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Abstract: In this paper, we consider a manufacturer who produces and sells a kind of innovative
product in the monopoly market environment. Because the life cycle of an innovative product is
usually shorter than its procurement lead time, one unique demand quantity (scenario) will occur in
the selling season; thus, there is only one chance for the manufacturer to determine both optimal
production quantity and optimal sale price. Considering this one-time feature of such a decision
problem, a price-setting newsvendor model for innovative products is proposed. Different to the
existing price-setting newsvendor models, the proposed models determine the optimal production
quantity and sale price based on some specific state (scenario) which is most applicable for the
manufacturer. The theoretical analysis provides managerial insights into the manufacturers’ behaviors
in a monopoly market of an innovative product, and several phenomena in the luxury goods market
are well explained.

Keywords: price-setting newsvendor; one-shot decision theory; innovative product; scenario;
behavioral operations research

1. Introduction

As a fundamental and important inventory management problem, the newsvendor models have
been extensively reviewed [1–5]. The newsvendor model applies to various decision-making contexts,
such as inventory decisions, supply chain contracting and healthcare management. It examines a
particular choice under uncertainty: A decision maker sets a quantity to match an uncertain variable,
either too high or too low leads to a loss. Although the essential newsvendor model characterizes a
one-variable problem that emphasizes operational efficiency, it also is foundational to the development
of joint-decision models for defining and characterizing the operations/marketing interface, that is a
decision maker sets not only a quantity, but a price to match a price depending uncertain variable [4,6].
In this context, the newsvendor problem becomes a price-setting newsvendor problems [7–14].

Starting with the seminal work of Fisher [15], researchers in supply chain management have
extensively studied innovative products. As Fisher’s definition, products essentially belong to
either innovative or functional categories. Compared with functional products, innovative products
have shorter life cycles and unpredictable demands. For innovative products, before the selling
season, the manufacturer has to make a decision on both the production quantity and the retail price,
i.e., the pricing-setting newsvendor problem.

For one kind of innovative product, since the lifecycle is usually shorter than its procurement lead
time, there is usually only one non-repeating selling season, only one demand quantity (scenario) will
occur in only one selling season. Therefore, only one scenario would make sense for evaluating the
newsvendor decisions related to the innovative product. Guo [16] firstly raised the one-shot decision
theory (OSDT), in which only some particular scenario is utilized to evaluate the objective function,
for dealing with such problems. The one-shot decision process is separated into two steps. The first
step is to seek an appropriate scenario from all possible states for each alternative. This scenario
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is called as the focus point of the alternative. The second step is to evaluate the alternatives by
the satisfaction levels incurred by the focus points for obtaining the optimal alternative. Based on
OSDT, plenty kinds of decision-making problems have been researched [17–23]. Guo and Ma [24]
proposed the newsvendor model for innovative products where the manufacturer was in a perfect,
competitive market so that the sale price was given. Zhu and Guo [25,26] analyzed the approaches
to bi-level programming problems. Recently, Guo [27] proposed the focus theory of choice (FTC)
that is a generalization of OSDT and provided axiomation to a decision-making procedure under
risk and uncertainty. Several well-known anomalies, such as the Allais, Ellsberg and St. Petersburg
paradoxes are well explained in the models. Based on the FTC, Guo and Zhu [28] presented the focus
programming, which provides a fundamental alternative for stochastic optimization problems.

There is a growing literature to show the decision biases in the real-world phenomena
and experimental observations of the newsvendor type problems [29,30]. The current models
(e.g., risk-neutral, risk-seeking and risk-averse) do not describe actual decisions in the newsvendor
setting very well and “another theory is needed” [31]. Therefore, it is interesting and valuable to
continue examining the behaviors of the manufacturer in a monopolistic market with alternative
decision rules or theories. We consider the manufacturer who produces and sells a kind of innovative
product in a monopoly market. The manufacturer has only chance to decide both the production
quantity and the sale price with the uncertain demand. The OSDT based price-setting newsvendor
model is proposed for this situation. In this model, the decisions of the retail price and ordering
quantity are both structured by the OSDT. It is a substantial extension of the research [15] and enriches
the literature of newsvendor.

The contributions are as follows:
First, the existing price-setting newsvendor models seek optimal inventories and prices to

maximize the expected utilities (EUs). In these models, choosing a production quantity is equal to
choosing a lottery (or a probability distribution). Because of the short life cycle of an innovative product,
producing/selling such a product is a typical one-time decision. The risk attitudes of newsvendors
for such a one-time decision are reflected by the differences of the utility functions (linear, concave
and convex ones). Based on the OSDT, we build the price-setting newsvendor models and argue
that the different behaviors of the manufacturers caused by their different personalities. According to
the types of scenario (demand), they focus on the manufacturers can be divided into active, passive,
apprehensive and daring types. The scenario-based price-setting newsvendor model is proposed,
which is a fundamentally different model for analyzing the newsvendor problems in a monopoly
market of an innovative product. Second, the theoretical analysis provides insights into the behaviors
of manufacturers and several phenomena in the luxury goods market are well explained.

