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Abstract: In this contribution, we consider sequences of orthogonal polynomials associated with
a perturbation of some classical weights consisting of the introduction of a parameter t, and deduce
some algebraic properties related to their zeros, such as their equations of motion with respect
to t. These sequences are later used to explicitly construct families of polynomials that are stable
for all values of t, i.e., robust stability on these families is guaranteed. Some illustrative examples
are presented.
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1. Introduction

The study of Hurwitz (or stable) polynomials, i.e., polynomials with all zeros in the left
half-plane {z ∈ C : Re(z) < 0}, is motivated by the fact that they characterize stable linear systems.
More precisely, a continuous linear system is asymptotically stable if and only if its characteristic
polynomial is Hurwitz. They were introduced in [1], and since then have been widely studied in the
literature. Basic information about Hurwitz polynomials can be found, for instance, in [2,3]. A problem
that has received a lot of attention from the research community has been the development of methods
to determine if a given polynomial with real coefficients is Hurwitz without explicitly computing its
zeros. The most well-known procedure to determine the Hurwitz character of a polynomial is probably
the Routh-Hurwitz criterion.

On the other hand, in real life the mathematical model of a system is usually a linear approximation
that is made to simplify the analysis and design of a given problem, and thus the resulting characteristic
polynomial includes some amount of uncertainty. Moreover, as the operating point of the system
changes, so do the parameters of the corresponding linear approximation and, as a consequence, there is
a significant amount of uncertainty in the model and it becomes necessary the use of a control system
that stabilizes the operation of the system for all the expected range of variation in the parameters.
This field of study is known as robust control [4].

Definition 1. Let n, d ∈ N. An uncertain polynomial in the variable x is a polynomial whose coefficients
depend of the entries of a vector of uncertain parameters q ∈ Q ⊂ Rd, i.e.

P(x, q) =
n

∑
k=0

ak(q) xk.

The set P = {P(x, q) : q ∈ Q} is called the family of uncertain polynomials [5]. If P(x, q) is a Hurwitz
polynomial for every value of q, we say P is a robustly stable family.
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The main results of this contribution are Theorems 1, 2, 3 and 4, where sequences of stable Hurwitz
polynomials are constructed by using Laguerre-type and Jacobi-type orthogonal polynomials in such
a way that they will be robustly stable with respect to a single uncertainty parameter q = t ∈ R,
i.e., d = 1. This property can be potentially used in the design of control systems as a desired
condition of stability. The structure of the manuscript is as follows. Section 2 is devoted to a basic
introduction of orthogonal polynomials and their relationship with Hurwitz polynomials, as given
in [6]. In Section 3 we introduce sequences of Laguerre-type and Jacobi-type orthogonal polynomials
by means of the introduction of a parameter t on the orthogonality weight, and obtain algebraic
properties related to their zeros. These sequences are later used in Section 4 to construct families of
Hurwitz polynomials that will be robustly stable for all values of t in a certain interval. In Section 5
some numerical examples showing the location of the zeros for certain Hurwitz polynomials are given.
Finally, the main conclusions of this work, as well as some open problems constituting future research
directions, are presented in Section 6.

2. Preliminaries

2.1. Orthogonal Polynomials

Let P be the linear space of polynomials with real coefficients. A sequence {Pn}n>0 of monic
polynomials in P satisfying

〈Pn, Pm〉ω =
∫

E
Pn(x) Pm(x)ω(x) dx = Knδn,m, Kn > 0, m, n ∈ N∪ {0},

where ω is a positive weight function supported on some interval E ⊂ R, and δn,m is the Kronecker’s
delta, is said to be the sequence monic orthogonal polynomials (SMOP) associated with ω. Algebraic
and analytic properties of orthogonal polynomials have been widely studied in the literature, since
they have applications in a wide range of topics such as approximation theory, quadrature formulas,
physics, signal processing, stochastical processes, control theory, among many others.

The most studied SMOP in the literature are the Jacobi, Laguerre, and Hermite polynomials,
known as classical orthogonal polynomials, and are orthogonal with respect to the beta, gamma,
and normal distributions, respectively (see Table 1). For a full treatment of the general properties
of orthogonal polynomials, including classical polynomials, we refer the reader to [7–12].

Table 1. Classical orthogonal polynomials and their respective functions of orthogonality on the real line.

