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Abstract: Warped products play crucial roles in differential geometry, as well as in mathematical
physics, especially in general relativity. In this article, first we define and study statistical solitons
on Ricci-symmetric statistical warped products R×f N2 and N1 ×f R. Second, we study statistical
warped products as submanifolds of statistical manifolds. For statistical warped products statistically
immersed in a statistical manifold of constant curvature, we prove Chen’s inequality involving scalar
curvature, the squared mean curvature, and the Laplacian of warping function (with respect to the
Levi–Civita connection). At the end, we establish a relationship between the scalar curvature and the
Casorati curvatures in terms of the Laplacian of the warping function for statistical warped product
submanifolds in the same ambient space.
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1. Introduction

Statistical manifolds were introduced in 1985 by S. Amari [1] in terms of information geometry,
and they were applied by Lauritzen in [2]. Such manifolds have an important role in statistics as the
statistical model often forms a geometrical manifold.

Let ∇̃ be an affine connection on a (pseudo-)Riemannian manifold (Ñ, g̃). The affine connection
∇̃∗ on Ñ satisfying:

Eg̃(F, G) = g̃(∇̃EF, G) + g̃(F, ∇̃∗EG), ∀E, F, G ∈ Γ(TÑ),

is called a dual connection of ∇̃ with respect to g̃.
The triplet (Ñ, ∇̃, g̃) is called a statistical manifold if:

(a) the Codazzi equation (∇̃E g̃)(F, G) = (∇̃F g̃)(E, G) holds, for any E, F, G ∈ Γ(TÑ);
(b) the torsion tensor field of ∇̃ vanishes.

If (∇̃, g̃) is a statistical structure on Ñ, then (∇̃∗, g̃) is also a statistical structure. The connections
∇̃ and ∇̃∗ satisfy (∇̃∗)∗ = ∇̃. On the other hand, we have ∇̃0 = 1

2 (∇̃ + ∇̃∗), where ∇̃0 is the
Levi–Civita connection of Ñ.

One of the most fruitful generalizations of Riemannian products is the warped product defined
in [3]. The notion of warped products plays very important roles in differential geometry and in
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mathematical physics, especially in general relativity. For instance, space-time models in general
relativity are usually expressed in terms of warped products (cf., e.g., [4,5]).

In 2006, L. Todjihounde [6] defined a suitable dualistic structure on warped product manifolds.
Furthermore, Furuhata et al. [7] defined Kenmotsu statistical manifolds and studied how to construct
such structures on the warped product of a holomorphic statistical manifold [8] and a line. In [9],
H. Aytimur and C. Ozgur studied Einstein statistical warped product manifolds. Further, C. Murathan
and B. Sahin [10] studied and obtained the Wintgen-like inequality for statistical submanifolds of
statistical warped product manifolds.

The Ricci solitons are special solutions of the Ricci flow of the Hamilton. In Section 4, we define
statistical solitons and study the problem under what conditions the base manifold or fiber manifold
of a statistical warped product manifold is a statistical soliton.

Curvature invariants play the most fundamental and natural roles in Riemannian geometry.
A fundamental problem in the theory of Riemannian submanifolds is (cf. [11]):

Problem A.“Establish simple optimal relationships between the main intrinsic invariants and the main extrinsic
invariants of a submanifold.”

The first solutions of this problem for warped product submanifolds were given in [11,12].
In Section 5, we study this fundamental problem for statistical warped product submanifolds in any
statistical manifolds of constant curvature. Our solution to this problem given in this section is derived
via the fundamental equations of statistical submanifolds.

An extrinsic curvature of a Riemannian submanifold was defined by Casorati in [13], as the
normalized square of the length of the second fundamental form. Casorati curvature has nice
applications in computer vision. It was preferred by Casorati over the traditional curvature since it
corresponds better to the common intuition of curvature.

Several sharp inequalities between extrinsic and intrinsic curvatures for different submanifolds in
real, complex, and quaternionic space forms endowed with various connections have been obtained
(e.g., [14–21]). Such inequalities with a pair of conjugate affine connections involving the normalized
scalar curvature of statistical submanifolds in different ambient spaces were obtained in [22–26].

Inspired by historical development on the classifications of Casorati curvatures and Ricci
curvatures, we establish in Section 6 an inequality for statistical warped product submanifolds in a
statistical manifold of constant curvature. In the last section, we provide two examples of statistical
warped product submanifolds in the same environment.

2. Preliminaries

Let (Ñ, ∇̃, g̃) be a statistical manifold and N be a submanifold of Ñ. Then, (N,∇, g) is also a
statistical manifold with the statistical structure (∇, g) on N induced from (∇̃, g̃), and we call (N,∇, g)
a statistical submanifold.

The fundamental equations in the geometry of Riemannian submanifolds are the Gauss and
Weingarten formulae and the equations of Gauss, Codazzi, and Ricci (cf. [4,5,27]). In the statistical
setting, the Gauss and Weingarten formulae are defined respectively by [28]:

∇̃EF = ∇EF + h(E, F), ∇̃∗EF = ∇∗EF + h∗(E, F),

∇̃Eξ = −Aξ(E) +∇⊥E ξ, ∇̃∗Eξ = − A∗ξ (E) +∇⊥∗E ξ,

}
(1)

for any E, F ∈ Γ(TN) and ξ ∈ Γ(T⊥N), where ∇̃ and ∇̃∗ (resp., ∇ and ∇∗) are the dual connections
on Ñ (resp., on N).
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The symmetric and bilinear imbedding curvature tensor of N in Ñ with respect to ∇̃ and ∇̃∗
is denoted as h and h∗, respectively. The relation between h (resp. h∗) and Aξ (resp. A∗ξ ) is defined
by [28]:

g̃(h(E, F), ξ) = g(A∗ξ E, F),

g̃(h∗(E, F), ξ) = g(Aξ E, F),

}
(2)

for any E, F ∈ Γ(TN) and ξ ∈ Γ(T⊥N).
Let R̃ and R be the curvature tensor fields of ∇̃ and ∇, respectively. The corresponding Gauss,

Codazzi, and Ricci equations are given by [28]:

g̃(R̃(E, F)G, H) = g(R(E, F)G, H) + g̃(h(E, G), h∗(F, H))

− g̃(h∗(E, H), h(F, G)), (3)

(R̃(E, F)G)⊥ = ∇⊥E h(F, G)− h(∇EF, G)− h(F,∇EG)

− {∇⊥F h(E, G)− h(∇FE, G)− h(E,∇FG)}, (4)

g̃(R̃⊥(E, F)ξ, η) = g̃(R(E, F)ξ, η) + g([A∗ξ , Aη ]E, F), (5)

for any E, F, G, H ∈ Γ(TN) and ξ, η ∈ Γ(T⊥N), where R⊥ is the Riemannian curvature tensor on T⊥N.
Similarly, R̃∗ and R∗ are respectively the curvature tensor fields with respect to ∇̃∗ and ∇∗.

