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Abstract: In this paper, we focus on studying the split feasibility problem (SFP), which has many
applications in signal processing and image reconstruction. A popular technique is to employ the
iterative method which is so called the relaxed CQ algorithm. However, the speed of convergence
usually depends on the way of selecting the step size of such algorithms. We aim to suggest a new
hybrid CQ algorithm for the SFP by using the self adaptive and the line-search techniques. There is no
computation on the inverse and the spectral radius of a matrix. We then prove the weak convergence
theorem under mild conditions. Numerical experiments are included to illustrate its performance in
compressed sensing. Some comparisons are also given to show the efficiency with other CQ methods
in the literature.
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1. Introduction

In the present work, we aim to study the split feasibility problem (SFP), which is to find a point

x∗ ∈ C such that Ax∗ ∈ Q (1)

where C and Q are nonempty closed and convex subsets of real Hilbert spaces H1 and H2, respectively,
and A : H1 → H2 a bounded linear operator. In 1994, the SFP was first investigated by Censor and
Elfving [1] in finite dimensional Hilbert spaces. There have been applications in real world such as
image processing and signal recovery (see [2,3]). Byrne [4,5] introduced the following recursive
procedure for solving SFP:

xn+1 = PC(xn − αn A∗(I − PQ)Axn) (2)

where {αn} ⊂ (0, 2/‖A‖2), PC and PQ are the projections onto C and Q, respectively, and A∗ is the
adjoint of A. This projection algorithm is usually called the CQ algorithm. Subsequently, Yang [6]
introduced the relaxed CQ algorithm. In this case, the projections PC and PQ are, respectively, replaced
by PCn and PQn , where

Cn = {x ∈ H1 : c(xn) + 〈ξn, x− xn〉 ≤ 0}, (3)

where c : H1 → R is convex and lower semicontinuous, and ξn ∈ ∂c(xn), and

Qn = {y ∈ H2 : q(Axn) + 〈ηn, y− Axn〉 ≤ 0}, (4)
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where q : H2 → R is convex and lower semicontinuous, and ηn ∈ ∂q(Axn). In what follows, we define

fn(x) =
1
2
‖(I − PQn)Ax‖2, n ≥ 1 (5)

and
∇ fn(x) = A∗(I − PQn)Ax. (6)

Precisely, Yang [6] proposed the relaxed CQ algorithm in a finite-dimensional Hilbert space
as follows:

Algorithm 1. Let x1 ∈ H1. For n ≥ 1, define

xn+1 = PCn(xn − αn∇ fn(xn)). (7)

where {αn} ⊂ (0, 2/‖A‖2).

It is seen that, since the sets Cn and Qn are half spaces, the projections are easily to be computed.
However, the step size {αn} still depends on the norm of A.

To eliminate this difficulty, in 2012, López et al. [7] suggested a new way to select the step size αn

as follows:

αn =
βn fn(xn)

‖∇ fn(xn)‖2 (8)

where {βn} is a sequence in (0, 4) such that 0 < a ≤ lim infn→∞ βn ≤ lim supn→∞ βn ≤ b < 4 for
some a, b ∈ (0, 4). They established the weak convergence of the CQ algorithm (Equation (2)) and the
relaxed CQ algorithm (Equation (7)) with the step size defined by Equation (8) in real Hilbert spaces.

Qu and Xiu [8] adopted the line-search technique to construct the step size in Euclidean spaces
as follows:

Algorithm 2. Choose σ > 0, ρ ∈ (0, 1), µ ∈ (0, 1). Let x1 be a point in H1. For n ≥ 1, let

yn = PCn(xn − αn∇ fn(xn)), (9)

where αn = σρmn and mn is the smallest nonnegative integer such that

αn‖∇ fn(xn)−∇ fn(yn)‖ ≤ µ‖xn − yn‖. (10)

Set
xn+1 = PCn(xn − αn∇ fn(yn)). (11)

In 2012, Bnouhachem et al. [9] proposed the following projection method for solving the SFP.