Jacobi Laguerre Hermite

Parameters α, β > −1 α > −1 none

Weight (1− x)α (x + 1)β xα e−x e−x2

Interval [−1, 1] (0, ∞) (−∞, ∞)

In particular, in this contribution we deal with two important properties of
orthogonal polynomials:

• Three-term recurrence relation: {Pn}n>0 satisfies

xPn(x) = Pn+1 + bnPn(x) + anPn−1(x), n ∈ N, P0(x) = 1, (1)

where {bn}n>0 and {an}n>1 are sequences of real numbers that depend on the orthogonality
weight.
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• Zeros: For n > 1, the zeros of Pn(x) are real, simple, and located in the convex hull of E. Moreover,
the zeros of Pn(x) and Pn+1(x) interlace. Furthermore, the second kind polynomial associated
with Pn(x) is defined by (see [13], 1.3)

Qn(x) =
∫

E

Pn (s)− Pn (x)
s− x

ω(s) ds,

and plays a central role in approximation theory [10]. Notice that Qn(x) has degree n− 1 and
its zeros also satisfy an interlacing property with the zeros of Pn(x) [10].

In particular, we will be dealing with Laguerre and Jacobi polynomials. Laguerre polynomials are
defined by the inner product

〈p, q〉α =
∫
R+

p(x) q(x)ω(x, α) dx, p, q ∈ P, (2)

where ω(x, α) dx = xαe−xdx, with α > −1. Some algebraic properties of Laguerre (monic) orthogonal
polynomials that will be used in the sequel are stated in the following Proposition.

Proposition 1. Let {Lα
n}n>0 denote the sequence of classical Laguerre monic polynomials orthogonal with

respect to (2). The following statements hold [12]:

(i) Three-term recurrence relation. For n ∈ N,

xLα
n(x) = Lα

n+1(x) + (2n + α + 1) Lα
n(x) + n(n + α) Lα

n−1(x), Lα
0(x) = 1. (3)

(ii) Norm. We will denote by ‖Lα
n‖2

α = 〈Lα
n, Lα

n〉α the corresponding squared norm. We have

‖Lα
n‖2

α = n! Γ(n + α + 1), n > 0,

where Γ is the Gamma function.
(iii) Hypergeometric function. For n ∈ N,

Lα
n(x) =

n!
(−1)n

n

∑
k=0

Γ(n + α + 1)
(n− k)! Γ(α + k + 1)

(−x)k

k!
. (4)

On the other hand, the Jacobi polynomials are orthogonal with respect to the inner product

〈p, q〉α,β,a,b =
∫ b

a
p(x) q(x)ω(x, α, β, a, b) dx, p, q ∈ P, (5)

where ω(x, α, β, a, b) dx = (b− x)α (x− a)β dx is supported on the interval [a, b] (it is understood that
−∞ < a < b < ∞) and α, β > −1. Some special cases of the classical Jacobi weights are the following
(see [9,10,12] for more details). For α = β = 0, Legendre polynomials are generated; if α = β = −1/2,
we obtain Chebychev polynomials of the first kind; Chebychev polynomials of the second kind are
generated when α = β = 1/2; and we get Gegenbauer polynomials when α = β = γ− 1/2 with
γ > −1/2. Typically, the values a = −1 and b = 1 are considered, and the corresponding polynomials
are denoted by {Pα,β

n }n>0. Some of their properties are stated in the following Proposition.

Proposition 2. Let {Pα,β
n }n>0 and {Pα,β,a,b

n }n>0 denote the sequences of Jacobi monic polynomials orthogonal
with respect to the inner products 〈p, q〉α,β,−1,1 and 〈p, q〉α,β,a,b, respectively, defined by (5). Taking into account

Pα,β
0 (x) = 1 and Pα,β

1 (x) = x + α−β
α+β+2 , the following statements hold [12].
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(i) Three-term recurrence relation. For n ∈ N,

xPα,β
n (x) = Pα,β

n+1(x) + ε
α,β
n Pα,β

n (x) + ε
α,β
n Pα,β

n−1(x), (6)

with

ε
α,β
n =

β2 − α2

(2n + α + β) (2n + α + β + 2)
,

and

ε
α,β
n =

4n (n + α) (n + β) (n + α + β)

(2n + α + β− 1) (2n + α + β)2 (2n + α + β + 1)
.

(ii) Hypergeometric function. For n ∈ N, the Jacobi polynomials satisfy

Pα,β,a,b
n (x) =

(b− a)n

2n Pα,β
n

(
2

x− a
b− a

− 1
)

=
(b− a)n

(n + α + β + 1)n
×

n

∑
k=0

(
n
k

)
(n + α + β + 1)k (α + k + 1)n−k

(
x− a
b− a

− 1
)k

, (7)

where (·)n denotes the Pochhammer’s symbol.

2.2. Relation between Hurwitz and Orthogonal Polynomials

To get our results, we follow the ideas in the recent paper [6]. Therein, the authors derived explicit
connection formulas between SMOP (with respect to weights supported on positive intervals of the real
line) and Hurwitz polynomials. Such a relation had been studied previously in the literature. In [14,15],
the authors establish the existence of a one-to-one correspondence between a Hurwitz polynomial and
a (finite) sequence of orthogonal polynomials. Furthermore, both topics have well-known connections
with Padé approximants [16], the moment problem theory [2,17,18], continued fractions [19–21],
total positivity of matrices [22], positive functions [23] and the stability and robust stabilization of
continuous linear systems [24,25]. More precisely, the next results show how to compute a sequence of
Hurwitz polynomials from a SMOP.

