related to A and B where

M∗A : A→ P(U), x 7→
{

MA(x) if x ∈ EA(MA; α),
η otherwise,

G∗B : B→ P(U), x 7→
{

GB(x) if x ∈ EB(GB; β),
ρ otherwise

`∗ : U → [0, 1], x 7→
{

`(x) if x ∈ U (`; t),
k otherwise

where α, β, η, ρ ∈ P(U) and t, k ∈ [0, 1] with η ( MA(x), ρ ) GB(x) and k < `(x).

Theorem 4. Let (U, E) be a BCK/BCI-soft universe. If a makgeolli structureM(A,B,U) = (MA, GB, `) on U
related to subalgebras A and B of E is a makgeolli algebra over U, then so isM∗

(A,B,U) = (M∗A, G∗B, `∗).

Proof. Assume that M(A,B,U) = (MA, GB, `) is a makgeolli algebra over U. Then the nonempty
sets EA(MA; α) and EB(GB; β) are subalgebras of E, and the nonempty set U (`; t) is a subalgebra
of U for all α, β ∈ P(U) and t ∈ [0, 1] by Theorem 3. Let a1, a2 ∈ A. If a1, a2 ∈ EA(MA; α), then
a1  a2 ∈ EA(MA; α), and so

M∗A(a1  a2) = MA(a1  a2) ⊇ MA(a1) ∩MA(a2) = M∗A(a1) ∩M∗A(a2).

If a1 /∈ EA(MA; α) or a2 /∈ EA(MA; α), then M∗A(a1) = η or M∗A(a2) = η. Hence M∗A(a1  
a2) ⊇ η = M∗A(a1) ∩M∗A(a2). Let b1, b2 ∈ B. If b1, b2 ∈ EB(GB; β), then b1  b2 ∈ EB(GB; β), which
implies that

G∗B(b1  b2) = GB(b1  b2) ⊆ GB(b1) ∪ GB(b2) = G∗B(b1) ∪ G∗B(b2).

If b1 /∈ EB(GB; β) or b2 /∈ EB(GB; β), then G∗B(b1) = ρ or G∗B(b2) = ρ. Hence G∗B(b1  b2) ⊆ ρ =

G∗B(b1) ∪ G∗B(b2). Let x, y ∈ U. If x, y ∈ U (`; t), then x ∗ y ∈ U (`; t), and so `∗(x ∗ y) = `(x ∗ y) ≥
min{`(x), `(y)} = min{`∗(x), `∗(y)}. If x /∈ U (`; t) of y /∈ U (`; t), then `∗(x) = k or `∗(y) = k.
Hence `∗(x ∗ y) ≥ k = min{`∗(x), `∗(y)}. ThereforeM∗

(A,B,U) = (M∗A, G∗B, `∗) is a makgeolli algebra
over U.

The following example shows that the converse of Theorem 4 is not true in general.

Example 3. Consider a soft universe (U, E) in which U = Z10 = {a | a = 0, 1, 2, · · · , 9} and
E = {ε0, ε1, ε2, ε3}. Define a binary operations “∗” on U by

a ∗ b = a− b + 10 (13)

for all a, b ∈ U. Then (U, ∗, 0) is a BCI-algebra. Let be a binary operation on E defined by Table 4.

Table 4. Cayley table for the binary operation “ ”.

 ε0 ε1 ε2 ε3

ε0 ε0 ε1 ε2 ε3
ε1 ε1 ε0 ε3 ε2
ε2 ε2 ε3 ε0 ε1
ε3 ε3 ε2 ε1 ε0
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Then (E, ∗, ε0) is a BCI-algebra. LetM(E,U) = (ME, GE, `) be a makgeolli structure on U defined by

ME : E→ P(U), x 7→


U if x = ε0,
{0, 2, 4, 6, 8} if x = ε1,
{2, 5, 6, 8} if x = ε2,
{4} if x = ε3,

GE : E→ P(U), x 7→


{0} if x = ε0,
{0, 5} if x = ε1,
{0, 4, 6, 8} if x = ε2,
U if x = ε3,

` : U → [0, 1], x 7→



0.9 if x = 0,
0.7 if x ∈ {2, 4, 6, 8},
0.6 if x ∈ {1, 3},
0.4 if x ∈ {5, 7},
0.3 if x = 9.