We can obtain the duals of all Equations (3)–(5) with respect to ∇̃∗ and ∇∗. Furthermore,

S̃ =
1
2
(R̃ + R̃∗) and S =

1
2
(R + R∗) (6)

are respectively the curvature tensor fields of Ñ and N given by [7]. Thus, the sectional curvature
K∇,∇∗ on N of Ñ is defined by [29,30]:

K∇,∇∗(E ∧ F) = g(S(E, F)F, E)

=
1
2
(g(R(E, F)F, E) + g(R∗(E, F)F, E)), (7)

for any orthonormal vectors E, F ∈ TpN, p ∈ N.
Suppose that dim(N) = m and dim(Ñ) = n. Let {e1, . . . , em} and {em+1, . . . , en} be respectively

the orthonormal basis of TpN and T⊥p N for p ∈ N. Then, the scalar curvature σ∇,∇∗ of N is given by:

σ∇,∇∗ = ∑
1≤i<j≤m

K∇,∇∗(ei ∧ ej). (8)

The normalized scalar curvature ρ of N is defined as:

ρ∇,∇∗ =
2σ∇,∇∗

m(m− 1)
.

The mean curvature vectorsH andH∗ of N in Ñ are:

H =
1
m

m

∑
i = 1

h(ei, ei), H∗ =
1
m

m

∑
i = 1

h∗(ei, ei).



Mathematics 2019, 7, 797 4 of 19

Furthermore, we set:

ha
ij = g̃(h(ei, ej), ea), h∗aij = g̃(h∗(ei, ej), ea),

for i, j ∈ {1, . . . , m}, a ∈ {m + 1, . . . , n}.
A statistical manifold (Ñ, ∇̃, g̃) is said to be of constant curvature c̃ ∈ R, denoted by Ñ(c̃), if the

following curvature equation holds:

S̃(E, F)G = c̃(g(F, G)E− g(E, G)F), ∀E, F, G ∈ Γ(TÑ). (9)

3. Basics on Statistical Warped Product Manifolds

Definition 1. [3] Let (N1, g1) and (N2, g2) be two (pseudo)-Riemannian manifolds and f > 0 be a differentiable
function on N1. Consider the natural projections π : N1 × N2 → N1 and π

′
: N1 × N2 → N2. Then, the

warped product N = N1 ×f N2 with warping function f is the product manifold N1 × N2 equipped with the
Riemannian structure such that:

g̃(E, F) = g1(π∗E, π∗F) + f2(u)g2(π
′
∗E, π

′
∗F), (10)

for E, F ∈ Γ(T(u,v)N), u ∈ N1, and v ∈ N2, where ∗ denotes the tangent map.

Let χ(N1) and χ(N2) be the set of all vector fields on N1 × N2, which is the horizontal
lift of a vector field on N1 and the vertical lift of a vector field on N2, respectively. We have
T(N1 × N2) = χ(N1)⊕ χ(N2). Thus, it can be seen that π∗(χ(N1)) = Γ(TN1) and
π
′
∗(χ(N2)) = Γ(TN2). Therefore, π∗(X) = E1 ∈ Γ(TN1), π∗(Y) = F1 ∈ Γ(TN1), π

′
∗(U) = E2 ∈

Γ(TN2) and π
′
∗(V) = F2 ∈ Γ(TN2), for any X, Y ∈ χ(N1) and U, V ∈ χ(N2).

Recall the following general result from [6] for a dualistic structure on the warped product
manifold N1 ×f N2.

Proposition 1. Let (g1,∇N1 ,∇N1∗) and (g2,∇N2 ,∇N2∗) be dualistic structures on N1 and N2, respectively.
For X, Y ∈ χ(N1) and U, V ∈ χ(N2), D, D∗ on N1 × N2 satisfy:

(a) DXY = ∇N1
E1

F1,

(b) DXU = DUX = E1f
f E2,

(c) DUV = ∇N2
E2

F2 − g̃(U,V)
f grad f,

(d) D∗XY = ∇N1∗
E1

F1,

(e) D∗XU = D∗UX = E1f
f E2,

(f) D∗UV = ∇N2∗
E2

F2 − g̃(U,V)
f grad f,

where ∇N1
E1

F1 = π∗(DXY), ∇N1∗
E1

F1 = π∗(D∗XY), ∇N2
E2

F2 = π
′
∗(DUV), and ∇N2∗

E2
F2 = π

′
∗(D∗UV).

Then, (g̃, D, D∗) is a dualistic structure on N1 × N2.

Furthermore, Todjihounde [6] derived the curvature of the statistical warped product Ñ = N1×f

N2 in terms of the curvature tensors R1 and R2 of N1 and N2, respectively, and its warping function f.

Lemma 1. Let (Ñ = N1 ×f N2, D, D∗, g̃) be a statistical warped product manifold. For X, Y, Z ∈ χ(N1)

and U, V, W ∈ χ(N2), we have:

(a) R̃(X, Y)Z = R1(E1, F1)G1,
(b) R̃(U, Y)Z = − f−1Hessf(Y, Z)U,
(c) R̃(X, Y)W = 0,
(d) R̃(U, V)Z = 0,
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(e) R̃(X, V)W = − f−1 g̃(V, W)DX(grad f),
(f) R̃(U, V)W = R2(E2, F2)G2 + ||grad f||2[g2(U, W)V − g2(V, W)U],

where R̃ denotes the curvature tensor field of (Ñ = N1 ×f N2, D, D∗, g̃) and
Hessf(X, Y) = X(Yf)− (∇N1

X Y)f is the Hessian function of f with respect to ∇N1 .