Proposition 3. Let {Pn}n>0 be a sequence of monic polynomials orthogonal with respect to some positive
weight function ω(x) supported in (0, ∞). Let {Qn}n>0 be the corresponding second kind polynomials.
Then [6],

z2n(x) = (−1)n Pn(−x2) + (−1)n−1 x Qn(−x2), n > 0, (8)

is a Hurwitz polynomial of degree 2n. On the other hand, define Gn(x) = Qn(x) + bnPn(x) with bn > 0 such
that the zeros of Pn(x) and Gn(x) are positive and interlace. Then,

z2n+1(x) = (−1)n x Pn(−x2) + (−1)n Gn(−x2), n > 0, (9)

is a Hurwitz polynomial of degree 2n + 1. Notice that bn is the coefficient of x2n of z2n+1(x). For z1(x) we
can choose any b1 > 0.

Notice that the parameter used to compute Gn(x) in the odd degree case depends on n. In some
cases, it is possible to choose a single parameter bn = b (independent of n) such that the interlacing
condition holds for every n > 1. In such a case, the constructed sequence of Hurwitz polynomials
satisfies the following recurrence relation.
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Proposition 4. If there exists a finite M such that −Qn(0)
Pn(0)

6 M for every n ∈ N, then the sequence {zn}n>1

of Hurwitz polynomials constructed via Proposition 3 with bn = b > M satisfies [6]

zn(x) = (x2 + bb n
2 c−1)zn−2(x)− ab n

2 c−1 zn−4(x), n > 2, (10)

with initial conditions

a0 z−2(x) = −x, z0(x) = 1,

a0 z−1(x) = 1, z1(x) = x + b,

where byc = max{m ∈ Z : m 6 y} and {an}n>1, {bn}n>0 are the coefficients in (1).

3. Connection Formulas and Behavior Of Zeros

In this section, we consider SMOPs associated with a perturbation of a classical weight, by means
of the introduction of a positive parameter t. The idea is to generate families of t-dependent SMOPs,
and obtain connection formulas for these sequences in terms of the classical orthogonal polynomials.
Such sequences will be used in the next Section to construct sequences of polynomials that will be
Hurwitz for every value of t, by using Proposition 3. Since we require E ⊂ R+, the natural choice is to
work with Laguerre polynomials. Later on, we also consider Jacobi polynomials on the interval [0, 1].

3.1. Laguerre-Type Orthogonal Polynomials

Let us consider the Laguerre-type inner product

〈p, q〉α,t =
∫
R+

p(x) q(x)ωt(x, α) dx, p, q ∈ P, (11)

where ωt(x, α) = xαe−tx. Here, t ∈ R+ is a parameter that in certain contexts, can be interpreted as
the “time” variable. We denote by {Lα,t

n }n>0 the corresponding SMOP. Notice that ω1(x, α) = ω(x, α)

is the classical Laguerre weight. We point out that another motivation for the study of the weights
considered in (11) comes from random matrix theory [26]. The corresponding second kind polynomials
will be denoted by {Qα,t

n }n>0. The (n− 1)-th degree second kind polynomial is defined by

Qα,t
n (x) =

∫
R+

Lα,t
n (s)− Lα,t

n (x)
s− x

ωt(s, α) ds. (12)

First, let us establish a relation between the Laguerre-type polynomials defined by the inner
product (11) and the classical Laguerre orthogonal polynomials. For this purpose, we set ξ ∈ R and
t > 0 and we expand Lα,t

n (ξ/t) in terms of the SMOP {Lα
k (ξ)}k>0, which is an orthogonal basis in P,

as follows

Lα,t
n (ξ/t) = t−nLα

n (ξ) +
n−1

∑
k=0

Θn,k Lα
k (ξ), (13)

where

Θn,k =

〈
Lα,t

n (ξ/t), Lα
k (ξ)

〉
α

‖Lα
k‖2

α
, 0 6 k 6 n− 1.

Taking into account

tα+1ωt(x, α) dx = tα+1 ξα

tα
e−ξ dξ

t
= ω1(ξ, α) dξ,
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with ξ = tx, we get 〈
tα+1 f (x), g(tx)

〉
α,t

= 〈 f (ξ/t), g(ξ)〉α , f , g ∈ P. (14)

As a straightforward consequence, the following generalization of the hypergeometric function in
Proposition 1 for the Laguerre-type polynomials holds.

Proposition 5. For n ∈ N, α > −1, t > 0, and x ∈ R,

Lα,t
n (x) = t−nLα

n (tx) =
n!