Then EE(ME; γ) = {ε0, ε1} = EE(GE; η) and U (`; r) = {0, 2, 4, 6, 8} for γ = {0, 6, 8}, η = {0, 5, 6}
and r ∈ (0.6, 0.7]. LetM∗

(E,U) = (M∗E, G∗E, `∗) be a makgeolli structure on U given as follows.

M∗E : E→ P(U), x 7→
{

ME(x) if x ∈ EE(ME; γ),
∅ otherwise,

G∗E : E→ P(U), x 7→
{

GE(x) if x ∈ EE(GE; η),
U otherwise,

`∗ : U → [0, 1], x 7→
{

`(x) if x ∈ U (`; r),
0 otherwise,

that is,

M∗E : E→ P(U), x 7→


U if x = ε0,
{0, 2, 4, 6, 8} if x = ε1,
∅ if x ∈ {ε2, ε3},

G∗E : E→ P(U), x 7→


{0} if x = ε0,
{0, 5} if x = ε1,
U if x ∈ {ε2, ε3},

`∗ : U → [0, 1], x 7→


0.9 if x = 0,
0.7 if x ∈ {2, 4, 6, 8},
0 otherwise,

It is routine to verify thatM∗
(E,U) = (M∗E, G∗E, `∗) is a makgeolli algebra over U. ButM(E,U) = (ME,

GE, `) is not a makgeolli algebra over U since

ME(ε1) ∩ME(ε2) = {2, 6, 8} * {2} = ME(ε3) = ME(ε1  ε2),

GE(ε1) ∪ GE(ε2) = {0, 4, 5, 6, 8} + U = GE(ε3) = GE(ε1  ε2),

and/or
`(1 ∗ 2) = `(9) = 0.3 < 0.6 = min{`(1), `(2)}.
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Definition 4. Let (U, E) be a BCK/BCI-soft universe. A makgeolli structureM(E,U) = (ME, GE, `) on U is
called a makgeolli ideal over U if it satisfies

(∀e ∈ E)(ME(0) ⊇ ME(e), GE(0) ⊆ GE(e)), (14)

(∀x ∈ U)
(

0
`(x) ∈ `

)
, (15)

(∀a, b ∈ E)

(
ME(a) ⊇ ME(a b) ∩ME(b)

GE(a) ⊆ GE(a b) ∪ GE(b)

)
. (16)

(∀x, y ∈ U)(∀t, r ∈ (0, 1])
(

x∗y
t ∈ `, y

r ∈ ` ⇒ x
min{t,r} ∈ `

)
. (17)

Example 4. There are five woman patients in a hospital which is given by

U = {w1, w2, w3, w4, w5}.

Communication between two patients wi and wj for i, j ∈ {1, 2, 3, 4, 5} in the hospital is expressed as
wi ∗ wj and the result is wk, i.e., wi ∗ wj = wk for k = 1, 2, 3, 4, 5; this is what wi informs wj that the health
condition of wk is serious. In this case “∗” is a binary operation given to U, where it is given as shown in Table 5.

Table 5. Cayley table for the binary operation “∗”.

∗ w1 w2 w3 w4 w5

w1 w1 w1 w3 w4 w5
w2 w2 w1 w3 w4 w5
w3 w3 w3 w1 w5 w4
w4 w4 w4 w5 w1 w3
w5 w5 w5 w4 w3 w1

Then (U, ∗, w1) is a BCI-algebra. Let a set of parameters E = {ε1, ε2, ε3, ε4, ε5} be a set of status of
patients in which each parameter means

ε1: “chest pain”; ε2: “headache”; ε3: “toothache”; ε4: “mental depression”; ε5: “neurosis”

with the binary operation “ ” in Table 6.

Table 6. Cayley table for the binary operation “ ”.

 ε1 ε2 ε3 ε4 ε5

ε1 ε1 ε1 ε1 ε4 ε4
ε2 ε2 ε1 ε2 ε5 ε4
ε3 ε3 ε3 ε1 ε4 ε4
ε4 ε4 ε4 ε4 ε1 ε1
ε5 ε5 ε4 ε5 ε2 ε1
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Then (E, , ε1) is a BCI-algebra. Hence (U, E) is a BCI-soft universe. LetM(E,U) = (ME, GE, `) be a
makgeolli structure on U defined by

ME : E→ P(U), x 7→


U if x = ε1,
{w1, w2, w3, w5} if x = ε2,
{w1, w3, w5} if x = ε3,
{w3, w5} if x ∈ {ε4, ε5},

GE : E→ P(U), x 7→



{w1} if x = ε1,
{w1, w2, w3} if x = ε2,
{w1, w2, w5} if x = ε3,
{w1, w2, w4, w5} if x = ε4,
U if x = ε5,

` : U → [0, 1], x 7→



0.8 if x = w1,
0.7 if x = w2,
0.3 if x = w3,
0.3 if x = w4,
0.5 if x = w5,

It is routine to verify thatM(E,U) = (ME, GE, `) is a makgeolli ideal over U.