Algorithm 3. For a given x1 ∈ Rn, let

yn = PCn(xn − αn∇ fn(xn)) (12)

where αn > 0 satisfies
αn‖∇ fn(xn)−∇ fn(yn)‖ ≤ µ‖xn − yn‖, 0 < µ < 1. (13)

Define
xn+1 = PCn(xn − ϕnd(xn, αn)) (14)
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where

d(xn, αn) = xn − yn + αn∇ fn(yn)

εn = αn(∇ fn(yn)−∇ fn(xn))

D(xn, αn) = xn − yn − εn

φ(xn, αn) = 〈xn − yn, D(xn, αn)〉 (15)

and

ϕn =
φ(xn, αn)

‖d(xn, αn)‖2 . (16)

Recently, many authors establish weak and strong convergence theorems for the SFP (see
also [10,11]).

In this work, combining the work of Bnouhachem et al. [9] and López et al. [7], we suggest a new
hybrid CQ algorithm for solving the split feasibility problem and establish weak convergence theorem
in Hilbert spaces. Finally, numerical results are given for supporting our main results. The comparison
is also given to algorithms of Qu and Xiu [8] and Bnouhachem et al. [9]. It is shown that our method
has a better convergence behavior than these CQ algorithms through numerical examples.

2. Preliminaries

We next recall some useful basic concepts that will be used in our proof. Let H be a real Hilbert
space equipped with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let T : H → H be a nonlinear mapping.
Then, T is called firmly nonexpansive if, for all x, y ∈ H,

〈x− y, Tx− Ty〉 ≥ ‖Tx− Ty‖2. (17)

In a real Hilbert space H, we have the following equality:

〈x, y〉 = 1
2
‖x‖2 +

1
2
‖y‖2 − 1

2
‖x− y‖2. (18)

A function f : H → R is convex if and only if

f (z) ≥ f (x) + 〈∇ f (x), z− x〉 (19)

for all z ∈ H.
A function f : H → R is said to be weakly lower semi-continuous (w-lsc) at x if xn ⇀ x implies

f (x) ≤ lim inf
n→∞

f (xn). (20)

The projection of a nonempty, closed and convex set C onto H is defined by

PCx := arg min
y∈C
‖x− y‖2, x ∈ H. (21)

We note that PC and I − PC are firmly nonexpansive. From [5], we know that, if

f (x) =
1
2
‖(I − PQ)Ax‖2,

then ∇ f is ‖A‖2-Lipschitz continuous. Moreover, in real Hilbert spaces, we know that [12]
(i) 〈x− PCx, z− PCx〉 ≤ 0 for all z ∈ C;
(ii) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 for all x, y ∈ H; and
(iii) ‖PCx− z‖2 ≤ ‖x− z‖2 − ‖PCx− x‖2 for all z ∈ C.
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Lemma 1. [12] Let S be a nonempty, closed and convex subset of a real Hilbert space H and {xn} be a sequence
in H that satisfies the following assumptions:

(i) lim
n→∞

‖xn − x‖ exists for each x ∈ S; and

(ii) ωw(xn) ⊂ S.
Then, {xn} converges weakly to a point in S.

3. Main Results

Throughout this paper, let S be the set of solution of SFP and suppose that S is nonempty. Let C
and Q be nonempty that satisfy the following assumptions:

(A1) The set C is defined by
C = {x ∈ H1 : c(x) ≤ 0}, (22)

where c : H1 → R is convex, subdifferentiable on C and bounded on bounded sets, and the set Q is
defined by

Q = {y ∈ H2 : q(y) ≤ 0}, (23)

where q : H2 → R is convex, subdifferentiable on Q and bounded on bounded sets.
(A2) For each x ∈ H1 , at least one subgradient ξ ∈ ∂c(x) can be computed, where

∂c(x) = {z ∈ H1 : c(u) ≥ c(x) + 〈u− x, z〉, ∀u ∈ H1}. (24)

(A3) For each y ∈ H2, at least one subgradient η ∈ ∂q(y) can be computed, where

∂q(x) = {w ∈ H2 : q(u) ≥ q(y) + 〈v− y, w〉, ∀v ∈ H2}. (25)

Next, we propose our new relaxed CQ algorithm in real Hilbert spaces.