(−1)n

n

∑
k=0

(−1)k Γ(n + α + 1)
(n− k)! Γ(α + k + 1)

tk−n xk

k!
. (15)

Proof. Given n ∈ N, α > −1, t > 0, and x ∈ R, and taking ξ = tx, from the orthogonality and (14),
we obtain

0 =
〈

tα+1Lα,t
n (x), Lα,t

k (tx)
〉

α,t
=
〈

Lα,t
n (ξ/t), Lα,t

k (ξ)
〉

α
= ‖Lα

k‖
2
α Θn,k, 0 6 k 6 n− 1.

Since ‖Lα
k‖

2
α 6= 0 for every k > 0, Θn,k = 0 if 0 6 k 6 n− 1. Combining the above equality and (4)

into (13), the result follows.

Let us mention two important consequences of the above result. The first one is the following
corollary that completes the analogue of Proposition 1 for the Laguerre-type polynomials, and the
second one is the description of the equations of motion for the zeros of Lα,t

n (x), which are
discussed below.

Corollary 1. Let {Lα,t
n }n>0 denote the SMOP with respect to (11). The following statements hold taking into

account Lα,t
0 (x) = 1.

(i) Three-term recurrence relation. For n ∈ N,

xLα,t
n (x) = Lα,t

n+1(x) +
2n + α + 1

t
Lα,t

n (x) +
n (n + α)

t2 Lα,t
n−1(x). (16)

(ii) Norm. For n ∈ N, we have
‖Lα,t

n ‖2
α,t

‖Lα,t
n−1‖2

α,t
=

n (n + α)

t2 .

Proof. It suffices to use (15) together with the analogous formula of Proposition 1 to show the first
assertion. For the second, it is known (see [9]) that

‖Lα,t
n ‖2

α,t

‖Lα,t
n−1‖2

α,t

is equivalent to the coefficient of Lα,t
n−1(x) in the recurrence relation, which is the desired conclusion.

On the other hand, notice that (15) implies that if `α
n,1, . . . , `α

n,n and `α
n,1(t), . . . , `α

n,n(t) are the n
zeros of Lα

n(x) and Lα,t
n (x), respectively, then

0 = Lα,t
n
(
`α

n,k(t)
)
= t−nLα

n
(
t `α

n,k(t)
)
, 1 6 k 6 n.

Therefore, we get

`α
n,k(t) =

`α
n,k

t
, 1 6 k 6 n. (17)

We can now, by differentiating the previous equation with respect to t, formulate the
following result.
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Lemma 1 (Equation of motion for zeros of Lα,t
n (x)). Let n ∈ N, t > 0, and α > −1. We have

∂`α
n,k(t)
∂t

= −
`α

n,k

t2 , 1 6 k 6 n.

Next, we will focus our attention on the second kind polynomial Qα,t
n (x) to obtain an expression

for its coefficients. Substituting (15) into (12) and taking ξ = tx and ζ = ts with x, s ∈ R, we get

Qα,t
n (x) = t−n−α

∫
R+

Lα
n (ζ)− Lα

n (ξ)

ζ − ξ
ω1(ζ, α) dζ = t−n−αQα

n(tx). (18)

Let us denote by ln,k = ln,k(α) the coefficient of the power ξk in Lα
n(ξ). Then, Qα

n(ξ) can be
rewritten as

Qα
n(ξ) =

∫
R+

n

∑
k=1

ln,k
ζk − ξk

ζ − ξ
ω1(ζ, α) dζ

=
n

∑
k=1

k−1

∑
j=0

ln,k ξk−j−1 Γ(α + j + 1)

=
n−1

∑
k=0

(
n−k

∑
j=1

ln,k+jΓ(α + j)

)
ξk. (19)

Consequently, replacing (19) into (18), we get

Proposition 6. For n ∈ N, α > −1, t > 0, and x ∈ R,

Qα,t
n (x) = t−n−α

n−1

∑
k=0

(
n−k

∑
j=1

(−1)n+k+j

(n− k− j)!
n! Γ(α + n + 1)
Γ(α + k + j + 1)

Γ(α + j)
(k + j)!

)
tk xk, (20)

with leading coefficient t−1−α Γ(α + 1).

By using the same arguments as in Lemma 1, the evolution of the zeros of Qα
n+1(x) with respect

to t is given in the following result.

Lemma 2 (Equation of motion for zeros of Qα,t
n+1(x)). Under the hypotheses of Theorem 1, if qα

n,1, . . . , qα
n,n

and qα
n,1(t), . . . , qα

n,n(t) denote the n zeros of Qα
n+1(x) and Qα,t

n+1(x), respectively, then

∂qα
n,k(t)
∂t

= −
qα

n,k

t2 , 1 6 k 6 n.