The next result from [9] provides the Ricci tensor R̃ic of the statistical warped product manifold.

Lemma 2. Let (Ñ = N1 ×f N2, D, D∗, g̃) be a statistical warped product manifold. For X, Y ∈ χ(N1) and
U, V ∈ χ(N2), we have:

(a) R̃ic(X, Y) = Ric1(X, Y)− dim(N2)f
−1Hessf(X, Y),

(b) R̃ic(X, V) = 0,
(c) R̃ic(U, V) = Ric2(U, V)− [f(∆f) + (dim(N2)− 1)||grad f||2]g2(U, V),

where Ric1 and Ric2 are the Ricci tensors of N1 and N2, respectively, and ∆f = div(grad f) is the Laplacian of
f with respect to D.

We recall the following result from [31]. This result is useful in some Riemannian problems like
the study of the distance between two manifolds, of the extremes of sectional curvature and is applied
successfully in the demonstration of the Chen inequality.

Let (N, g) be a Riemannian submanifold of a Riemannian manifold (Ñ, g̃), and let f : Ñ → R be
a differentiable function. Let:

min
x0∈N

f (x0) (11)

be the constrained extremum problem.

Theorem 1. If x ∈ N is the solution of the problem (11), then:

(a) (grad f )(x) ∈ T⊥x N,
(b) the bilinear form Θ : Tx N × Tx N → R,

Θ(E, F) = Hess f (E, F) + g̃(h′(E, F), (grad f )(x))

is positive semi-definite, where h′ is the second fundamental form of N in Ñ and grad f denotes the gradient
of f .

4. Statistical Solitons on Statistical Warped Product Manifolds

The Ricci solitons model the formation of singularities in the Ricci flow, and they correspond to
self-similar solutions. R. Hamilton [32] introduced the study of Ricci solitons as fixed or stationary
points of the Ricci flow in the space of the metrics on Riemannian manifolds modulo diffeomorphisms
and scaling. Since then, many researchers studied Ricci solitons for different reasons and in different
ambient spaces (for example [33–35]). A complete Riemannian manifold (Ñ, g̃) is called a Ricci soliton
(Ñ, g̃, ζ, λ) if there exists a smooth vector field ζ and a constant λ ∈ R such that:

2R̃ic = 2λg̃−Lζ g̃,

where Lζ denotes the Lie derivative along ζ and R̃ic is the Ricci tensor of g̃.
A generalization of Ricci solitons in the framework of manifolds endowed with an arbitrary linear

connection ∇̃, different from the Levi–Civita connection of g̃, is defined in [36] as follows:
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Let (Ñ, ∇̃) be a manifold and ζ ∈ χ(Ñ). A triple (g̃, ζ, λ) is called a ∇̃-Ricci soliton if
∇̃ζ + Q̃+ λI = 0 holds, where Q̃ is the Ricci operator of Ñ defined by g̃(Q̃E, F) = R̃ic(E, F),
for vector fields E, F on Ñ.

The statistical manifold (Ñ, ∇̃, g̃) is called Ricci-symmetric if the Ricci operator Q̃ with respect to
∇̃ (equivalently, the dual operator Q̃∗ with respect to ∇̃∗) is symmetric (cf. [36,37]).

Based on these, we have the following.

Definition 2. A pair (ζ, λ) is called a statistical soliton on a Ricci-symmetric statistical manifold (Ñ, ∇̃, g̃) if
the triple (g̃, ζ, λ) is ∇̃-Ricci and ∇̃∗-Ricci solitons, i.e., we have:

∇̃ζ + Q̃+ λI = 0, (12)

and:

∇̃∗ζ + Q̃∗ + λI = 0, (13)

where g̃(Q̃E, F) = R̃ic(E, F) and g̃(Q̃∗E, F) = R̃ic∗(E, F), for all vector fields on Ñ, and R̃ic and R̃ic∗

denote the Ricci tensor fields with respect to ∇̃ and ∇̃∗, respectively.

The main purpose of this section is to study the problem: under what conditions does the base
manifold or fiber manifold of the statistical warped product manifold become a statistical soliton?

Let (N1,∇N1 ,∇N1∗, g1) and (N2,∇N2 ,∇N2∗, g2) be the Ricci-symmetric statistical
manifolds. Denote the Ricci-symmetric statistical warped product manifold by
(Ñ = N1 ×f N2, D, D∗, g̃ = g1 + f2g2). Let ζ = (ζ1, ζ2) ∈ χ(Ñ) be a vector field on Ñ. Then, the pair
(ζ, λ) on (Ñ, ∇̃, g̃) is called a statistical soliton if the triple (g̃, ζ, λ) is both D-Ricci and D∗-Ricci solitons,
given by (12) and (13).

It follows from Lemma 2 that the Ricci tensor of Ñ is given as below:

R̃ic = Ric1 − f−1 dim(N2)Hessf + Ric2

− [f(∆f) + (dim(N2)− 1)||grad f||2]g2. (14)

Thus, (12) and (13) can be rewritten as:

∇N1 ζ1 +∇N2 ζ2 + Ric1 − f−1 dim(N2)Hessf + Ric2

− [f(∆f) + (dim(N2)− 1)||grad f||2]g2 + λg1 + λf2g2 = 0, (15)

and:

∇N1∗ζ1 +∇N2∗ζ2 + Ric∗1 − f−1 dim(N2)HessD∗
f + Ric∗2

− [f(∆D∗ f) + (dim(N2)− 1)||grad f||2]g2 + λg1 + λf2g2 = 0, (16)

respectively.
Throughout this section, we use the statistical warped products as Ricci-symmetric.
We give the following results by applying Lemma 2:

Lemma 3. Let (Ñ = R×f N2, D, D∗, g̃) be a statistical warped product manifold, where (R,∇R, dz2) is a
trivial statistical manifold of dimension one and dim(N2) = k. Then, for U, V ∈ χ(N2), we have:

(a) R̃ic(∂z, ∂z) = − kf−1 f̈,
(b) R̃ic(∂z, V) = 0,
(c) R̃ic(U, V) = Ric2(U, V)− [ff̈+ (k− 1)ḟ2]g2(U, V).
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Proposition 2. Let (ζ, λ) be a statistical soliton on statistical warped product manifold
(Ñ = R×f N2, D, D∗, g̃ = dz2 + f2g2) with dim(R) = 1 and dim(N2) = k. Then:

Hessf =
fλ

k
.