The remainder of the paper is structured as follows. In Section 2, the newsvendor models with
the OSDT are introduced. In Section 3, the price-setting newsvendor model for innovative products is
constructed. In Section 4, some theoretical analysis results are given, and several phenomena in the
luxury goods market are examined. In Section 5, the numerical example is performed to demonstrate
the proposed models. In Section 6, the conclusions and future research directions are given.

2. Newsvendor Models with the OSDT

In this section, the decision-making procedure for a retailer of innovative products is introduced.
Before the selling season, the retailer must decide the order quantity q. For one unit of the innovative
product, the wholesale price is W, and the retail price is R and R > W. If there is an excess, the unit
salvage price is So > 0 (So < W). The unit opportunity cost is Su > 0 for the shortage. The retailer’s
profit function is as follows:

r(x, q) =
{

(R−W)x− (W − So)(q− x); x < q
(R−W)q− Su(x− q); x ≥ q

, (1)
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The demand function of the innovative product is described by a random variable X and the
probability mass (density) function is f (x).

Definition 1. Given the probability function f (x) for random vector and π : Ω→ [0, 1] be a function satisfying

max
{
π(x) : x ∈ Ω

}
= 1, (2)

π(x) is the relative likelihood degree of x if π(x1) > π(x2) for f (x1) > f (x2) and π(x1) = π(x2) for
f (x1) = f (x2). For a retailer, his/her satisfaction levels towards profits are represented by the satisfaction function.

Definition 2. The satisfaction function is a strictly increasing function of the profit r,

u : G→ [0, 1], (3)

where G is the set of profit r.

Obviously, the relative likelihood degrees and the satisfaction levels can be utilized to describe
the relative position of the probabilities and the payoffs, respectively.

Usually, because of the short life cycle of the innovative product, there is only one chance given
to the retailer to determine his/her order quantity and a unique demand will appear accordingly.
Therefore, before ordering products, the retailer has to meditate which demand should be factored in.
We take into account four types of demands (scenarios) for each order quantity with contemplating
the likelihood degrees and the satisfaction levels, that is the demands with the higher satisfaction
and likelihood (Type I), the lower satisfaction and higher likelihood (Type II), the higher satisfaction
and lower likelihood (Type III), the lower satisfaction and likelihood (Type IV). It is intuitively
acceptable that active, passive, daring and apprehensive retailers are inclined to take into account
Type I, Type II, Type III and Type IV demands, respectively. Therefore, we call Type I, Type II, Type III
and Type IV demands active, passive, daring and apprehensive focus points, respectively (shown in
Table 1). Which kind of focus point is taking into account reflects the personality of the retailer under
demand uncertainty.

Table 1. Four different focus points.

satisfaction

higher lower

likelihood
higher active focus point passive focus point

lower daring focus point Apprehensive focus point

Following operators are introduced to characterize the focus points.

Definition 3. Given a vector [z1, z2, · · · , zn], lower[z1, z2, · · · , zn] and upper[z1, z2, · · · , zn] are defined
as follows:

lower[z1, z2, · · · , zn] = [∧i=1,··· ,nzi,∧i=1,··· ,nzi, · · · ,∧i=1,··· ,nzi], (4)

upper[z1, z2, · · · , zn] = [∨i=1,··· ,nzi,∨i=1,··· ,nzi, · · · ,∨i=1,··· ,nzi], (5)

lower [z1, z2, · · · , zn] and upper [z1, z2, · · · , zn] represent the lower and upper bounds of [z1, z2, · · · , zn].
For instance, for a state x, the relative likelihood degree is 0.3 and the satisfaction level is 0.8, which is represented
as [0.3, 0.8]. lower[0.3, 0.8] = [0.3, 0.3] and upper[0.3, 0.8] = [0.8, 0.8] represent that x has at least 0.3 relative
likelihood degree and 0.3 satisfaction level and x has at most 0.8 relative likelihood degree and 0.8 satisfaction level.

In the following, we introduce how to obtain these four types of focus points.
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Active focus point: For an order quantity q, the active focus point is

x∗1(q) ∈ argmax
x

lower[π(x), u(x, q)]. (6)

Example 1. There are four demands x1, x2, x3 and x4. Their probabilities are 0.05, 0.15, 0.5 and 0.3
so that the corresponding relative likelihood degrees are 0.1, 0.3, 1.0 and 0.6, respectively. For an order
quantity q whose [π(x), u(x, q)] are, for instance, [0.1, 0.6], [0.3, 0.2], [1.0, 0.3] and [0.6, 0.8], respectively.
max

x
lower[π(x), u(x, q)] is max ([0.1, 0.1], [0.2, 0.2], [0.3, 0.3], [0.6, 0.6]) = [0.6, 0.6] which corresponds to

x4. Thus, argmax
x

lower[π(x), u(x, q)] is x4. Clearly x4 is the demand with a higher likelihood degree and

satisfaction level.