3.2. Jacobi-Type Orthogonal Polynomials

For all t ∈ (−∞, 1), we consider the SMOP associated with the Jacobi-type inner product
defined by

〈p, q〉α,β,t =
∫ 1−t

0
p(x) q(x) (1− t− x)α xβ dx, p, q ∈ P, (21)

i.e., when b = 1− t and a = 0, that we will denote by {Jα,β,t
n }n>0. The corresponding polynomials of

the second kind will be denoted by {Qα,β,t
n }n>0, and are defined by

Qα,β,t
n (x) =

∫ 1−t

0

Jα,β,t
n (s)− Jα,β,t

n (x)
s− x

ωt(s, α, β) ds, (22)
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where ωt(x, α, β) = (1 − t − x)α xβ. The corresponding hypergeometric equation of the form (7)
is given in the following result.

Proposition 7. For n ∈ N, α, β > −1, t < 1, and x ∈ R,

Jα,β,t
n (x) = (1− t)n Jα,β,0

n

(
x

1− t

)
=

(1− t)n

(n + α + β + 1)n
×

n

∑
k=0

(
n
k

)
(n + α + β + 1)k (α + k + 1)n−k

(
x

1− t
− 1
)k

. (23)

Proof. Let n ∈ N, α, β > −1, t < 1, and x ∈ R. If ξ = x
1−t , from (7) we obtain

Jα,β,t
n (x) =

(1− t)n

2n Pα,β
n (2ξ − 1) = (1− t)n Jα,β,0

n (ξ) ,

which is (23).

As a consequence, it is easy to deduce the three-term recurrence formula for the Jacobi-type
polynomials, as well as the equations of motion for the zeros of Jα,β,t

n (x).

Corollary 2. Taking into account Jα,β,t
0 (x) = 1 and Jα,β,t

1 (x) = x − β+1
α+β+2 (1− t), for n ∈ N the SMOP

{Jα,β,t
n }n>0 satisfies the following three-term recurrence relation

xJα,β,t
n (x) = Jα,β,t

n+1 (x) +
1
2
(1 + ε

α,β
n ) (1− t) Jα,β,t

n (x) +
1
4

ε
α,β
n (1− t)2 Jα,β,t

n−1 (x). (24)

Lemma 3 (Equation of motion for zeros of Jα,β,t
n (x)). Let n be a positive integer, α, β > −1, and t < 1.

If 
α,β
n,1 , . . . , 

α,β
n,n and 

α,β
n,1 (t), . . . , 

α,β
n,n(t) denote the n zeros of Jα,β,0

n (x) and Jα,β,t
n (x), respectively, then

∂
α,β
n,k (t)

∂t
= −

α,β
n,k , 1 6 k 6 n.

Proof. Let 1 6 k 6 n and t < 1. Evaluating (23) at x = 
α,β
n,k (t) we get

0 = Jα,β,t
n

(

α,β
n,k (t)

)
= (1− t)n Jα,β,0

n

 
α,β
n,k (t)

1− t

 .

Thus,

α,β
n,k (t) = (1− t) 

α,β
n,k .

Since k is arbitrary, the t-derivative of the above expression completes the proof.

Next, we give expressions for the coefficients of Qα,β,t
n (x), as well as the equation of motion for

their zeros with respect to t.
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Proposition 8. For n ∈ N, α, β > −1, t < 1, and x ∈ R,

Qα,β,t
n (x) = (1− t)n+α+β Qα,β,0

n

(
x

1− t

)

= (1− t)n+α+β
n−1

∑
k=0

Φα,β
n,k Γ(β + 1)

(n + α + β + 1)n

(
x

1− t
− 1
)k

, (25)

with leading coefficient (1− t)1+α+β B(α + 1, β + 1). Here,

Φα,β
n,k =

n−k

∑
i=1

(−1)i−1
(

n
k + i

)
Γ(α + i)

Γ(α + β + 1 + i)
(n + α + β + 1)k+i (α + k + i + 1)n−k−i

and B( · , · ) denotes the Beta function.

Proof. As in the proof of Proposition 6, if ξ = x
1−t and ζ = s

1−t with x, s ∈ R, from (22), (23), and the
definition of the Beta function we have

Qα,β,t
n (x) = (1− t)n+α+β Qα,β,0

n

(
x

1− t

)
= (1− t)n+α+β

n−1

∑
k=0

(
n−k

∑
i=1

(−1)i−1 j
α,β
n,k+i

Γ(α + i) Γ(β + 1)
Γ(α + β + 1 + i)

)
(ξ − 1)k,

where

j
α,β
n,` =

(
n
`

)
(n + α + β + 1)` (α + `+ 1)n−`

(n + α + β + 1)n
, ` = 0, . . . , n. (26)

Hence, combining (23) with the above formula, the result follows.

Thus, proceeding as in the previous Subsection, we have the following result.