Assume that (17) is true. Since x∗y
`(x∗y) ∈ ` and y

`(y) ∈ ` for all x, y ∈ U, it follows from (17) that
x

min{`(x∗y),`(y)} ∈ `, that is,

(∀x, y ∈ U) (`(x) ≥ min{`(x ∗ y), `(y)}) . (18)

Now, let x, y ∈ U and t, r ∈ (0, 1] such that x∗y
t ∈ ` and y

r ∈ `. Then `(x ∗ y) ≥ t and `(y) ≥ r.
If (18) holds, then

`(x) ≥ min{`(x ∗ y), `(y)} ≥ min{t, r},

and so x
min{t,r} ∈ `. Therefore we have the following theorem.

Theorem 5. Let (U, E) be a BCK/BCI-soft universe. A makgeolli structureM(E,U) = (ME, GE, `) on U is
an makgeolli ideal over U if, and only if, it satisfies (14), (16), (18), and

(∀x ∈ U) (`(0) ≥ `(x)) . (19)

Proposition 4. Let (U, E) be a BCK/BCI-soft universe. Every makgeolli idealM(E,U) = (ME, GE, `) over U
satisfies the following assertions.

(1) (∀a, b ∈ E)
(

a ≤ b ⇒ ME(a) ⊇ ME(b), GE(a) ⊆ GE(b)
)

.

(2) (∀x, y ∈ U)
(

x ≤ y ⇒ `(x) ≥ `(y)
)

.

(3) (∀a, b, c ∈ E)

(
a b ≤ c ⇒

{
ME(a) ⊇ ME(b) ∩ME(c)
GE(a) ⊆ GE(b) ∪ GE(c)

)
.

(4) (∀x, y, z ∈ U)
(

x ∗ y ≤ z ⇒ `(x) ≥ min{`(y), `(z)}
)

.

Proof. Let a, b ∈ E be such that a ≤ b. Then a b = 0, so the conditions (14) and (16) imply that

ME(b) = ME(0) ∩ME(b) = ME(a b) ∩ME(b) ⊆ ME(a),

GE(b) = GE(0) ∪ GE(b) = GE(a b) ∪ GE(b) ⊇ GE(a),
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If x ≤ y for all x, y ∈ U, then x ∗ y = 0. It follows from (18) and (19) that

`(y) = min{`(0), `(y)} = min{`(x ∗ y), `(y)} ≤ `(x).

Assume that a b ≤ c for all a, b, c ∈ E. Then (a b) c = 0, and so

ME(c) = ME(0) ∩ME(c) = ME((a b) c) ∩ME(c) ⊆ ME(a b),

GE(c) = GE(0) ∪ GE(c) = GE((a b) c) ∪ GE(c) ⊇ GE(a b)
(20)

by (14) and (16). If x ∗ y ≤ z for all x, y, z ∈ U, then (x ∗ y) ∗ z = 0. Using (18) and (19), we have

`(z) = min{`(0), `(z)} = min{`((x ∗ y) ∗ z), `(z)} ≤ `(x ∗ y). (21)

It follows from (16) and (18) that

ME(a) ⊇ ME(a b) ∩ME(b) ⊇ ME(b) ∩ME(c),

GE(a) ⊆ GE(a b) ∪ GE(b) ⊆ GE(b) ∪ GE(c),

`(x) ≥ min{`(x ∗ y), `(y)} ≥ min{`(y), `(z)}.

This completes the proof.

Proposition 5. Let (U, E) be a BCK/BCI-soft universe. Every makgeolli idealM(E,U) = (ME, GE, `) over U
satisfies the following assertions.