Passive focus point: For an order quantity q, the passive focus point is

x∗2(q) ∈ argmin
x

upper[1−π(x), u(x, q)]. (7)

Apprehensive focus point: For an order quantity q, the apprehensive focus point is

x∗3(q) ∈ argmin
x

upper[π(x), u(x, q)]. (8)

Daring focus point: For an order quantity q, the daring focus point is

x∗4(q) ∈ argmin
x

upper[π(x), 1− u(x, q)]. (9)

Comments: Equations (6)–(9) are from four bi-objective optimization problems as follows:
max

x
π(x), max

x
u(x, q); max

x
π(x), min

x
u(x, q); min

x
π(x), min

x
u(x, q)and min

x
π(x), max

x
u(x, q). From Equations

(6) to (9), there is no other [π(x), u(x, q)] satisfies π(x) > π(x∗1(q)) and u(x, q) > u(x∗1(q), q); or
π(x) > π(x∗2(q)) and u(x, q) < u(x∗2(q), q); or π(x) < π(x∗3(q)) and u(x, q) < u(x∗3(q), q); or π(x) < π(x∗4(q))
and u(x, q) > u(x∗4(q), q). It means that x∗1(q), x∗2(q), x∗3(q) and x∗4(q) are Pareto optimal solutions of
the above four bi-objective optimization problems which are used to seek for the demands with the
higher likelihood and satisfaction, the higher likelihood and lower satisfaction, the lower likelihood and
satisfaction and the lower likelihood and higher satisfaction, respectively. In other words, for any q no
demand can cause an even higher satisfaction with an even higher likelihood than its active focus point
x∗1(q); no demand can provide an even lower satisfaction with an even higher likelihood than its passive
focus point x∗2(q); no demand can lead to an even lower satisfaction with an even lower likelihood than its
apprehensive focus point x∗3(q); no demand can generate an even higher satisfaction with an even lower
likelihood degree than its daring focus point x∗4(q).

Advantages in phenomena explanation: Let us consider the following anecdotal evidence.
In September 2014, Apple® released iPhone 6 and iPhone 6 Plus, but the Chinese market was left out
the first wave of countries. The iPhone 6 was sold for as much as 10 times the U.S. price in Chinese
black market, due to the delayed release. There were many scalpers trying to buy and resell the iPhone
6 in this risky and fragile market [30]. Grothaus [32] observed that some of the scalpers treat it as a
“gamble” and just took into account the scenario that they can make profits and “feed their family”.
This kind of phenomena in an innovative product market can be explained by the behavior of a daring
retailer. Even though some scenario may occur with a low likelihood, the high gain lures him/her to
take action. On the other hand, this kind of phenomena is very hard to be explained by lottery-based
models, including expected utility models, value at risk models or conditional value at risk models.
The reason is that the expression of risk preferences in these models rely on the framework of weighting
average, which ignored the importance of some unique and irreplaceable scenario (focus point) in the
progress of decision-making.
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For an order quantity q, multiple demands may be considered as one type of focus point,
the sets of the above mentioned four types of focus points are denoted as X1(q), X2(q), X3(q) and
X4(q), respectively.

In newsvendor models, the focus point is regarded as the retailer’s most focused demand, and the
retailer chooses the order quantity that will lead to the best outcome (highest satisfaction level) in case
the focus point (focused demand) really happen. Therefore, the following optimal order quantities
are obtained.

q∗1 ∈ argmax
q

max
x∗1(q)∈X1(q)

u(x∗1(q), q), (10)

q∗2 ∈ argmax
q

min
x∗2(q)∈X2(q)

u(x∗2(q), q), (11)

q∗3 ∈ argmax
q

min
x∗3(q)∈X3(q)

u(x∗3(q), q), (12)

q∗4 ∈ argmax
q

max
x∗4(q)∈X4(q)

u(x∗4(q), q). (13)

We call q∗1, q∗2, q∗3 and q∗4 optimal active, passive, apprehensive and daring order quantities,
respectively. It should be noted that the optimal orders are adopted only based on the satisfaction levels
of the focus points. A numerical example is given for the easy understanding of the decision procedure.

Example 2. A fashion store is scheduled to order a kind of newly designed fashion. For a unit, retail price R,
wholesale price W, salvage price So and opportunity cost Su are all set, for example, as 10, 7, 1 and 4 (1000RMB),
respectively. The profit of the store is

r(x, q) =
{

9x− 6q, x < q
7q− 4x, x ≥ q

. (14)

Suppose that the set of demand values is D = {350, 450, 550, 650, 750} so that the set of order
quantities is D = {350, 450, 550, 650, 750}. Their probabilities are 0.085, 0.135, 0.386, 0.282, and 0.112,
respectively. Using (2), we can calculate the relative likelihood degrees of them (shown in Table 2).

Table 2. The relative likelihood degrees of demands.