Proof. Since Ñ is a statistical soliton, then from (6), we have:

g̃(∇̃∂zζ, ∂z) + R̃ic(∂z, ∂z) + λg̃(∂z, ∂z) = 0.

By taking into account Lemma 3 and Ric1(∂z, ∂z) = 0, we get:

−g̃(ζ, ∇̃∗∂z∂z)− kf−1Hessf(∂z, ∂z) + λg̃(∂z, ∂z) = 0,

which gives Hessf(∂z, ∂z) = ( fλk )g̃(∂z, ∂z).

Theorem 2. Let ζ = (∂z, ζ2) ∈ χ(Ñ) be a vector field on statistical warped product manifold
(Ñ = R×f N2, D, D∗, g̃ = dz2 + f2g2) with dim(R) = 1 and dim(N2) = k. If (ζ, λ) is a statistical soliton
on Ñ, then:

(a) (N2, g2, ζ2, λ2) is a statistical soliton on (N2,∇N2 ,∇N2∗, g2), where λ2 = (k− 1)[ff̈− ḟ2],
(b) f(z) = az + b if λ = 0,
(c) f(z) = cosh(az + b) if λ 6= 0,

where a, b ∈ R.

Proof. From Equation (15) and Lemma 3, we have:

∇N1 ∂z +∇N2 ζ2 + Ric1 − kf−1 f̈+ Ric2

−(ff̈+ (k− 1)ḟ2)g2 + λg1 + λf2g2 = 0.

Note g1(∇N1
∂z ∂z, ∂z) = 0 and Ric1(∂z, ∂z) = 0. Thus, the above equation becomes:

∇N2 ζ2 − kf−1 f̈+ Ric2 − (ff̈+ (k− 1)ḟ2)g2 + λg1 + λf2g2 = 0,

from which we get:

λ = kf−1 f̈, (17)

∇N2 ζ2 + Ric2 + [λf2 − (ff̈+ (k− 1)ḟ2)]g2 = 0. (18)

Putting (17) into the Equation (18), we arrive at:

∇N2 ζ2 + Ric2 + (k− 1)[ff̈− ḟ2]g2 = 0.

Similarly, by using (16), we derive:

∇N2∗ζ2 + Ric∗2 + (k− 1)[ff̈− ḟ2]g2 = 0.

Thus, (N2, g2, ζ2, (k− 1)[ff̈− ḟ2]) is a statistical soliton provided that (k− 1)[ff̈− ḟ2] is constant.
On the other hand, by using (17), we have the following cases:

(a) if λ = 0, then f(z) = az + b, and
(b) if λ 6= 0, then f(z) = cosh(az + b) [9],



Mathematics 2019, 7, 797 8 of 19

where a, b are real constants.

Before proving the next result, we state the following:

Lemma 4. Let (Ñ = N1 ×f R, D, D∗, g̃) be a statistical warped product manifold, where (R,∇R, dz2) is a
trivial statistical manifold of dimension one and dim(N1) = k. For X, Y ∈ χ(N1), we have:

(a) R̃ic(X, Y) = Ric1(X, Y)− f−1Hessf(X, Y),
(b) R̃ic(X, ∂z) = 0,
(c) R̃ic(∂z, ∂z) = − f(∆f)g2(∂z, ∂z).

Theorem 3. Let ζ = (ζ1, ∂z) ∈ χ(Ñ) be a vector field on statistical warped product manifold
(Ñ = N1 ×f R, D, D∗, g̃ = g1 + f2dz2) with dim(R) = 1 and dim(N1) = k. Suppose that Hessf = 0.
Then, (ζ, λ) is a statistical soliton on Ñ if and only if (ζ1, λ = f−1(∆f)) is a statistical soliton on N1.

Proof. Since g2(∇N1
∂z ∂z, ∂z) = 0 and Ric2(∂z, ∂z) = 0, then by using Equation (15) and Lemma 4,

we get:

∇N1 ζ1 + Ric1 − f(∆f)g2 + λg1 + λf2g2 = 0.

Therefore, we have:

∇N1 ζ1 + Ric1 + λg1 = 0. (19)

Furthermore, f−1(∆f) = λ = constant. Putting this into (19), we get:

∇N1 ζ1 + Ric1 + f−1(∆f)g1 = 0.

Similarly, by using (16), we obtain:

∇N1∗ζ1 + Ric∗1 + f−1(∆∗f)g1 = 0.

Since f−1(∆f) is constant, (N1, g1, ζ1, λ = f−1(∆f)) is a statistical soliton.
Conversely, if (ζ1, λ = f−1(∆f)) is a statistical soliton on N1, then:

∇N1 ζ1 +∇N2 ∂z + Ric1 − f−1k2Hessf + Ric2

− [f(∆f) + (k2 − 1)||grad f||2]g2

= ∇N1 ζ1 + Ric1 + f−1(∆f)g1 − f−1(∆f)g1 − f(∆f)g2

= −f−1(∆f)g1 − f(∆f)g2 = −f−1(∆f)(g1 + g2)

= −λg̃.

Thus, Dζ + Q̃+ λI = 0. Similarly, D∗ζ + Q̃∗ + λI = 0. Hence, (ζ, λ) is a statistical soliton
on Ñ.

An immediate consequence of Theorem 3 is as follows:

Corollary 1. Let (Ñ, g̃, ζ, λ) be a Statistical soliton on statistical manifold (Ñ = N1 ×f R, D, D∗, g̃ = g1 +

f2dz2) with dim(R) = 1 and dim(N1) = k. If Hessf = $g1, $ ∈ C∞(N1), then (N1, g1, ζ1, f−1(∆f)− f−1$)

is a statistical soliton.