(∀a, b, c ∈ E)

(
ME(a b) ⊇ ME(a c) ∩ME(c b)

GE(a b) ⊆ GE(a c) ∪ GE(c b)

)
. (22)

(∀x, y, z ∈ U)(∀t, r ∈ (0, 1])
(

x∗z
t ∈ `, z∗y

r ∈ ` ⇒ x∗y
min{t,r} ∈ `

)
. (23)

(∀a, b ∈ E)

(
ME(a b) = ME(0) ⇒ ME(a) ⊇ ME(b)

GE(a b) = GE(0) ⇒ GE(a) ⊆ GE(b)

)
. (24)

(∀x, y ∈ U)
(

x∗y
`(0) ∈ ` ⇒ x

`(y) ∈ `
)

. (25)

Proof. Since (a  b)  (a  c) ≤ c  b for all a, b, c ∈ E, we have (22) by (3) in Proposition 4. Let
x, y, z ∈ U and t, r ∈ (0, 1] be such that x∗z

t ∈ ` and z∗y
r ∈ `. Then `(x ∗ z) ≥ t and `(z ∗ y) ≥ r. Since

(x ∗ y) ∗ (x ∗ z) ≤ z ∗ y for all x, y, z ∈ U, it follows from (4) in Proposition 4 that

`(x ∗ y) ≥ min{`(x ∗ z), `(z ∗ y)} ≥ min{t, r}.

Hence x∗y
min{t,r} ∈ `, and (23) is valid. Consider a, b ∈ E satisfying ME(a  b) = ME(0) and

GE(a b) = GE(0). Then

ME(a) ⊇ ME(a b) ∩ME(b) = ME(0) ∩ME(b) = ME(b)

and
GE(a) ⊆ GE(a b) ∪ GE(b) = GE(0) ∪ME(b) = ME(b).

Suppose that x∗y
`(0) ∈ ` for all x, y ∈ U. Then `(x ∗ y) = `(0), and so

`(x) ≥ min{`(x ∗ y), `(y)} = min{`(0), `(y)} = `(y),

that is, x
`(y) ∈ `. This completes the proof.
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Proposition 6. Let (U, E) be a BCK/BCI-soft universe. For every makgeolli idealM(E,U) = (ME, GE, `) over
U, the following are equivalent.

(1)

 (∀a, b ∈ E)

(
ME(a b) ⊇ ME((a b) b)

GE(a b) ⊆ GE((a b) b)

)
.

(∀x, y ∈ U) (`(x ∗ y) ≥ `((x ∗ y) ∗ y)) .

(2)

 (∀a, b, c ∈ E)

(
ME((a c) (b c)) ⊇ ME((a b) c)

GE((a c) (b c)) ⊆ GE((a b) c)

)
.

(∀x, y, z ∈ U) (`((x ∗ z) ∗ (y ∗ z)) ≥ `((x ∗ y) ∗ z)) .

Proof. Let a, b, c ∈ E and assume that (1) is valid. Since

((a (b c)) c) c = ((a c) (b c)) c ≤ (a b) c,

it follows from Proposition 4 that

ME((a c) (b c)) = ME((a (b c)) c)

⊇ ME(((a (b c)) c) c)

⊇ ME((a b) c)

and

GE((a c) (b c)) = GE((a (b c)) c)

⊆ GE(((a (b c)) c) c)

⊆ GE((a b) c).

Using (1), (2), and (3), we get ((x ∗ (y ∗ z)) ∗ z) ∗ z ≤ (x ∗ y) ∗ z for all x, y, z ∈ X. Hence

`((x ∗ z) ∗ (y ∗ z)) = `((x ∗ (y ∗ z)) ∗ z) ≥ `(((x ∗ (y ∗ z)) ∗ z) ∗ z) ≥ `((x ∗ y) ∗ z)

for all x, y, z ∈ X.
Conversely, suppose that (2) is true. If we take b = c and y = z in (2), then

ME(a c) = ME((a c) (c c)) ⊇ ME((a c) c)

GE(a c) = GE((a c) (c c)) ⊆ GE((a c) c)

and

`(x ∗ z) = `((x ∗ z) ∗ (z ∗ z)) ≥ `((x ∗ z) ∗ z)

by (III) and (1). This proves (1).

Theorem 6. In a BCK-soft universe (U, E), every makgeolli ideal is a makgeolli algebra.