Lemma 4 (Equation of motion for zeros of Qα,β,t
n+1 (x)). Under the hypotheses of Lemma 3, if qα,β

n,1 , . . . , qα,β
n,n

and qα,β
n,1(t), . . . , qα,β

n,n(t) denote the n zeros of Qα,β
n+1(x) and Qα,β,t

n+1 (x), respectively, then

∂qα,β
n,k (t)

∂t
= −qα,β

n,k , 1 6 k 6 n.

4. Sequences of Hurwitz Polynomials Associated with Laguerre-Type and
Jacobi-Type Polynomials

In this section, we use Proposition 3 to construct sequences of Hurwitz polynomials associated
with both the Laguerre-type and Jacobi-type orthogonal polynomials. Notice that since these sequences
are orthogonal for every value of t (t > 0 in the Laguerre case and t < 1 in the Jacobi case), and satisfy
the conditions on Proposition 3, the resulting polynomials will be Hurwitz for all values of t. In other
words, we obtain a family of polynomials that is robustly stable. Moreover, since the zeros of the
Laguerre-type (Jacobi-type) polynomials tend to the origin as t→ ∞ (t→ 1), and the same occurs for
the zeros of the corresponding second kind polynomials, it is easily deduced from Proposition 3 that
the zeros of the Hurwitz polynomials (except for one zero on the odd degree case) also tend to the
origin as t increases. Naturally, such zeros can approach any point in the negative real axis by means
of a suitable translation on the variable.



Mathematics 2019, 7, 818 10 of 20

4.1. The Laguerre-Type Case

We proceed with the construction of sequences of Hurwitz polynomials, by using Proposition 3.
Notice that the even degree case does not require any conditions, and thus the following result
is straightforward.

Theorem 1. For n ∈ N, α > −1, t > 0, and x ∈ R,

zα
2n(x, t) = (−1)n Lα,t

n (−x2) + (−1)n−1 x Qα,t
n (−x2) (27)

is a Hurwitz polynomial with degree 2n. In fact, the coefficients of the even and odd powers of x in zα
2n(x, t) are

given by the coefficients of the power expansions (15) and (20), respectively.

For the odd degree case, there are some restrictions on the parameter b that depends on the family
of orthogonal polynomials being used. In this case, we first examine the sequence{

−Qα,t
n (0)

Lα,t
n (0)

}
n>0

. (28)

Proposition 9. For every t > 0, the sequence (28)

(i) converges to t−α Γ(α) when α > 0, and
(ii) diverges when −1 < α < 0.

Proof. Notice that evaluating (15) and (20) in x = 0, with n ∈ N, we obtain

Qα,t
n (0)

Lα,t
n (0)

= t−α Γ(α + 1)
n

∑
j=1

(−1)j

(n− j)!
n!
j!

Γ(α + j)
Γ(α + j + 1)

,

and taking into account well-known properties of the Gamma function, we get

Qα,t
n (0)

Lα,t
n (0)

= t−α Γ(α + 1)
n

∑
j=1

(−1)j n!
j! (n− j)!

1
α + j

.

Let α 6= 0. If we compare the above equation with the partial fraction decomposition of the
reciprocal function of ∏n

k=0 (z + k) evaluated at z = α with n ∈ N, then we have

Qα,t
n (0)

Lα,t
n (0)

= t−α Γ(α + 1)
[
− 1

α
+

n!
∏n

k=0(α + k)

]
.

Thus, the convergence or divergence of (28) only depends of the convergence or divergence of{
n!

∏n
k=0(α + k)

}
n>0

.

Furthermore, for n ∈ N,

n!
∏n

k=0(α + k)
=

Γ(n + 1)
(α)n+1

=
Γ(α) Γ(n + 1)
Γ(α + n + 1)

.

Consequently, taking into account (see, for instance, [27])

lim
n→∞

Γ(n + x)
Γ(n + y)

ny−x = 1, x, y ∈ R,
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we have

lim
n→∞

n!
∏n

k=0(α + k)
= Γ(α) lim

n→∞

Γ(n + 1)
Γ(α + n + 1)

= Γ(α) lim
n→∞

1
nα

,

so that both statements follow.

With the previous result, we can now apply Proposition 3 for the odd degree case.

Theorem 2. Let n ∈ N, α, t > 0, and x ∈ R. Write

Gα,t
n (x) = Qα,t

n (x) + b Lα,t
n (x),

with b > t−α Γ(α). Then

zα
2n+1(x, t) = (−1)n x Lα,t

n (−x2) + (−1)n Gα,t
n (−x2) (29)

is a Hurwitz polynomial with degree 2n + 1. Moreover,

(i) the leading coefficient of Gα,t
n (x) is b,

(ii) for k = 0, . . . , n− 1,

(−t)k−n Γ(α + n + 1)

[
(n

k) b

Γ(α + k + 1)
+

n−k

∑
j=1

(−1)j
(

n
k + j

)
t−α Γ(α + j)

Γ(α + k + j + 1)

]

is the coefficient of the power xk of Gα,t
n (x), and

(iii) for k = 0, . . . , n, (
n
k

)
Γ(α + n + 1)
Γ(α + k + 1)

tk−n

is the coefficient of the power x2k+1 of zα
2n+1(x, t).