5. B.Y. Chen Inequality

A universal sharp inequality for submanifolds in a Riemannian manifold of constant sectional
curvature was established in [38], known as the first Chen inequality. The main purpose of this section
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is to establish the corresponding inequality for statistical warped product manifolds statistically
immersed in a statistical manifold of constant curvature.

Let ϕ : N = N1 ×f N2 → Ñ(c̃) be an isometric statistical immersion of a warped product
N1 ×f N2 into a statistical manifold of constant sectional curvature c̃. We denote by r, k, and m = r + k
the dimensions of N1, N2, and N1 × N2, respectively. Since N1 ×f N2 is a statistical warped product,
we have:

∇E1 E2 = ∇E2 E1 = (E1 ln f)E2,

for unit vector fields E1 and E2 tangent to N1 and N2, respectively. Hence, we derive:

K(E1 ∧ E2) =
1
f
{(∇E1 E1)f− E2

1f}. (20)

If we choose a local orthonormal frame {e1, . . . , em} such that {e1, . . . , er} are tangent to N1 and
{er+1, . . . , er+k = em} are tangent to N2, then we have:

∆f

f
=

r

∑
i = 1

K(ei ∧ ej), (21)

for each j = r + 1, . . . , m.
On the other hand, let E1 and E2 be two unit local vector fields tangent to N1 and N2, respectively,

such that e1 = E1 and er+1 = E2. By taking into account Equations (3), (6), and (9), we derive (7)
as follows:

K∇,∇∗(e1 ∧ er+1) =
c̃
2
{2g(er+1, er+1)g(e1, e1)− 2g(e1, er+1)g(er+1, e1)}

+
1
2
{g(h∗(e1, e1), h(er+1, er+1))

+ g(h(e1, e1), h∗(er+1, er+1))− 2g(h(e1, er+1), h∗(e1, er+1))}

= c̃ +
1
2

n

∑
a = m+1

{h∗a11ha
r+1,r+1 + ha

11h∗ar+1,r+1 − 2ha
1,r+1h∗a1,r+1}.

We rewrite the terms of the RHS of the previous equation as:

K∇,∇∗(e1 ∧ er+1) = c̃ +
1
2

n

∑
a = m+1

{(ha
11 + h∗a11)(h

a
r+1,r+1 + h∗ar+1,r+1)

− (ha
1,r+1 + h∗a1,r+1)

2 + (ha
1,r+1)

2 + (h∗a1,r+1)
2

− ha
11ha

r+1,r+1 − h∗a11h∗ar+1,r+1}.

Since, 2h0 = h + h∗, we get:

K∇,∇∗(e1 ∧ er+1) = c̃ +
1
2

n

∑
a = m+1

{4h0a
11h0a

r+1,r+1

− (ha
11ha

r+1,r+1 − (ha
1,r+1)

2)

− (h∗a11h∗ar+1,r+1 − (h∗a1,r+1)
2)− 4(h0a

1,r+1)
2}.
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Thus, we have:

K∇,∇∗(e1 ∧ er+1) = c̃ +
n

∑
a = m+1

{2(h0a
11h0a

r+1,r+1 − (h0a
1,r+1)

2)

− 1
2
(ha

11ha
r+1,r+1 − (ha

1,r+1)
2)− 1

2
(h∗a11h∗ar+1,r+1 − (h∗a1,r+1)

2)}. (22)

Using the Gauss equation for the Levi–Civita connection, we arrive at:

K0(e1 ∧ er+1) = c̃−
n

∑
a = m+1

{(h0a
1,r+1)

2 − h0a
11h0a

r+1,r+1},

which can be rewritten as:

n

∑
a = m+1

{(h0a
1,r+1)

2 − h0a
11h0a

r+1,r+1} = K0(e1 ∧ er+1)− c̃. (23)

Substituting (23) into (22), we get:

K∇,∇∗(e1 ∧ er+1) = 2K0(e1 ∧ er+1)− c̃− 1
2

n

∑
a = m+1

{ha
11ha

r+1,r+1

− (ha
1,r+1)

2 + h∗a11h∗ar+1,r+1 − (h∗a1,r+1)
2}. (24)

Furthermore, we derive (8) as:

σ∇,∇∗ =
m(m− 1)c̃

2
+

1
2

n

∑
a = m+1

∑
i<j
{h∗aii ha

jj + ha
iih
∗a
jj − 2ha

ijh
∗a
ij }

=
m(m− 1)c̃

2
+

1
2

n

∑
a = m+1

∑
i<j
{(ha

ii + h∗aii )(h
a
jj + h∗ajj )

− ha
iih

a
jj − h∗aii h∗ajj − (ha

ij + h∗aij )
2 + (ha

ij)
2 + (h∗aij )

2}.

By a similar argument as above, we deduce that:

σ∇,∇∗ =
m(m− 1)c̃

2
+

1
2

n

∑
a = m+1

∑
i<j
{2(h0a

ii h0a
jj − (h0a

ij )
2)

− 1
2
(ha

iih
a
jj − (ha

ij)
2)− 1

2
(h∗aii h∗ajj − (h∗aij )

2)}. (25)

Again by the Gauss equation for the Levi–Civita connection, we find that:

σ0 =
m(m− 1)c̃

2
+

n

∑
a = m+1

∑
i<j
{h0a

ii h0a
jj − (h0a

ij )
2},

or:

n

∑
a = m+1

∑
i<j
{h0a

ii h0a
jj − (h0a

ij )
2} = σ0 − m(m− 1)c̃

2
. (26)



Mathematics 2019, 7, 797 11 of 19

Inserting (26) into (25), we have:

σ∇,∇∗ = 2σ0 − m(m− 1)c̃
2

− 1
2

n

∑
a = m+1

∑
i<j
{ha

iih
a
jj − (ha

ij)
2

+h∗aii h∗ajj − (h∗aij )
2}. (27)

By subtracting (24) from (27), we can state the following result:

Lemma 5. Let N = N1 ×f N2 be an m-dimensional statistical warped product submanifold immersed into an
n-dimensional statistical manifold of constant sectional curvature c̃. Then:

σ∇,∇∗ −K∇,∇∗(e1 ∧ er+1) = 2(σ0 −K0(e1 ∧ er+1))−
(m− 2)(m + 1)c̃

2

− 1
2

n

∑
a = m+1

∑
i<j
{ha

iih
a
jj − (ha

ij)
2 + h∗aii h∗ajj

− (h∗aij )
2}+ 1

2

n

∑
a = m+1

{ha
11ha

r+1,r+1 − (ha
1,r+1)

2

+ h∗a11h∗ar+1,r+1 − (h∗a1,r+1)
2}.