Proof. LetM(E,U) = (ME, GE, `) be a makgeolli ideal over U. For any a, b ∈ E and x, y ∈ U, we have

ME(a b) ⊇ ME((a b) a) ∩ME(a) = ME((a a) b) ∩ME(a)

= ME(0 b) ∩ME(a) = ME(0) ∩ME(a) ⊇ ME(a) ∩ME(b),

GE(a b) ⊆ GE((a b) a) ∪ GE(a) = GE((a a) b) ∪ GE(a)

= GE(0 b) ∪ GE(a) = GE(0) ∪ GE(a) ⊆ GE(a) ∪ GE(b),
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and

`(x ∗ y) ≥ min{`((x ∗ y) ∗ x), `(x)} = min{`((x ∗ x) ∗ y), `(x)}
= min{`(0 ∗ y), `(x)} = min{`(0), `(x)} ≥ min{`(x), `(y)}.

ThereforeM(E,U) = (ME, GE, `) is a makgeolli algebra over U by Theorem 1.

The following example shows that the converse of Theorem 6 is not true in general.

Example 5. Let U = P(N). Define a binary operation ∗ on U by

(∀A, B ∈ U)

(
A ∗ B =

{
∅ if A ⊆ B
A \ B otherwise

)
. (26)

Then (U, ∗, ∅) is a BCK-algebra (see the work by the authors of [31]). Consider a BCK-algebra E = {0, 1, 2, 3, 4}
with the binary operation ∗ in Table 7.

Table 7. Cayley table for the binary operation “∗”.

∗ 0 1 2 3 4

0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 3 3 1 0

Then (U, E) is a BCK-soft universe. LetM(E,U) = (ME, GE, `) be a makgeolli structure on U defined by

ME : E→ P(U), x 7→



N if x = 0,
4N if x = 1,
2N if x = 2,
3N if x = 3,
8N if x = 4,

GE : E→ P(U), x 7→



12N if x = 0,
3N if x = 1,
6N if x = 2,
5N if x = 3,
N if x = 4,

` : U → [0, 1], x 7→
{

0.8 if x ∈ S,
0.3 if x /∈ S

where S is a subalgebra of U. It is routine to verify thatM(E,U) = (ME, GE, `) is a makgeolli algebra over
U. But it is not a makgeolli ideal over U since ME(4 ∗ 2) ∩ME(2) = ME(3) ∩ME(2) = 3N∩ 2N = 6N *
8N = ME(4) and/or GE(4 ∗ 2) ∩ GE(2) = GE(3) ∪ GE(2) = 5N∪ 6N + N = GE(4).

We provide a condition for a makgeolli algebra to be a makgeolli ideal in BCK-soft universe.

Theorem 7. In a BCK-soft universe (U, E), letM(E,U) = (ME, GE, `) be a makgeolli algebra over U satisfying
the conditions (3) and (4) in Proposition 4. ThenM(E,U) = (ME, GE, `) is a makgeolli ideal over U.
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Proof. By Proposition 1, we know that ME(a) ⊆ ME(0), GE(b) ⊇ GE(0) and 0
`(x) ∈ ` for all a ∈ E and

x ∈ U. Sine a  (a  b) ≤ b and x ∗ (x ∗ y) ≤ y for all a, b ∈ E and x, y ∈ U, it follows from the
conditions (3) and (4) in Proposition 4 that ME(a) ⊇ ME(a b)∩ME(b), GE(a) ⊆ GE(a b)∪GE(b)
and `(x) ≥ min{`(x ∗ y), `(y)}. Therefore,M(E,U) = (ME, GE, `) is a makgeolli ideal over U.

The following example shows that Theorem 6 is not true in a BCI-soft universe (U, E).

Example 6. Consider the two BCI-algebras U = {0, 1, a, b, c} and E = {0, a, b, c} with binary operation ∗
and given by Tables 8 and 9, respectively.

Table 8. Cayley table for the binary operation “∗”.

∗ 0 1 a b c

0 0 0 a b c
1 1 0 a b c
a a a 0 c b
b b b c 0 a
c c c b a 0

Table 9. Cayley table for the binary operation “ ”.

 0 a b c

0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Then (U, E) is a BCI-soft universe. LetM(E,U) = (ME, GE, `) be a makgeolli structure on U defined by

ME : E→ P(U), x 7→


U if x = 0,
{0, 1, a} if x = a,
{0, 1} if x = b,
{0} if x = c,

GE : E→ P(U), x 7→


{0, 1} if x = 0,
{0, 1, b} if x = a,
{0, 1, c} if x = b,
U if x = c,

` : U → [0, 1], x 7→


0.9 if x = 0,
0.8 if x = 1,
0.3 if x ∈ {a, b},
0.6 if x = c.