Algorithm 4. Let x1 ∈ H1, for any σ > 0, ρ ∈ (0, 1), µ ∈ (0,
1
2
). Assume {xn} and {yn} have been

constructed. Compute xn+1 via the formula

yn = PCn(xn − αn∇ fn(xn)), (26)

where αn = σρmn and mn is the smallest nonnegative integer such that

αn‖∇ fn(xn)−∇ fn(yn)‖ ≤ µ‖xn − yn‖. (27)

Define
xn+1 = yn − τn∇ fn(yn) (28)

where

τn =
βn fn(yn)

‖∇ fn(yn)‖2 + θn
, 0 < βn < 4, 0 < θn < 1. (29)

Lemma 2. [8] The line-search in Equation (27) terminates after a finite number of steps. In addition, we have
the following:

µρ

L
< αn ≤ σ (30)

for all n ≥ 1, where L = ‖A‖2.

Next, we state our main theorem in this paper.
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Theorem 1. Assume that {θn} and {βn} satisfy the assumptions:
(a1) lim

n→∞
θn = 0; and

(a2) lim inf
n→∞

βn(4− βn) > 0.

Then, {xn} defined by Algorithm 4 converges weakly to a solution of the SFP.

Proof. Let z ∈ S. Then, we have z = PCn(z) and Az = PQn(Az). It follows that∇ fn(z) = 0. We see that

‖xn+1 − z‖2 = ‖yn − τn∇ fn(yn)− z‖2

= ‖yn − z‖2 + τ2
n‖∇ fn(yn)‖2 − 2τn〈yn − z,∇ fn(yn)〉. (31)

Since I − PQn is firmly nonexpansive and ∇ fn(z) = 0, we get

〈yn − z,∇ fn(yn)〉 = 〈yn − z,∇ fn(yn)−∇ fn(z)〉
= 〈yn − z, A∗(I − PQn)Ayn − A∗(I − PQn)Az〉
= 〈Ayn − Az, (I − PQn)Ayn − (I − PQn)Az〉
≥ ‖(I − PQn)Ayn‖2

= 2 fn(yn). (32)

It also follows that
〈xn − z,∇ fn(xn)〉 ≥ 2 fn(xn). (33)

From Equation (19), we see that

2αn〈yn − xn,∇ fn(xn)〉 = 2αn〈yn − xn,∇ fn(xn)−∇ fn(yn)〉+ 2αn〈yn − xn,∇ fn(yn)〉
≥ −2αn‖yn − xn‖‖∇ fn(xn)−∇ fn(yn)‖

+2αn
1
2
(‖(I − PQn)Ayn‖2 − ‖(I − PQn)Axn‖2)

≥ −2αn‖yn − xn‖‖∇ fn(xn)−∇ fn(yn)‖ − 2αn fn(xn). (34)

From Equations (33) and (34), we obtain

‖yn − z‖2 = ‖PCn(xn − αn∇ fn(xn))− z‖2

≤ ‖xn − αn∇ fn(xn)− z‖2 − ‖yn − xn + αn∇ fn(xn)‖2

= ‖xn − z‖2 + ‖αn∇ fn(xn)‖2 − 2αn〈xn − z,∇ fn(xn)〉
−‖yn − xn‖2 − ‖αn∇ fn(xn)‖2 − 2αn〈yn − xn,∇ fn(xn)〉

= ‖xn − z‖2 − 2αn〈xn − z,∇ fn(xn)〉 − ‖yn − xn‖2 − 2αn〈yn − xn,∇ fn(xn)〉
≤ ‖xn − z‖2 − 4αn fn(xn)− ‖yn − xn‖2

+2αn‖yn − xn‖‖∇ fn(xn)−∇ fn(yn)‖+ 2αn fn(xn)

≤ ‖xn − z‖2 − 2αn fn(xn)− ‖yn − xn‖2 + 2µ‖yn − xn‖2

= ‖xn − z‖2 − 2αn fn(xn)− (1− 2µ)‖yn − xn‖2. (35)
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Combining Equations (31), (32) and (35), we get

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − 2αn fn(xn)− (1− 2µ)‖yn − xn‖2 + τ2
n‖∇ fn(yn)‖2 − 4τn fn(yn)

= ‖xn − z‖2 − 2αn fn(xn)− (1− 2µ)‖yn − xn‖2

+
β2

n f 2
n(yn)