Further, we have:

σ∇,∇∗ −K∇,∇∗(e1 ∧ er+1) ≥ 2(σ0 −K0(e1 ∧ er+1))−
(m− 2)(m + 1)c̃

2

− 1
2

n

∑
a = m+1

∑
i<j
{ha

iih
a
jj + h∗aii h∗ajj }

+
1
2

n

∑
a = m+1

{ha
11ha

r+1,r+1 + h∗a11h∗ar+1,r+1},

or we write it as:

2(σ0 −K0(e1 ∧ er+1)) ≤ σ∇,∇∗ −K∇,∇∗(e1 ∧ er+1) +
(m− 2)(m + 1)c̃

2

+
1
2

n

∑
a = m+1

{∑
i<j
{ha

iih
a
jj} − ha

11ha
r+1,r+1}

+
1
2

n

∑
a = m+1

{∑
i<j
{h∗aii h∗ajj } − h∗a11h∗ar+1,r+1}. (28)

We use an optimization technique: For a ∈ [m + 1, n], we consider the quadratic forms:

φa : Rm → R, φ∗a : Rm → R

given by:

φa(ha
11, . . . , ha

mm) = ∑
i<j
{ha

iih
a
jj} − ha

11ha
r+1,r+1, (29)

and:

φ∗a (h
∗a
11, . . . , h∗amm) = ∑

i<j
{h∗aii h∗ajj } − h∗a11h∗ar+1,r+1. (30)
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The constrained extremum problem is max φa subject to:

Q : ha
11 + · · ·+ ha

mm = ta, (ta is any constant).

The partial derivatives of φa are:

∂φa

∂ha
11

=
m

∑
i=2

ha
ii − ha

r+1,r+1,

∂φa

∂ha
r+1,r+1

= ∑
i∈1,m r+1

ha
ii − ha

11,

∂φa

∂ha
ll

= ∑
i∈1,m {l}

ha
ii, l ∈ [r + 2, m].

For an optimal solution (ha
11, . . . , ha

mm) of the above problem and grad (φa) normal at Q, we obtain:

(ha
11, ha

22, . . . , ha
mm) = (0, αa, . . . , αa). (31)

As ta = ∑m
i=1 ha

ii = (m− 1)αa, then we have:

αa =
ta

m− 1
. (32)

As φa is obtained from the similar function studied in [39] by subtracting some square terms,
φa|Q will have the Hessian semi-negative definite. Consequently, the point in (31), together with (32)
is a global maximum point, and hence, we calculate:

φa ≤
(m− 1)(m− 2)(αa)2

2

=
(m− 2)(ta)2

2(m− 1)
=

m2(m− 2)
2(m− 1)

(Ha)2.

Similarly, one gets:

φ∗a ≤
m2(m− 2)
2(m− 1)

(H∗a)2,

by considering (30) and the constrained extremum problem max φ∗a subject to:

Q∗ : h∗a11 + · · ·+ h∗amm = t∗a, (t∗a is any constant).

Thus, (28) becomes:

2(σ0 −K0(e1 ∧ er+1)) ≤ σ∇,∇∗ −K∇,∇∗(e1 ∧ er+1) +
(m− 2)(m + 1)c̃

2

+
m2(m− 2)
4(m− 1)

(||H||2 + ||H∗||2).

By summarizing, we state the following:
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Theorem 4. Let N = N1 ×f N2 be an m-dimensional statistical warped product submanifold immersed into
an n-dimensional statistical manifold of constant sectional curvature c̃. Then:

σ∇,∇∗−K∇,∇∗(e1 ∧ er+1) ≥ 2(σ0 −K0(e1 ∧ er+1))−
(m− 2)(m + 1)c̃

2

− m2(m− 2)
4(m− 1)

(||H||2 + ||H∗||2).

By using (20), we obtain:

K∇,∇∗(e1 ∧ er+1) =
1
2
(K(e1 ∧ er+1) +K∗(e1 ∧ er+1))

=
1
2f
{(∇e1 e1)f− e2

1f+ (∇∗e1
e1)f− e2

1f}.

For b = 1, 2, . . . , r, we also have:

K∇,∇∗(eb ∧ er+1) =
1
2f
{(∇eb eb)f− e2

bf+ (∇∗eb
eb)f− e2

bf}.

By summing up b from one to r, we find that:

r

∑
b=1

1
2f
{(∇eb eb)f− e2

bf+ (∇∗eb
eb)f− e2

bf} =
1
2
(

∆N1 f

f
+

∆N1∗f

f
) =

∆N10f

f
,

where ∆N1 and ∆N1∗ are dual Laplacians of N1 and ∆N10 denotes the Laplacian operator of N1 for the
Levi–Civita connection [37]. Thus, we have:

Theorem 5. Let N = N1 ×f N2 be an m-dimensional statistical warped product submanifold immersed into
an n-dimensional statistical manifold of constant sectional curvature c̃. Then, the scalar curvature σ∇,∇∗ of
N satisfies:

σ∇,∇∗ ≥ 2σ0 − ∆N10f

rf
− (m− 2)(m + 1)c̃

2

− m2(m− 2)
4(m− 1)

(||H||2 + ||H∗||2).

6. Optimal Casorati Inequality

Let {e1, . . . , em} and {em+1, . . . , en} be respectively the orthonormal basis of TpN and T⊥p N, p ∈ N.
Then, the squared norm of second fundamental forms h and h∗ is denoted by C and C∗, respectively,
called the Casorati curvatures of N in Ñ. Therefore, we have:

C =
1
m
||h||2, C∗ =

1
m
||h∗||2, (33)

where:

||h||2 =
n

∑
a = m+1

m

∑
i,j = 1

(ha
ij)

2, ||h∗||2 =
n

∑
a = m+1

m

∑
i,j = 1

(h∗aij )
2.