It is routine to verify thatM(E,U) = (ME, GE, `) is a makgeolli ideal over U, but it is not a makgeolli
algebra over U since

ME(a) ∩ME(b) = {0, 1, a} ∩ {0, 1} = {0, 1} * {0} = ME(c) = ME(a b).

We provide a condition for Theorem 6 to be true in a BCI-soft universe (U, E).
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Theorem 8. In a BCI-soft universe (U, E), letM(E,U) = (ME, GE, `) be a makgeolli ideal over U satisfying
the following condition.

(∀a ∈ E, ∀x ∈ U)(ME(0 a) ⊇ ME(a), GE(0 a) ⊆ GE(a), 0∗x
`(x) ∈ `). (27)

ThenM(E,U) = (ME, GE, `) is a makgeolli algebra over U.

Proof. Let a, b ∈ E and x, y ∈ U. Then

ME(a b) ⊇ ME((a b) a) ∩ME(a) = ME(0 b) ∩ME(a) ⊇ ME(a) ∩ME(b),

GE(a b) ⊆ GE((a b) a) ∪ GE(a) = GE(0 b) ∪ GE(a) ⊆ GE(a) ∪ GE(b),

and `(x ∗ y) ≥ min{`((x ∗ y) ∗ x), `(x)} = min{`(0 ∗ y), `(x)} ≥ min{`(y), `(x)}. It follows from
Theorem 1 thatM(E,U) = (ME, GE, `) is a makgeolli algebra over U.

Let (X, ∗, 0) be a BCI-algebra and B(X) := {x ∈ X | 0 ≤ x}. For any x ∈ X and n ∈ N, we define
xn by

x1 = x, xn+1 = x ∗ (0 ∗ xn).

The element x of X is said to be of finite periodic (see the work by the authors of [32]) if there
exists n ∈ N such that xn ∈ B(X). The period of x is denoted by |x| and it is given as follows.

|x| = min{n ∈ N | xn ∈ B(X)}.

Theorem 9. Let (U, E) be a BCI-soft universe in which every element of U (resp., E) is of finite period. Then
every makgeolli ideal over U is a makgeolli algebra over U.

Proof. LetM(E,U) = (ME, GE, `) be a makgeolli ideal over U. For any a ∈ E and x ∈ U, assume that
|a| = m and |x| = n. Then am ∈ B(E) and xn ∈ B(U). Note that

(0 am−1) a = (0 (0 (0 am−1))) a = (0 a) (0 (0 am−1))

= 0 (a (0 am−1)) = 0 am = 0

and

(0 ∗ xn−1) ∗ x = (0 ∗ (0 ∗ (0 ∗ xn−1))) ∗ x = (0 ∗ x) ∗ (0 ∗ (0 ∗ xn−1))

= 0 ∗ (x ∗ (0 ∗ xn−1)) = 0 ∗ xn = 0.

Hence ME((0  am−1)  a) = ME(0) ⊇ ME(a), GE((0  am−1)  a) = GE(0) ⊆ GE(a) and
`((0 ∗ xn−1) ∗ x) = `(0) ≥ `(x) by (14) and (19). It follows from (16) and (18) that

ME(0 am−1) ⊇ ME((0 am−1) a) ∩ME(a) ⊇ ME(a),

GE(0 am−1) ⊆ GE((0 am−1) a) ∪ GE(a) ⊆ GE(a),

`(0 ∗ xn−1) ≥ min{`((0 ∗ xn−1) ∗ x), `(x)} ≥ `(x).

(28)

Also, note that

(0 am−2) a = (0 (0 (0 am−2))) a = (0 a) (0 (0 am−2))

= 0 (a (0 am−2)) = 0 am−1
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and

(0 ∗ xn−2) ∗ x = (0 ∗ (0 ∗ (0 ∗ xn−2))) ∗ x = (0 ∗ x) ∗ (0 ∗ (0 ∗ xn−2))

= 0 ∗ (x ∗ (0 ∗ xn−2)) = 0 ∗ xn−1.

Using (28), we have

ME((0 am−2) a) = ME(0 am−1) ⊇ ME(a),

GE((0 am−2) a) = GE(0 am−1) ⊆ GE(a),

`((0 ∗ xn−2) ∗ x) = `(0 ∗ xn−1) ≥ `(x).

It follows from (16) and (18) that

ME(0 am−2) ⊇ ME((0 am−2) a) ∩ME(a) ⊇ ME(a),

GE(0 am−2) ⊆ GE((0 am−2) a) ∪ GE(a) ⊆ GE(a),

`(0 ∗ xn−2) ≥ min{`((0 ∗ xn−2) ∗ x), `(x)} ≥ `(x).