Demands 350 450 550 650 750

likelihood degrees 0.22 0.35 1.00 0.73 0.29

Following Equation (14), the profits (1000yuan) are obtained for each order quantity (see Table 3).
For simplification, the satisfaction function is u(r) = r+1350

3600 , which is profit’s linear function with
u(−1350) = 0 and u(2250) = 1. The corresponding satisfaction levels are shown in Table 4.

Table 3. Profits for each order quantity.

Demands

350 450 550 650 750

Orders

350 1050 650 250 −150 −550
450 450 1350 950 550 150
550 −150 750 1650 1250 850
650 −170 150 1050 1950 1550
750 −1350 −450 450 1350 2250
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Table 4. Satisfaction levels obtained for order quantities.

Demands

350 450 550 650 750

Orders

350 0.67 0.56 0.44 0.33 0.22
450 0.50 0.75 0.64 0.53 0.42
550 0.33 0.58 0.83 0.72 0.61
650 0.17 0.42 0.67 0.92 0.81
750 0.00 0.25 0.50 0.75 1.00

Let us analyze the case of the order quantity 450. The relative likelihood degree and satisfaction
level [1.00, 0.64] on demand 550 is undominated by the ones of other demands, that is to say,
demand 550 causes the relatively high satisfaction and likelihood. Hence, demand 550 is regarded as
the active focus point of the order quantity 450. Since there is no other demand can simultaneously
cause higher relative likelihood degree and lower satisfaction level than demand 650 ([0.73, 0.53]),
demand 650 is regarded as the passive focus point of 450. Similarly, demand 750 and demand 450 are
regarded as the apprehensive and daring focus point of 450, respectively. In addition, we can obtain
focus points for other order quantities (see Table 5).

Table 5. Focus points of order quantities.

Order Quantities

350 450 550 650 750

Active 550 550 550 650 650
Passive 650 650 450 450 550

Apprehensive 750 750 350 350 350
Daring 350 450 750 750 750

In step 2, the optimal order quantities are chosen on the basis of satisfaction levels of focus
points. The satisfaction levels for each order quantity with different types of focus points is easily
calculated (see Table 6). Using (10–13), we get the optimal active, passive, apprehensive and daring
order quantities, that is 650, 550, 450, and 750, respectively.

Table 6. Satisfaction levels for focus points.

Order Quantities

350 450 550 650 750

Active 0.44 0.64 0.83 0.92 0.75
Passive 0.33 0.53 0.58 0.42 0.50

Apprehensive 0.22 0.42 0.33 0.17 0.00
Daring 0.67 0.75 0.61 0.81 1.00

The newsvendor models with the OSDT provided a fundamental alternative to analyze the
supply chain management problems for the innovative product, such as the product pricing,
channel coordination and contract design in the supply chain. In the following, we’ll focus on
the price-setting newsvendor problem for the innovative product.

3. Price-Setting Newsvendor Models Based on OSDT

In the following model, a manufacturer who produces and sells an innovative product in the
monopoly market is considered. Before selling season, the manufacturer produces q units at unit
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cost W and setup cost is assumed to be zero. We consider the following widely used linear inverse
demand function.

x = b− aR, (15)

where b > 0 shows the limit demand when the retail price equals to 0, and a > 0 represents the
decreasing of demand when the retail price increases by one unit. We call a as the price sensitivity of
market demand. The demand’s uncertainty is described by the parameter b with probability density
function f (b). The profit function is with the retail price and the production quantity as the decision
variables. With considering (1), it can be expressed as:

r(R, b, q) =
{

(R−W)(b− aR) − (W − So)(q− b + aR); b− aR < q
(R−W)q− Su(b− aR− q); b− aR ≥ q

. (16)

If one considers Definitions 1 and 2, then we have the relative likelihood function of b, i.e., π(b)
and the satisfaction function, i.e., u(R, b, q). Similar to the newsvendor model, the following types of
focus points are considered.

Active focus point: For retail price R and production quantity q, the active focus point is

b1(R, q) ∈ argmax
x

lower[π(b), u(R, b, q)], (17)

b1(R, q) − aR is the focused demand value with the relatively high likelihood degree and satisfaction
level for the production quantity q.

Passive focus point: For retail price R and production quantity q, the passive focus point is

b2(R, q) ∈ argmin
x

upper[1−π(b), u(R, b, q)], (18)

b2(R, q) − aR is the focused demand value with the relatively high likelihood degree and relatively low
satisfaction level for the production quantity q.

Apprehensive focus point: For retail price R and production quantity q, the apprehensive focus
point is

b3(R, q) ∈ argmin
x

upper[π(b), u(R, b, q)], (19)

b3(R, q) − aR is the focused demand value with the relatively low likelihood degree and satisfaction
level for the production quantity q.

Daring focus point: For retail price R and production quantity q, the daring focus point is

b4(R, q) ∈ argmin
x

upper[π(b), 1− u(R, b, q)], (20)

b4(R, q) − aR is the focused demand value with the relatively low likelihood degree and relatively high
satisfaction level for a production quantity q.