If W is a q-dimensional subspace of TN, q ≥ 2, and {e1, . . . , eq} an orthonormal basis of W. Then,
the scalar curvature of the q-plane section W is:

σ∇,∇∗(W) = ∑
1≤i<j≤q

S(ei, ej, ej, ei),
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and the Casorati curvatures of the subspace W are as follows:

C(W) =
1
q

n

∑
a = m+1

q

∑
i,j = 1

(ha
ij)

2, C∗(W) =
1
q

n

∑
a = m+1

q

∑
i,j = 1

(h∗aij )
2.

(1) The normalized Casorati curvatures δC(m− 1) and δ∗C(m− 1) are defined as:

[δC(m− 1)]p =
1
2
Cp + (

m + 1
2m

)inf{C(W)|W : a hyperplane of TpN},

and [δ∗C(m− 1)]p =
1
2
C∗p + (

m + 1
2m

)inf{C∗(W)|W : a hyperplane of TpN}.

(2) The normalized Casorati curvatures δ̂C(m− 1) and δ̂∗C(m− 1) are defined as:

[δ̂C(m− 1)]p = 2Cp − (
2m− 1

2m
)sup{C(W)|W : a hyperplane of TpN},

and [δ̂∗C(m− 1)]p = 2C∗p − (
2m− 1

2m
)sup{C∗(W)|W : a hyperplane of TpN}.

Let ϕ : N = N1 ×f N2 → Ñ(c̃) be an isometric statistical immersion of a warped product
N1 ×f N2 into a statistical manifold of constant sectional curvature c̃. If we chose a local orthonormal
frame {e1, . . . , em} such that {e1, . . . , er} are tangent to N1 and {er+1, . . . , er+k = em} are tangent to
N2, then the two partial mean curvature vectorsH1 (resp. H∗1) andH2 (resp. H∗2) of N are given by:

H1 =
1
r

r

∑
i=1

h(ei, ei), H∗1 =
1
r

r

∑
i=1

h∗(ei, ei),

and:

H2 =
1
k

k

∑
j=1

h(er+j, er+j), H∗2 =
1
k

k

∑
j=1

h∗(er+j, er+j).

Furthermore, the Casorati curvatures are:

C1 =
1
r

n

∑
a = m+1

r

∑
i,j = 1

(ha
ij)

2, C∗1 =
1
r

n

∑
a = m+1

r

∑
i,j = 1

(h∗aij )
2, (34)

and:

C2 =
1
k

n

∑
a = m+1

k

∑
i,j = 1

(ha
r+ir+j)

2, C∗2 =
1
k

n

∑
a = m+1

k

∑
i,j = 1

(h∗ar+ir+j)
2. (35)

Equation (21) implies:

k∆N10f

f
= σ∇,∇∗ − ∑

1≤i≤j≤r
K∇,∇∗(ei ∧ ej)− ∑

r+1≤l≤s≤m
K∇,∇∗(el ∧ es).
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By using (8), the previous equation becomes:

2σ∇,∇∗ =
k∆N10f

f
+ r(r− 1)c̃ + k(k− 1)c̃ + 2r2||H0

1||2

− r2

2
(||H1||2 + ||H∗1 ||2)−

k2

2
(||H2||2 + ||H∗2 ||2)

+ 2k2||H0
2||2 − 2rC0

1 +
r
2
(C1 + C∗1 )

− 2kC0
2 +

k
2
(C2 + C∗2 ). (36)

We define a polynomial P in terms of the components of the second fundamental form h0

(with respect to the Levi–Civita connection) of N.

P = 2r(r− 1)C0
1 + (r2 − 1)C0

1 (W1) +
r
2
(C1 + C∗1 )

+ 2k(k− 1)C0
2 + (k2 − 1)C0

2 (W2) +
k
2
(C2 + C∗2 )

+
k∆N10f

f
+ r(r− 1)c̃ + k(k− 1)c̃− r2

2
(||H1||2 + ||H∗1 ||2)

− k2

2
(||H2||2 + ||H∗2 ||2)− 2σ∇,∇∗ . (37)

Without loss of generality, we assume that W1 and W2 are respectively spanned by {e1, . . . , er−1}
and {er+1, . . . , er+k−1}. Then, by (36) and (37), we derive:

P =
n

∑
a = m+1

{
r

∑
i,j = 1

r + 3
2

(h0a
ij )

2 +
r + 1

2

r−1

∑
i,j=1

(h0a
ij )

2 − 2( ∑
i = 1

h0a
ii )

2

}

+
n

∑
a = m+1

{
k

∑
l,s = 1

k + 3
2

(h0a
ls )

2 +
k + 1

2

k−1

∑
l,s=1

(h0a
ls )

2 − 2( ∑
l = 1

h0a
ll )

2

}

=
n

∑
a = m+1

{
2(r + 2) ∑

1≤i<j≤r−1
(h0a

ij )
2 + (r + 3)

r−1

∑
i=1

(h0a
ir )

2

+ r
r−1

∑
i=1

(h0a
ii )

2 − 4 ∑
1≤i<j≤r

(h0a
ii h0a

jj ) +
r− 1

2
(h0a

rr )
2}

+
n

∑
a = m+1

{2(k + 2) ∑
1≤l<s≤k−1

(h0a
ls )

2 + (k + 3)
k−1

∑
l=1

(h0a
lk )

2

+ k
k−1

∑
l=1

(h0a
ll )

2 − 4 ∑
1≤l<s≤k

(h0a
ll h0a

ss ) +
k− 1

2
(h0a

kk)
2

}

≥
n

∑
a = m+1

{
r−1

∑
i = 1

r(h0a
ii )

2 +
r− 1

2
(h0a

rr )
2 − 4 ∑

1≤i<j≤r
h0a

ii h0a
jj

}

+
n

∑
a = m+1

{
k−1

∑
l = 1

k(h0a
ll )

2 +
k− 1

2
(h0a

kk)
2 − 4 ∑

1≤l<s≤k
h0a

ll h0a
ss

}
.
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For any a ∈ {m + 1, . . . , n}, we define two quadratic forms φa : Rr → R and ϕa : Rk → R by:

φa(h0a
11, h0a

22, . . . , h0a
r−1,r−1, h0a

rr )

=
r−1

∑
i = 1

r(h0a
ii )

2 +
r− 1

2
(h0a

rr )
2 − 4 ∑

1≤i<j≤r
h0a

ii h0a
jj , (38)

and:

ϕa(h0a
11, h0a

22, . . . , h0a
k−1,k−1, h0a

kk)

=
k−1

∑
l = 1

k(h0a
ll )

2 +
k− 1

2
(h0a

kk)
2 − 4 ∑

1≤l<s≤k
h0a

ll h0a
ss . (39)

First, we consider the constrained extremum problem min φa subject to:

Q : h0a
11 + · · ·+ h0a

rr = ta, (ta is any constant).