(‖∇ fn(yn)‖2 + θn)2 ‖∇ fn(yn)‖2 − 4βn f 2
n(yn)

‖∇ fn(yn)‖2 + θn

≤ ‖xn − z‖2 − 2αn fn(xn)− (1− 2µ)‖yn − xn‖2

+
β2

n f 2
n(yn)

‖∇ fn(yn)‖2 + θn
− 4βn f 2

n(yn)

‖∇ fn(yn)‖2 + θn

= ‖xn − z‖2 − 2αn fn(xn)− (1− 2µ)‖yn − xn‖2

−βn(4− βn)
f 2
n(yn)

‖∇ fn(yn)‖2 + θn

≤ ‖xn − z‖2 − 2
µ`

L
fn(xn)− (1− 2µ)‖yn − xn‖2

−βn(4− βn)
f 2
n(yn)

‖∇ fn(yn)‖2 + θn
, (36)

where the last inequality follows from Lemma 2. Since 0 < βn < 4 and 0 < µ <
1
2

, it follows that

‖xn+1 − z‖ ≤ ‖xn − z‖. (37)

Thus, lim
n→∞

‖xn − z‖ exists and hence {xn} is bounded.

From Equation (36) and Assumption (A2), it also follows that

lim
n→∞

f 2
n(yn)

‖∇ fn(yn)‖2 + θn
= 0. (38)

By Assumption (A1), we have

lim
n→∞

f 2
n(yn)

‖∇ fn(yn)‖2 = 0. (39)

It follows that
lim

n→∞
fn(yn) = lim

n→∞
‖(I − PQn)Ayn‖ = 0, (40)

and
lim

n→∞
fn(xn) = lim

n→∞
‖(I − PQn)Axn‖ = 0. (41)

From Equation (36), we have
lim

n→∞
‖yn − xn‖ = 0. (42)

Using Equations (40) and (42), we have

‖Axn − PQn Ayn‖ = ‖Axn − Ayn + Ayn − PQn Ayn‖
≤ ‖Axn − Ayn‖+ ‖Ayn − PQn Ayn‖
= ‖A‖‖xn − yn‖+ ‖Ayn − PQn Ayn‖
→ 0 as n→ ∞. (43)



Mathematics 2019, 7, 789 7 of 15

Let x∗ be a cluster point of {xn} with {xnk} converging to x∗. From Equation (42), we see that
{ynk} also converges to x∗. We next show that x∗ is in S. Since ynk ∈ Cnk , by the definition of Cnk ,
we have

c(xnk ) + 〈ξnk , ynk − xnk 〉 ≤ 0 (44)

where ξnk ∈ ∂c(xnk ). By the assumption that {ξnk} is bounded and Equation (42), we get

c(xnk ) ≤ 〈ξnk , xnk − ynk 〉
≤ ‖ξnk‖‖xnk − ynk‖
→ 0 as k→ ∞ (45)

which implies c(x∗) ≤ 0. Hence x∗ ∈ C. Since PQnk
(Aynk ) ∈ Qnk , we obtain

q(Axnk ) + 〈ηnk , PQnk
Aynk − Axnk 〉 ≤ 0 (46)

where ηnk ∈ ∂q(Axnk ). By the boundedness of {ηnk} and Equation (43), it follows that

q(Axnk ) ≤ 〈ηnk , Axnk − PQnk
Aynk 〉

≤ ‖ηnk‖‖Axnk − PQnk
Aynk‖

→ 0 as k→ ∞. (47)

We conclude that q(Ax∗) ≤ 0. Thus, Ax∗ ∈ Q. Thus, x∗ is a solution of the SFP.
Hence, by Lemma 1, we conclude that the sequence {xn} converges to a point in S. This completes
the proof.

4. Numerical Experiments

In this section, we provide numerical experiments in compressed sensing. We illustrate the
performance of Algorithms 4 and 1 of Yang [6], Algorithm 2 of Qu and Xiu [8], and Algorithm 3 of
Bnouhuchem et al. [9]. In signal processing, compressed sensing can be modeled as the following
linear equation:

y = Ax + ε, (48)

where x ∈ RN is a recovered vector with m nonzero components, y ∈ RM is the observed data, ε is
the noisy and A is an M× N matrix with M < N. The problem in Equation (48) can be seen as the
LASSO problem:

min
x∈RN

1
2
‖y− Ax‖2 subject to ‖x‖1 ≤ t, (49)

where t > 0 is a given constant. In particular, if C = {x ∈ RN : ‖x‖1 ≤ t} and Q = {y}, then the
LASSO problem can be considered as the SFP. From this connection, we can apply the CQ algorithm
to solve Equation (49).