The sets of the four types of focus points of the retail price R and production quantity q are
denoted as B1(R, q), B2(R, q), B3(R, q) and B4(R, q), respectively. The optimal production quantities for
the manufacturers are

q1(R) ∈ argmax
q

max
b1(R,q)∈B1(R,q)

u(R, b1(R, q), q), (21)

q2(R) ∈ argmax
q

min
b2(R,q)∈B2(R,q)

u(R, b2(R, q), q), (22)

q3(R) ∈ argmax
q

min
b3(R,q)∈B3(R,q)

u(R, b3(R, q), q), (23)

q4(R) ∈ argmax
q

max
b4(R,q)∈B4(R,q)

u(R, b4(R, q), q). (24)
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From Equations (17)–(24), we can see that for a fixed R, the profit functions of the active,
passive, apprehensive and daring manufacturers are r(R, b1(R, q1(R)), q1(R)), r(R, b2(R, q2(R)), q2(R)),
r(R, b3(R, q3(R)), q3(R)) and r(R, b4(R, q4(R)), q4(R)), respectively, which are named as active, passive,
apprehensive and daring profit functions, respectively. Because they are the functions of single
variable R, for simplicity, we use r1(R), r2(R), r3(R) and r4(R) in the following parts. For each type of
manufacturer, the optimal retail price is which to maximize his/her profit function.

R∗1 ∈ argmax
R

r1(R), q∗1 ∈ q1(R∗1), (25)

R∗2 ∈ argmax
R

r2(R), q∗2 ∈ q2(R∗2), (26)

R∗3 ∈ argmax
R

r3(R), q∗3 ∈ q3(R∗3), (27)

R∗4 ∈ argmax
R

r4(R), q∗4 ∈ q4(R∗4). (28)

R∗1, R∗2, R∗3 and R∗4 are optimal retailer prices for active, passive, apprehensive and daring
manufacturers, respectively. They are named as optimal active, passive, apprehensive and daring retail
prices, respectively.

4. Analysis Results for the OSDT Based Price-Setting Newsvendor Models

We suppose the following assumption in this section.
Assumption: The probability density function f(b) is a unimodal function defined on the interval

[bl, bu], the mode is bc ∈ (bl, bu), f(bl) = 0 and f(bu) = 0.
From Equation (15), we know bl − aR and bu − aR are the lowest demand and highest demand;

bc − aR is the most possible demand. Since the demand is within [bl − aR, bu − aR], the reasonable
supply should lie on the same interval. Therefore, the manufacturer’s highest profit is

ru(R) = (R−W)(bu − aR), (29)

that is, the manufacturer produces the most q = bu − aR, meanwhile, the demand happens to be
the same as production quantity. The lowest profit is the minimum profit of two situations, one
is the manufacturer produces the highest, however, the demand happens to be the least, the profit
is (bl − aR)R + (bu − bl)So − (bu − aR)W; the other is the manufacturer produces the least, however,
the demand happens to be the most, the profit is (bl − aR)(R−W) − (bu − bl)Su. Because of the high
cost and margin of innovative products [6], it is reasonable to assume W ≥ So + Su, which leads to

rl(R) = (bl − aR)R + (bu − bl)So − (bu − aR)W. (30)

For a fixed retail price R, the manufacturer’s satisfaction level is the continuous strictly increasing
function of profit r, that is

u : [rl(R), ru(R)]→ [0, 1], (31)

where u(rl(R)) = 0, u(ru(R)) = 1.
(31) provides a general formulation of the satisfaction function where the satisfaction level of the

highest profit is 1, and the lowest profit is 0.
We have the following lemmas and propositions. The proofs are shown in the Appendix A.

The following proposition indicates the relationships between the four types of manufacturers’
focused profits.
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Proposition 1. For any R > W, we have the following relationships between the four types of manufacturers’
focused profits.

r4(R) > r1(R) > r2(R) > r3(R). (32)

Proposition 1 shows that the daring manufacturer always imagines a higher profit than
the active manufacturer; meanwhile, the active manufacturer imagines a higher profit than a
passive manufacturer, and the passive manufacturer imagines a higher profit than an apprehensive
manufacturer. Such conclusions are interesting and intuitively acceptable.

Since the demand is not less than zero, it is reasonable that R ∈ [W, bl
a ] and bl > aW. In what

follows, we suppose the satisfaction level is a linear function of profit, that is

u(R, b, q) =
r(R, b, q) − rl(R)

ru(R) − rl(R)
, (33)

The optimal retail price for four types of retailers is given in Propositions 2–5, below.

Proposition 2. If ∀b ∈ (bc, bu), π(b) and u(R, b, b− aR) are of class C1, and π′(b) , ∂u(R,b,b−aR)
∂b and

a > bu−bl
(bu−bl)(So−W)π′(b) hold, then the active profit function r1(R) is concave. Furthermore, if bl − aW > bu − bl,

then the unique solution of r′1(R) = 0 lies on the interval R ∈ (W, bl
a ), which is the optimal active retail price R∗1.