From (38), we find that the critical points

h0c = (h0a
11, h0a

22, . . . , h0a
r−1,r−1, h0a

rr )

of Q are the solutions of the following system of linear homogeneous equations.

∂φa

∂h0a
ii

= 2(r + 2)(h0a
ii )− 4 ∑r

j = 1 h0a
jj = 0,

∂φa

∂h0a
rr

= (r− 1)h0a
rr − 4 ∑r−1

j = 1 h0a
jj = 0,

 (40)

for i ∈ {1, 2, . . . , r− 1} and a ∈ {m + 1, . . . , n}. Hence, every solution h0c has:

h0a
ii =

1
r + 1

ta, h0a
rr =

4
r + 3

ta,

for i ∈ {1, 2, . . . , r− 1} and a ∈ {m + 1, . . . , n}.
Now, we fix x ∈ Q. The bilinear form Θ : TxQ × TxQ → R has the following expression

(cf. Theorem 1):

Θ(E, F) = Hessφa(E, F) + 〈h′(E, F), grad(φa)(x)〉,

where h′ denotes the second fundamental form of Q in Rr and < ·, · > denotes the standard inner
product on Rr. The Hessian matrix of φa is given by:

Hessφa =


2(r + 2) −4 . . . −4 −4
−4 2(r + 2) . . . −4 −4

...
...

. . .
...

...
−4 −4 . . . 2(r + 2) −4
−4 −4 . . . −4 (r− 1)

 .
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Take a vector E ∈ TxQ, which satisfies a relation ∑r
i=1 Ei = 0. As the hyperplane is totally

geodesic, i.e., h′ = 0 in Rr, we get:

Θ(E, E) = Hessφa(E, E)

= 2(r + 2)
r−1

∑
i=1

E2
i + (r− 1)E2

r − 8
r

∑
i 6=j=1

EiEj

= 2(r + 2)
r−1

∑
i=1

E2
i + (r− 1)E2

r − 4

{
(

r

∑
i = 1

Ei)
2 −

r

∑
i = 1

E2
i

}

= 2(r + 4)
r−1

∑
i=1

E2
i + (r + 3)E2

r

≥ 0.

However, the point h0c is the only optimal solution, i.e., the global minimum point of problem,
and reaches a minimum Q(h0c) = 0 by considering (39) and the constrained extremum problem
min ϕa subject to:

Q
′

: h0a
11 + · · ·+ h0a

kk = αa, (αa is any constant).

Thus, we have:

2σ∇,∇∗ ≤ r(r− 1)C0
1 + (r2 − 1)C0

1 (W1) +
r
2
(C1 + C∗1 )

+ k(k− 1)C0
2 + (k2 − 1)C0

2 (W2) +
k
2
(C2 + C∗2 )

+
k∆N10f

f
+ r(r− 1)c̃ + k(k− 1)c̃

− r2

2
(||H1||2 + ||H∗1 ||2)−

k2

2
(||H2||2 + ||H∗2 ||2).

Consequently, we get immediately the following theorem from the above relation:

Theorem 6. Let N = N1 ×f N2 be an m-dimensional statistical warped product submanifold immersed into
an n-dimensional statistical manifold of constant sectional curvature c̃. Then, the Casorati curvatures satisfy:

2σ∇,∇∗ ≤ r(r− 1)C0
1 + (r2 − 1)C0

1 (W1) + rC0
1

+ k(k− 1)C0
2 + (k2 − 1)C0

2 (W2) + kC0
2

+
k∆N10f

f
+ r(r− 1)c̃ + k(k− 1)c̃

− r2

2
(||H1||2 + ||H∗1 ||2)−

k2

2
(||H2||2 + ||H∗2 ||2),

where W1 and W2 are respectively the hyperplanes of TpN1 and TpN2, C0
1 = 1

2 (C1 + C∗1 ), and C0
2 = 1

2 (C2 + C∗2 ).

7. Examples

We provide examples of statistical warped product submanifolds as follows:

Example 1. By generalizing Example 2.7 of [10] to higher dimensions, we see that:(
R×ez Rn, g̃ = dz2 + e2z(dx2

1 + · · ·+ dx2
n),∇,∇∗

)
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is a statistical warped product manifold. Furthermore, the hyperbolic space:

Hn+1(−1) =

({
(x0, . . . , xn+1) ∈ Rn+1|x0 > 0

}
, g̃ =

dx2
0 + · · ·+ dx2

n+1

x2
0

, ∇̃, ∇̃∗
)

is the statistical manifold of constant sectional curvature −1. Thus, with respect to the Levi–Civita connection,
R×ez Rn−1 admits an isometric minimal immersion into Hn+1(−1).

Example 2. (R×z Rn, g̃ = dt2 + t2(dx2
1 + · · ·+ dx2

n),∇,∇∗) is a statistical warped product manifold, and
it is isometric to the Euclidean (n + 1)-space En+1. Let N be a minimal submanifold of the unit hypersphere
Sn(1) ⊂ En+1 center at the origin o ∈ En+1, and let C(N) be the cone over N with the vertex at o.

The metric of C(N) is the warped product metric gC(N) = dt2 + t2gN , where gN denotes the metric of N.
Any open submanifold M of C(N) is a warped product manifold, which admits an isometric minimal immersion
into the statistical manifold En+1 of constant sectional curvature zero.
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