The following corollaries follow immediately from Theorems 1, 2, and Proposition 4, respectively.

Corollary 3. For n ∈ N and α, t > 0, let us denote by yα
n,1(t), . . . , yα

n,n(t) the n zeros of zα
n(x, t). Then,

(i) if n is even, for k = 1, . . . , n, lim
t→∞

yα
n,k(t) = 0, and

(ii) if n is odd, there exists k0 ∈ {1, . . . , n} such that for k = 1, . . . , n,

lim
t→∞

yα
n,k(t) = −b δk0,k.

Proof. From (27) and (29), we get

lim
t→∞

zα
n(x, t) =

{
xn−1(x + b), if n is odd,

xn, otherwise,

and the corollary follows.

Corollary 4. Given any α, t > 0 and b > t−α Γ(α), the sequence {zα
n( · , t)}n>1 of Hurwitz

polynomials satisfies

zα
n(x, t) =

(
x2 +

2
⌊ n

2
⌋
+ α− 1
t

)
zα

n−2(x, t)− λα,t
bn/2cz

α
n−4(x, t), n > 2,
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with initial conditions

λα,t
1 zα

−2(x, t) = −t−1−α Γ(α + 1) x, zα
0(x, t) = 1,

λα,t
1 zα

−1(x, t) = t−1−α Γ(α + 1), zα
1(x, t) = x + b,

and λα,t
n+1 = n (n + α) t−2 when n > 1.

4.2. The Jacobi-Type Case

Now we deal with the Jacobi case. As before, the result for the even degree case is immediate.

Theorem 3. For n ∈ N, α, β > −1, t < 1, and x ∈ R,

F α,β
2n (x, t) = (−1)n Jα,β,t

n (−x2) + (−1)n−1 x Qα,β,t
n (−x2) (30)

is a Hurwitz polynomial with degree 2n. In fact, for i = 0, . . . , n− 1,

(1− t)n−i
n−i

∑
k=0

(−1)k
(

n− k
i

)
j
α,β
n,n−k

and

(1− t)α+β+n−i
n−i−1

∑
k=0

(−1)k
(

n− k− 1
i

)Φα,β
n,n−k−1 Γ(β + 1)

(n + α + β + 1)n

are the coefficients of the power of x2i and x2i+1 of F α,β
2n (x, t), respectively.

To consider the odd degree case, we must study the convergence of{
−Qα,β,t

n (0)

Jα,β,t
n (0)

}
n>0

. (31)

we first need some lemmas.

Lemma 5. Let {Jβ,α,t
n }n>0 be the sequence of monic Jacobi-type polynomials orthogonal with respect to (21).

Let {Qβ,α,t
n }n>0 be the corresponding second kind polynomials. Then, for n ∈ N, α, β > −1, t < 1, and x ∈ R,

Jβ,α,t
n (1− t− x) = (−1)n Jα,β,t

n (x)

and

Qβ,α,t
n (1− t− x) = (−1)n−1 Qα,β,t

n (x).

Proof. The proof of Lemma 5 is a straightforward consequence of the fact that for all x ∈ R and n ∈ N,

Pβ,α
n (−x) = (−1)n Pα,β

n (x)

(see [10], 4.1.4). Thus, substituting the above expression in (7),

Jβ,α,0
n (1− ξ) =

1
2n Pβ,α

n (−2ξ + 1) =
(−1)n

2n Pα,β
n (2ξ − 1) = (−1)n Jα,β,0

n (ξ). (32)
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Analogously, substituting (32) into (22) when t = 0 and after some easy computations, we obtain

Qβ,α,0
n (1− ξ) = (−1)n−1 Qα,β,0

n (ξ). (33)

From (23) and (32) we have

Jα,β,t
n (x) = (1− t)n Jα,β,0

n (ξ) = (−1)n (1− t)n Jβ,α,0
n (1− ξ) = (−1)n Jβ,α,t

n (1− t− x),

where ξ = x
1−t . Analogously, from (25) and (33) we get

Qα,β,t
n (x) = (−1)n−1 (1− t)n+β+α Qβ,α,0

n (1− ξ) = (−1)n−1 Qβ,α,t
n (1− t− x),

where ξ = x
1−t , which is our claim.