Proposition 2 shows that the active profit function’s concavity is related to the price sensitivity of
the market demand. Propositions 3–5 examine the concavities of passive, apprehensive and daring
profit functions, respectively; and provide optimal passive, apprehensive and daring retail prices.

Proposition 3. If π(b) is of class C1 for b ∈ (bl, bc) and b ∈ (bc, bu) and u(R, b, q) is of class C1 for
q ∈ (bl − aR, bu − aR), b ∈ (bl, bc) and b ∈ (bc, bu) and q′′2 (R) > ξb′2(R, q2(R)) + ψb′′2 (R, q2(R)) + ζ (where
ξ = 2

W−So
, ψ = R−So

W−So
, ζ = − 2a

W−So
) holds, then the passive profit function r2(R) is concave. Furthermore, the

unique solution of r′2(R) = 0 lies on the interval R ∈ (W, bl
a ), which is the optimal passive retail price R∗2.

Proposition 3 points out that the passive profit function’s concavity depends on the relationship
between the changes in retail price R of the optimal passive production quantity and of its corresponding
focused demand value.

Proposition 4. The apprehensive profit function r3(R) is concave. Furthermore, if bl − aW > bu − bl, then the
optimal apprehensive retail price is the unique solution of r′3(R) = 0 within R ∈ (W, bl

a ).

Proposition 5. The daring profit function r4(R) is concave. If bl − aW > bu − bl, then the optimal daring retail
price is R∗4 = bu+aW

2a , and lies on the interval R ∈ (W, bl
a ); otherwise, R∗4 =

bl
a .

Propositions 4 and 5 show that the apprehensive and daring profit functions r3(R) and r4(R) are
always concave. Assume r1(R) and r2(R) are concave, the optimal retail prices lie on the interval
R ∈ (W, bl

a ), we have Proposition 6 and 7, as follows.

Proposition 6. We have the following relationships between the four types of manufacturers’ optimal retail prices.

R∗4 > R∗1 > R∗2 > R∗3. (34)

Proposition 6 tells that the daring manufacturer has the highest optimal retail price; the active
manufacturer has a higher optimal price than the passive manufacturer, and the apprehensive
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manufacturer has the lowest optimal retail price. Such conclusions can be used for distinguishing
the type of the manufacturer according to the observed retail price which he/she has set and also can
predict the retail price which he/she will set if knowing the personality of the manufacturer. Let us look
at the supporting evident form the Wall Street Journal [33] which reported that the manufacturers who
sell ultraluxury brands are actually risk-takers, they are raising prices to distinguish their products
from other luxury goods, and they believe that the rich consumers are willing to accept such prices.

Proposition 7. The optimal active, passive, apprehensive and daring retail prices are decreasing in a.

Proposition 7 shows that the with the increase of the market demand’s price sensitivity,
the manufacturer will charge a lower retail price; that is to say, whichever the manufacturer’s
type is, decreasing the price sensitivity of the demand is efficient for charging a high retail price in
the innovative product market. Interestingly, the following fact supports the above conclusion. It is
from the report of Accenture® [34] that the luxury manufacturers that build brands on the image and
lifestyle are able to withstand bigger competitive pricing differences than manufacturers who build
their brands on the price. It future explained that “a well-known luxury manufacturer incorporated the
price sensitivity metrics into its overall pricing and assortment strategy in recent years. The strategy
has helped boost the company’s profit margins to its highest level.”

5. Numerical Example

A direct-sale store of a fashion company from France, located in Dalian, China, is going to
sell a new design fashion clothes. The fashion store is a monopoly in the northeast China market.
The unit cost W, salvage price So and opportunity cost Su are 7000, 1000 and 4000 (RMB), respectively.
The market demand is related to the retail price, and we have bl = 1000, bu = 1500. Let us consider the
store’s pricing policies when a = 0.02, a = 0.05 and a = 0.10, which is similar to Reference [11]. As an
example, let us see the details when a = 0.05.

Suppose parameter b’s probability density function is f (b) = 0.004−
∣∣∣ b−1250

62500

∣∣∣. From Equation (15),
the profit function is

r(R, b, q) =
{

(R− 7000)(b− 0.05R) − 6000(q− b + 0.05R); b− 0.05R < q
(R− 7000)q− 4000(b− 0.05R− q); b− 0.05R ≥ q

. (35)

For simplification, the satisfaction function is the normalization of r(R, b, q). We obtain R∗1 = 16, 767,
R∗2 = 14, 328, R∗3 = 13, 919 and R∗4 = 18, 500; r∗1 = 459, 800, r∗2 = 2, 792, 900, r∗3 = 1, 394, 500 and
r∗4 = 6, 612, 500. Similarly, we can obtain that when a = 0.02, R∗1 = 36, 804, R∗2 = 29, 384, R∗3 = 28, 797,
R∗4 = 41, 000, r∗1 = 17, 507, 000, r∗2 = 10, 766, 000, r∗3 = 8, 865, 800 and r∗4 = 23, 120, 000; when a = 0.10,
R∗1 = 10, 000, R∗2 = 9033, R∗3 = 8922, R∗4 = 10, 000, r∗1 = 857, 140, r∗2 = 400, 110, r∗3 = −799, 350 and
R∗4 = 1, 500, 000. The relationships between retail prices and profits when a = 0.02, a = 0.05 and
a = 0.10 are shown in Figures 1–3, respectively.