In this example, the sparse vector x ∈ RN is generated by the uniform distribution in [−2, 2]
with m nonzero elements. The matrix A is generated by the normal distribution with mean zero and
invariance one. The observation y is generated by the white Gaussian noise with SNR=40. The process
is started with t = m and initial point x1 = ones(N, 1).

The stopping criterion is defined by the mean square error (MSE):

En =
1
N
‖xn − x∗‖2 < κ, (50)

where xn is an estimated signal of x∗ and κ is a tolerance.
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In what follows, let µ = 0.3, σ = 0.2, ρ = 0.4, βn = 1.9 and θn =
1

200n + 1
. The numerical results

are reported as follows.
In Table 1, we observe that the performance of Algorithm 4 is better than other algorithms in

terms of CPU time and number of iterations as the spikes of sparse vector is varied from 10 to 30.
In this example, it is shown that Algorithm 4 of Yang [6], for which the step size depends on the norm
of A, converges more slowly than other algorithms in terms of CPU time.

Next, we provide Figures 1–3 to illustrate the convergence behavior, MSE, number of iterations
and objective function values when N = 1024, M = 512, m = 20 and κ = 10−5.

Table 1. Numerical results (M = 512 and N = 1024).

m-Sparse Method κ = 10−4 κ = 10−5

CPU Iter CPU Iter

m = 10 Algorithm 1 0.7801 93 0.5931 83
Algorithm 2 0.0962 187 0.1000 158
Algorithm 3 0.1416 257 0.0605 74
Algorithm 4 0.0271 33 0.0592 39

m = 15 Algorithm 1 0.6345 93 0.6778 101
Algorithm 2 0.1020 196 0.1001 195
Algorithm 3 0.1087 170 0.0823 97
Algorithm 4 0.0251 35 0.0430 51

m = 20 Algorithm 1 1.1535 161 1.1177 156
Algorithm 2 0.1661 308 0.1573 296
Algorithm 3 0.3557 500 0.1139 134
Algorithm 4 0.0516 55 0.0695 78

m = 25 Algorithm 1 0.7380 103 2.9774 443
Algorithm 2 0.0990 196 0.4746 940
Algorithm 3 0.0623 115 0.7258 1308
Algorithm 4 0.0354 42 0.0922 165

m = 30 Algorithm 1 1.1423 168 3.7280 92
Algorithm 2 0.1568 321 1.7980 666
Algorithm 3 0.1219 164 0.4119 111
Algorithm 4 0.0704 70 0.1335 38

Original signal (N=1024, M=512, m=20)

50 100 150 200 250 300 350 400 450 500

-1

0

1

Observation values with SNR=40

50 100 150 200 250

-10

0

10

Recovered signal by Algorithm 4  (78 iterations, CPU = 0.0695)

50 100 150 200 250 300 350 400 450 500

-1

0

1

Recovered signal by Algorithm 3 (134 iterations, CPU = 0.1139)

50 100 150 200 250 300 350 400 450 500

-1

0

1

Recovered signal by Algorithm 1 (156 iterations, CPU = 1.1177)

50 100 150 200 250 300 350 400 450 500

-1

0

1

Recovered signal by Algorithm 2 (296 iterations, CPU = 0.1573)

50 100 150 200 250 300 350 400 450 500

-1

0

1

Figure 1. From top to bottom: original signal, observation data and recovered signal by Algorithms 1–4,
respectively.
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Number of iterations
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Figure 2. MSE versus number of iterations when N = 1024, M = 512 and κ = 10−5.
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Algorithm 4

Algorithm 3

Algorithm 1

Algorithm 2

Figure 3. The objective function value versus number of iterations when N = 1024, M = 512 and κ = 10−5.