Continuing this prosess, we get ME(0 a) ⊇ ME(a), GE(0 a) ⊆ GE(a) and `(0 ∗ x) ≥ `(x),
i.e., 0∗x

`(x) ∈ `. HenceM(E,U) = (ME, GE, `) satisfies the condition (27), and thereforeM(E,U) = (ME,
GE, `) is a makgeolli algebra over U by Theorem 8.

Theorem 10. Let (U, E) be a BCK/BCI-soft universe. Then a makgeolli structureM(E,U) = (ME, GE, `) on
U is a makgeolli ideal over U if and only if the sets EE(ME; α), EE(GE; β), and U (`; t) are ideals of E and U,
respectively, for all α, β ∈ P(U) and t ∈ [0, 1].

Proof. Assume that M(E,U) = (ME, GE, `) on U is a makgeolli ideal over U. It is clear that 0 is
contained in EE(ME; α), EE(GE; β) and U (`; t) for all α, β ∈ P(U) and t ∈ [0, 1]. Let a, b ∈ E be such
that a b ∈ EE(ME; α) and b ∈ EE(ME; α) (resp., a b ∈ EE(GE; β) and b ∈ EE(GE; β)). Then

ME(a) ⊇ ME(a b) ∩ME(b) ⊇ α

(respectively, GE(a) ⊆ zgE(a  b) ∪ GE(b) ⊆ β), and thus a ∈ EE(ME; α) (resp., a ∈ EE(GE; β)). For
any x, y ∈ U, let x ∗ y ∈ U (`; t) and y ∈ U (`; t). Then `(x ∗ y) ≥ t and `(y) ≥ t. It follows from
Theorem 1 that `(x) ≥ min{`(x ∗ y), `(y)} ≥ t. Hence x ∈ U (`; t). Therefore EE(ME; α), EE(GE; β)

and U (`; t) are ideals of E and U, respectively.
Conversely, suppose that the sets EE(ME; α), EE(GE; β) and U (`; t) are ideals of E and U,

respectively, for all α, β ∈ P(U) and t ∈ [0, 1]. Let a, b ∈ E and x ∈ U be such that ME(a) = α,
GE(b) = β and `(x) = t. Then ME(a) = α ⊆ ME(0), GE(b) = β ⊆ GE(0) and `(x) = t ≤ `(0).
Let a, b ∈ E and x, y ∈ U be such that ME(a  b) = α1, ME(b) = α2 (resp., GE(a  b) = β1,
GE(b) = β2) and `(x ∗ y) = t1, `(y) = t2. If we take α = α1 ∩ α2 (resp., β = β1 ∪ β2) and t = min{t1, t2},
then a b ∈ EE(ME; α), b ∈ EE(ME; α) (resp., a b ∈ EE(GE; α), b ∈ EE(GE; α)) and x ∗ y ∈ U (`; t),
y ∈ U (`; t). It follows that a ∈ EE(ME; α) (resp., a ∈ EE(GE; α)) and x ∈ U (`; t). Hence

ME(a) ⊇ α = α1 ∩ α2 = ME(a b) ∩ME(b)

(resp., GE(a) ⊆ β = β1 ∪ β2 = GE(a b) ∪ GE(b)) and

`(x) ≥ t = min{t1, t2} = min{`(x ∗ y), `(y)}.

ThereforeM(E,U) = (ME, GE, `) on U is a makgeolli ideal over U by Theorem 1.
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5. Applications in Medical Sciences

Miss J (say) has cancer and needs surgery. She tries to find a hospital with excellent medical skills,
low treatment costs, and friendly nurses. There are six hospitals, U = {h1, h2, h3, h4, h5, h6} and there
are two parameter sets, A = {ε1, ε2, ε3}, and B = {δ1, δ2}, where each parameter εi for i = 1, 2, 3 and δj
for j = 1, 2, stands for

ε1: Medical expenses are low; ε2: Medical expenses are intermediate

ε3: Medical expenses are expensive

δ1: Nurses are kind; δ2: Nurses are unkind

The medical skills of the hospital are indicated by the following functions.