The numerical example shows three interesting phenomena. First, we observe that with the
increasing of market demand’s price sensitivity (the increase of parameter a), all of the four types of
manufacturers charge the lower retail prices. Second, the numerical example indicates that for any
R > W, r4(R) > r1(R) > r2(R) > r3(R). That is the focused profits of the daring manufacturer are
higher than the ones of active one; the focused profits of the active manufacturer are higher than the
ones of the passive manufacturer; the focused profits of the passive manufacturer are higher than the
ones of the apprehensive manufacturer. Third, we have R∗4 > R∗1 > R∗2 > R∗3 which shows that the
daring manufacturer has the highest optimal retail price; the active manufacturer has a higher optimal
price than the passive manufacturer, and the apprehensive manufacturer has the lowest optimal retail
price. The first result is similar to Reference [11], however, since we model the behaviors of different
types of manufacturers, the second and third results are original. Such conclusions are in accordance
with phenomena in the real business world.
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6. Conclusions

Considering the one-time feature of the manufacturer’s decision-making for producing and pricing
the innovative product in a monopoly market, we propose the price-setting newsvendor model for an
innovative product with the OSDT. Unlike the price-setting newsvendor model with the EU where the
optimal retail price and production quantity are obtained based on the weighted average of all possible
payoffs’ utilities, the price-setting newsvendor model with OSDT determines the optimal retail price and
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production quantity based on the satisfaction level of its focus point (scenario). Clearly, the proposed
model is scenario-based, which is radically different from the lottery-based models.

Active, passive, apprehensive and daring manufacturers are considered in this research. If the
profit functions are concave, we have the following conclusions:

The daring manufacturer always imagines a higher profit than the active manufacturer; meanwhile,
the active manufacturer imagines higher than a passive manufacturer, and the passive manufacturer
imagines higher than an apprehensive manufacturer.

The daring manufacturer has the highest optimal retail price; the active manufacturer has a
higher optimal price than the passive manufacturer, and the apprehensive manufacturer has the lowest
optimal retail price.

Whichever the manufacturer’s type is, decreasing the price sensitivity of the demand is efficient
for charging a high retail price in the innovative product market.

Such theoretical results are consistent with the phenomena in the real business world and provide
managerial insights into different types of manufacturer’s behaviors in a monopoly market. Using the
obtained analytic results, several phenomena in the luxury goods market have been well explained. In the
near future, we will analyze the channel coordination and personality information sharing in the supply chain.

Funding: The research was founded by China Postdoctoral Science Foundation (Grant no. 2016M601316) and
National Natural Science Foundation of China (Grant no. 71421001; 71531002).
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Appendix A

Proof of Proposition 1
According to Lemma 15 to 18, as shown in Reference [24], the optimal production quantities for

four types of manufacturers q1(R), q2(R), q3(R) and q4(R) are singletons and they are the solutions of
following equations:

u(R, q + aR, q) = π(q + aR), q ∈ [bc − aR, bu − aR), (A1)

u(R, bpl(R, q), q) = u(R, bpu(R, q), q), (A2)

u(R, bl(R, q), q) = u(R, bu(R, q), q), (A3)

q4(R) = bu − aR. (A4)

In Equation (A2), bpl(R, q) and bpu(R, q) are the solutions of u(R, b, q) = 1 − π(b) within
[bl, min(q + aR, bc)] and [max(q + aR, bc), bu], respectively. The optimal focus points, i.e., b1(R, q1(R)),
b2(R, q2(R)), b3(R, q3(R)) and b4(R, q4(R)), are q1(R) + aR, bpl(R, q2(R)) and bpu(R, q2(R)), bl and bu

and bu, respectively.
From the above analysis, with considering the manufacturer’s profit function (16), we know

that each type of manufacturer is focusing on a unique profit, that is r1(R), r2(R), r3(R) and
r4(R), respectively.

r1(R) = (R−W)q1(R), (A5)

r2(R) = (R− So)(bpl(R, q2(R)) − aR) − (W − So)q2(R), (A6)

r3(R) = (R− So)(bl − aR) − (W − So)q3(R), (A7)

r4(R) = (R−W)(bu − aR) (A8)

In the following we will distinguish the relationships between the four types of manufacturers’
focused profits. From Equation (A1), we know q1(R) < bu − aR. Considering (A5) and (A8), we have
r4(R) > r1(R). From Equation (A6), we have

r2(R) < (R− So)bpl(R, q2(R)) − aR ≤ (R−W)q1(R) = r1(R). (A9)
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From Equations (A6) and (A7), we know

r2(R) − r3(R) = (R− So)(bpl(R, q2(R)) − bl) − (W − So)(q2(R) − q3(R)). (A10)