In Figures 1–3, we can summarize that our proposed algorithm is really more efficient and faster
than algorithms of Yang [6], Qu and Xiu [8] and Bnouhachem et al. [9].

In Table 2, we observe that Algorithm 4 is effective and also converges more quickly than
Algorithm 1 of Yang [6], Algorithm 2 of Qu and Xiu [8] and Algorithm 3 of Bnouhuchem et al. [9].
Moreover, it is seen that Algorithm 1 of Yang [6] has the highest CPU time in computation. In this
case, Algorithm 1 takes more CPU time than it does in the first case (see Table 1). Therefore, we can
conclude that our proposed method has the advantage in comparison to other methods, especially
Algorithm 1, which requires the spectral computation.

We next provide Figure 4–6 to illustrate the convergence behavior, MSE, number of iterations and
objective function values when N = 4096, M = 2048, m = 60 and κ = 10−5.

Table 2. Numerical results (M = 2048 and N = 4096).

m-sparse Method κ = 10−4 κ = 10−5

CPU Iter CPU Iter

m = 20 Algorithm 1 53.4863 28 77.8192 40
Algorithm 2 3.1953 43 4.7627 62
Algorithm 3 1.5285 19 2.3102 28
Algorithm 4 1.0771 13 1.6199 20

m = 40 Algorithm 1 74.6456 38 106.3420 54
Algorithm 2 4.5607 60 6.1862 83
Algorithm 3 2.0701 26 2.9406 37
Algorithm 4 1.4418 18 2.1713 27

m = 60 Algorithm 1 86.1752 45 137.6885 70
Algorithm 2 5.2204 70 8.1821 110
Algorithm 3 2.3965 30 3.6434 46
Algorithm 4 1.7580 22 2.6908 34
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Table 2. Cont.

m-sparse Method κ = 10−4 κ = 10−5

CPU Iter CPU Iter

m = 80 Algorithm 1 133.5504 67 219.4587 112
Algorithm 2 7.8185 104 13.3599 178
Algorithm 3 3.4220 43 5.9392 75
Algorithm 4 2.4207 30 3.7902 47

m = 100 Algorithm 1 148.3098 75 327.4775 163
Algorithm 2 8.7840 118 19.7221 258
Algorithm 3 3.8024 48 16.0518 202
Algorithm 4 2.6962 34 5.3538 66

Original signal (N=4096, M=2048, m=60)

500 1000 1500 2000 2500 3000 3500 4000

-1

0

1

Observation values with SNR=40

200 400 600 800 1000 1200 1400 1600 1800 2000

-20

0

20

Recovered signal by Algorithm 4 (34 iterations, CPU = 2.6908)

500 1000 1500 2000 2500 3000 3500 4000

-1

0

1

Recovered signal by Algorithm 3 (46 iterations, CPU = 3.6434 )

500 1000 1500 2000 2500 3000 3500 4000

-1

0

1

Recovered signal by Algorithm 1 (70 iterations, CPU = 137.6885 )

500 1000 1500 2000 2500 3000 3500 4000

-1

0

1

Recovered signal by Algorithm 2 (110 iterations, CPU = 8.1821)

500 1000 1500 2000 2500 3000 3500 4000

-1

0

1

Figure 4. From top to bottom: original signal, observation data and recovered signal by Algorithms 1–4,
respectively.

In Figures 4–6, we observe that MSE and objective function values of Algorithm 4 decreases faster
than Algorithms 1–3 do in each cases.
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Figure 5. MSE versus number of iterations when N = 4096, M = 2048 and κ = 10−5.
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Algorithm 4

Algorithm 3
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Figure 6. The objective function value versus number of iterations when N = 4096, M = 2048 and
κ = 10−5.

5. Comparative Analysis

In this section, we discuss the comparative analysis to show the effects of the step sizes αn and βn

in Algorithm 4.
We begin this section by studying the effect of the step size βn in Algorithm 4 in terms of the

number of iterations and the CPU time with the varied cases.
Choose µ = 0.3, σ = 0.2, ρ = 0.4 and θn = 1

200n+1 . Let x1 and A be as in the previous example.
The stopping criterion is defined by Equation (50) with κ = 10−5.

Table 3. The convergence behavior of Algorithm 4 with different cases of βn.