` : U → [0, 1], x 7→



0.1 if x = h1,
0.7 if x = h2,
0.3 if x = h3,
0.9 if x = h4,
0.8 if x = h5,
0.5 if x = h6,

where, the higher the number, the better the medical skill. Assume that MA(ε1) = {h1, h2},
MA(ε2) = {h3, h6}, MA(ε3) = {h4, h5}, GB(δ1) = {h2, h4, h6} and GB(δ2) = {h1, h3, h5}. Then the
makgeolli structureM(A,B,U) = (MA, GB, `) on U is given by Table 10.

Table 10. Tabular representation of the makgeolli structureM(A,B,U) = (MA, GB, `).

X h1 h2 h3 h4 h5 h6

(MA(ε1), GB(δ1), `(x)) (1, 0, 0.1) (1, 1, 0.7) (0, 0, 0.3) (0, 1, 0.9) (0, 0, 0.8) (0, 1, 0.5)
(MA(ε1), GB(δ2), `(x)) (1, 1, 0.1) (1, 0, 0.7) (0, 1, 0.3) (0, 0, 0.9) (0, 1, 0.8) (0, 0, 0.5)
(MA(ε2), GB(δ1), `(x)) (0, 0, 0.1) (0, 1, 0.7) (1, 0, 0.3) (0, 1, 0.9) (0, 0, 0.8) (1, 1, 0.5)
(MA(ε2), GB(δ2), `(x)) (0, 1, 0.1) (0, 0, 0.7) (1, 1, 0.3) (0, 0, 0.9) (0, 1, 0.8) (1, 0, 0.5)
(MA(ε3), GB(δ1), `(x)) (0, 0, 0.1) (0, 1, 0.7) (0, 0, 0.3) (1, 1, 0.9) (1, 0, 0.8) (0, 1, 0.5)
(MA(ε3), GB(δ2), `(x)) (0, 1, 0.1) (0, 0, 0.7) (0, 1, 0.3) (1, 0, 0.9) (1, 1, 0.8) (0, 0, 0.5)

You know that, in the first row of Table 10, if you find a hospital that responds to the element
(1, 1, 0.9), the hospital has excellent medical skills, friendly nurses, and medical costs are also low,
but you cannot see it. However, you can see the element (1, 1, 0.7) in the first row of Table 10, and the
corresponding hospital is h2. Therefore, although the medical skill of h2 is slightly lower than that of h4

and h5, it can be found that the nurse is kind and also the treatment cost is cheap. Therefore Miss J will
choose hospital h2 for surgery. Even if the cost of treatment is high, if Miss J find the hospital which
the medical skills are excellent and the nurses are kind, she can select the hospital h4 that corresponds
to (MA(ε3), GB(δ1), `(x)) = (1, 1, 0.9). We can see that the cost of treatment in the hospital (h4) with
the best medical skills is the most expensive. If a mild cold patient tries to visit a hospital, he or she
does not need high-level medical skills. Regardless of the nurse’s kindness, he/she will try to find a
hospital where treatment costs are low. In this case, he or she can select the hospital h1.

6. Conclusions

Soft set theory, which was proposed by Molodtsov in 1999, is a generalization of fuzzy set theory.
It is a good mathematical tool for dealing with uncertainty in a parametric manner. Soft set has
many applications in medical diagnosis and decision making etc. As an extension of the classical
set, Zadeh introduced the fuzzy set in 1965, which has been applied in so many areas. In this paper,
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we have introduced the concept of makgeolli structures (see Definition 1) using fuzzy and soft set
theory and have applied it to BCK/BCI-algebras. We have defined the notion of makgeolli algebra
(see Definition 3) and makgeolli ideal (see Definition 4) in BCK/BCI-algebras, and have investigated
several properties. We have shown that every makgeolli ideal is a makgeolli algebra in BCK-soft
universes (see Theorem 6). We have considered an example to show that any makgeolli algebra may
not be a makgeolli ideal in BCK-soft universes (see Example 5). We have provided a condition for a
makgeolli algebra to be a makgeolli ideal in BCK-soft universes (see Theorem 7). We have considered
an example to show that any makgeolli ideal may not be a makgeolli algebra in BCI-soft universe
(see Example 6), and have provided a condition for a makgeolli ideal to be a makgeolli algebra in
BCI-soft universes (see Theorem 8). We have discussed characterization of makgeolli algebra and
makgeolli ideal (see Theorems 1, 3, 5, and 10). We have made a new makgeolli algebra from old one
(see Theorem 4). In the final section, we have considered an application in medical sciences. In the
forthcoming research and papers, we will continue these ideas and will define new notions in several
algebraic structures.
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