Considering R − So > W − So > 0 and bpl(R, q2(R)) − bl > q2(R) − q3(R) > 0, we have r2(R) −
r3(R) > 0. �

Proof of Proposition 2
First, we check the concavity of r1(R). From Equation (A1) and b1(R, q1(R)) = q1(R) + aR, we

know the optimal active focus point b1(R, q1(R)) is the solution of the following equation:

u(R, b, b− aR) = π(b), b ∈ [bc, bu]. (A11)

Using the implicit function theorem, from Equation (A11), we know b1(R, q1(R)) is a continuously
differentiable function of R, and

b′′1 (R, q1(R)) =
∂2u(R,b,b−aR)

∂R2 (π′(b) − ∂u(R,b,b−aR)
∂b ) +

∂2u(R,b,b−aR)
∂b∂R ·

∂u(R,b,b−aR)
∂R

(π′(b) − ∂u(R,b,b−aR)
∂b )

2 . (A12)

Since bc ≤ b ≤ bu, with considering Assumption and (33), we have π′(b) < 0, ∂u(R,b,b−aR)
∂b > 0,

∂u(R,b,b−aR)
∂R < 0, ∂

2u(R,b,b−aR)
∂R2 > 0, ∂

2u(R,b,b−aR)
∂b∂R > 0, that is b′′1 (R, q1(R)) < 0. Meanwhile,

b′1(R, q1(R)) =
(bu − b)(W − So)

(R− So)(R−W − (bu − bl)((R− So)π′(b))
< a. (A13)

Considering (A5), we have

d2r1(R)
dR2 = 2q′1(R) + (R−W)q′′1 (R) = 2(b′1(R) − a) + (R−W)b′′1 (R) < 0. (A14)

Equation (A14) implies the active profit function r1(R) is concave.
Next we prove if bl − aW > bu − bl, then the mode of r1(R) lies on the interval R ∈ (W, bl

a ). The first
derivative of the active profit function is

r′1(R) = q1(R) + (R−W)q′1(R) = q1(R) + (R−W)(b′1(R, q1(R)) − a). (A15)

Easily we know r′1(W) = q1(W) > 0. Considering bl − aW > bu − bl and b′1(R, q1(R))
∣∣∣
R=

bl
a
< a, we

have r′1(R)
∣∣∣
R=

bl
a
< 0.

Since r1(R) is concave, r′1(R)
∣∣∣
R=W > 0 and r′1(R)

∣∣∣
R=

bl
a
< 0, the unique solution of r′1(R) lies on the

interval R ∈ (W, bl
a ). �

Similar to the Proof of Proposition 2, we can prove Propositions 3–5.

Proof of Proposition 6
We prove R∗4 > R∗1 firstly. Since r1(R) is concave, we know the optimal active retail price R∗1

is the solution of r′1(R) = q1(R) + (R−W)q′1(R) = 0, that is R∗1 = W − q1(R)
q′1(R)

. From Equation (A1)

and Proposition 2, we have bc − aR ≤ q1(R) ≤ bu − aR and −a < q′1(R) < −
1
2 a, which lead to

R∗1 <
bu
a −R∗1 + W. That is, R∗1 <

bu+aW
2a = R∗4. Next, we prove R∗1 > R∗2. From Equations (A5) and (A6),

we have r′1(R) − r′2(R) > q1(R) − bpl(R, q2(R)). With considering the concavities of r1(R) and r2(R),
we have R∗1 > R∗2. Similarly, we can prove R∗2 > R∗3. �
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Proof of Proposition 7
It is trivial to prove that the optimal daring retail price R∗4 = bu+aW

2a is decreasing in a. We show
the optimal active retail price is decreasing in a in the follows. From Equation (33), we have

u(R, b, b− aR) =
r(R, b, b− aR) − rl(R)

ru(R) − rl(R)
=

(b− bl)R + (bu − b)W − (bu − bl)So

(bu − bl)(R− So)
. (A16)

From Equations (A11) and (A16), we know that the optimal active focus point b1(R, q1(R)) has
no relationship with the parameter a. Recalling q1(R) = b1(R, q1(R)) − aR, for a1 < a2 we have
q1(a1, R) − q1(a2, R) = (a2 − a1)R and q′1(a1, R) − q′1(a2, R) = a2 − a1, which lead to

r′1(a1, R) − r′1(a2, R) = q1(a1, R) − q1(a2, R) + (R−W)(q′1(a1, R) − q′1(a2, R)) =
(2R−W)(a2 − a1) > 0.

(A17)

With considering the concavity of r1(R), we know the optimal active price R∗1 is decreasing in
a. The optimal passive and apprehensive retail price is decreasing in the parameter a can be proved
similarly. �
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