βn CPU Iter

N = 1024 0.1 0.4585 139
M = 512 0.5 0.1976 73
m = 20 1.0 0.1632 55

1.5 0.1272 44
2.0 0.1187 38
2.5 0.1048 35
3.0 0.1065 32
3.5 0.1298 29
3.9 0.0954 28
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Table 3. Cont.

βn CPU Iter

N = 4096 0.1 4.4547 58
M = 2048 0.5 3.6075 39

m = 20 1.0 2.2021 29
1.5 1.8119 24
2.0 1.6024 21
2.5 1.5748 29
3.0 1.4055 17
3.5 1.3297 16
3.9 1.3172 15

In Table 3, it is observed that the number of iterations and the CPU time have small reduction
when the step size βn tends to 4. The numerical experiments for each cases of βn are shown in Figure 7
and Figure 8, respectively.
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Figure 7. Graph of number of iterations versus En in case N = 1024 and M = 512.
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Figure 8. Graph of number of iterations versus En in case N = 4096 and M = 2048.

Next, we discuss the effect of the step size αn in Algorithm 4. We note that the step size αn depends
on the parameters ρ and σ. Thus, we aim to vary these parameters and study its convergence behavior.

Choose µ = 0.3, σ = 0.2, βn = 3.9 and θn = 1
200n+1 . Let x1 and A be as in the previous example.

The stopping criterion is defined by Equation (50) with κ = 10−5. The numerical results are reported
in Table 4.
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In Table 4, we see that the CPU time decreases significantly when the parameter ρ is also decreased.
However, the choice of ρ has no effect in terms of number of iterations.

Table 4. The convergence behavior of Algorithm 4 with different cases of ρ.

ρ CPU Iter

N = 1024 0.1 0.0634 27
M = 512 0.3 0.0981 26
m = 20 0.5 0.1065 26

0.7 0.1773 27
0.9 0.5421 27

N = 4096 0.1 0.7554 17
M = 2048 0.3 1.2094 17

m = 20 0.5 1.7697 17
0.7 3.1876 17
0.9 10.1536 18

Next, we discuss the effect of σ in Algorithm 4. In this experiment, choose µ = 0.3, βn = 3.9,
ρ = 0.5 and θn = 1

200n+1 . The error En is defined by Equation (50) with κ = 10−5. The numerical
results are reported in Table 5.

Table 5. The convergence behavior Algorithm 4 with different cases of σ.

σ CPU Iter

N = 1024 1 0.2985 53
M = 512 2 0.2974 53
m = 20 3 0.2636 56

4 0.2478 53
5 0.2584 52
6 0.2816 56

N = 4096 1 1.9105 16
M = 2048 2 1.9990 16

m = 20 3 2.0937 16
4 2.1371 16
5 2.2449 17
6 2.3816 16

In Table 5, we observe that the choices of σ have a small effect in both terms of the CPU time and
the number of iterations.

Finally, we discuss the convergence of Algorithm 4 with different cases of M and N. In this
case, we set σ = 1, ρ = 0.5, µ = 0.3, βn = 3.9 and θn = 1

200n+1 . The stopping criterion is defined by
Equation (50).

In Table 6, it is shown that, if M and N have a high value, then the number of iteration decreases.
However, in this case, the CPU time increases.
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Table 6. The convergence behavior Algorithm 4 with different cases of M and N.

κ = 10−4 κ = 10−5

CPU Iter CPU Iter

M = 1024 0.9967 13 1.4998 21
N = 2048

M = 2048 3.8625 11 5.6119 16
N = 4096

M = 3072 5.0449 6 6.5788 8
N = 6144

M = 4096 7.3689 5 10.1838 7
N = 8192

6. Conclusions

In this work, we introduce a new hybrid CQ algorithm by using the self adaptive and the
line-search techniques for the split feasibility problem in Hilbert spaces. This method can be viewed as
a refinement and improvement of other CQ algorithms. Convergence analysis of the proposed method
is proved under some suitable conditions. The numerical results show that our algorithm has a better
convergence behavior than the algorithms of Yang [6], Qu and Xiu [8] and Bnouhachem et al. [9].
A comparative analysis was also performed to show the effects of the step sizes in our algorithm.
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