Lemma 6. For n ∈ N, α, β > −1, and t < 1,

Jα,β,t
n (0) = (1− t)n (−1)n (β + 1)n

(α + β + n + 1)n
,

Qα,β,t
n (0) = (1− t)α+β+n (−1)n Γ(α + 1)

(α + β + n + 1)n
×

n

∑
k=1

(
n
k

)
(α + β + n + 1)k (β + k + 1)n−k

(−1)k Γ(α + β + k + 1)
Γ(β + k),

and

Qα,β,t
n (0)

Jα,β,t
n (0)

= (1− t)α+β Γ(α + 1) Γ(β + 1)
Γ(α + β + n + 1)

×

n

∑
k=1

(−1)k
(

n
k

)
Γ(α + β + n + k + 1)

Γ(α + β + k + 1)
1

β + k
. (34)

Proof. From (23), (32), and due to the fact that

Pα,β
n (−1) = (−1)n 2n (β + 1)n

(α + β + n + 1)n
,

(see [10], 4.1.6), we deduce

Jα,β,t
n (0) =

(1− t)n

2n Pα,β
n (−1) = (1− t)n (−1)n (β + 1)n

(α + β + n + 1)n
. (35)

On the other hand, evaluating (25) at x = 0 and using (33) we have

Qα,β,t
n (0) = (−1)n−1 (1− t)α+β+n Qβ,α,0

n (1)

= (1− t)α+β+n (−1)n Γ(α + 1)
(α + β + n + 1)n

×

n

∑
k=1

(
n
k

)
(α + β + n + 1)k (β + k + 1)n−k

(−1)k Γ(α + β + k + 1)
Γ(β + k). (36)

Finally, taking into account

(z)n =
Γ(z + n)

Γ(z)
, n ∈ N, z ∈ C, (37)
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the quotient between (36) and (35) can be simplified as (34).

Lemma 7. For n ∈ N, α, β > −1 and β 6= 0,

n

∑
k=0

(−1)k
(

n
k

)
Γ(α + β + n + k + 1)

Γ(α + β + k + 1)
1

β + k
=

n! (α + 1)n
n
∏

k=0
(β + k)

. (38)

Proof. Fix β > −1 (β 6= 0). Notice that

(−1)k
(

n
k

)
=

n!
n

∏
j=0
j 6=k

(−k + j)
, 0 6 k 6 n.

Introducing the notation θk = α + β + k + 1 with α > −1 and k = 0, . . . , n, and using (37),
the left-hand side of (38) can be rewritten as

n

∑
k=0

(−1)k
(

n
k

)
Γ(α + β + n + k + 1)

Γ(α + β + k + 1)
1

β + k
= n!

n

∑
k=0

(θk)n
n

∏
j=0
j 6=k

(−k + j)

1
β + k

. (39)

Since

(z)n =
n

∑
i=0

(−1)n−i s(n, i) zi, n ∈ N, z ∈ C,

where s(n, i) denotes the Stirling number of the first kind (see [28]), we can apply the partial fraction
decomposition method on the right-hand side of (39). Hence, we deduce

n

∑
k=0

(θk)n
n

∏
j=0
j 6=k

(−k + j)

1
β + k

=
q(β)

p(β)
,

where p(z) =
n
∏

k=0
(z + k) and q(z) =

n
∑

i=0
(−1)n−i s(n, i) (α + β + 1− z)i. This completes the proof.

Lemmas 6 and 7 imply that if α, β > −1 and β 6= 0,

Qα,β,t
n (0)

Jα,β,t
n (0)

= (1− t)α+β Γ(α + 1) Γ(β + 1)
Γ(α + β + 1)

[
− 1

β
+

Γ(α + β + 1)
Γ(α + 1)

Γ(α + n + 1)
Γ(α + n + 1 + β)

×

n!
∏n

k=0(β + k)

]
.

Hence, the convergence or divergence of (31) only depends on{
Γ(α + n + 1)

Γ(α + n + 1 + β)

n!
∏n

k=0(β + k)

}
n>0

.

Proceeding as in the proof of Proposition 9, we see that the limit as n→ ∞ is zero, and we get the
following result.

Proposition 10. For every α > −1 and t < 1, the sequence (31)

(i) converges to the positive number (1− t)α+β B(α + 1, β) when β > 0, and
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(ii) diverges when −1 < β < 0.

Consequently, we have

Theorem 4. Let n ∈ N, α > −1, β > 0, t < 1, and x ∈ R. Write

Gα,β,t
n (x) = (1− t) Qα,β,t

n (x) + b Jα,β,t
n (x)

with b > (1− t)α+β+1 B(α + 1, β). Then,

F α,β
2n+1(x, t) = (−1)n x Jα,β,t

n (−x2) + (−1)n Gα,β,t
n (−x2) (40)

is a Hurwitz polynomial with degree 2n + 1. Moreover,

(i) the leading coefficient of Gα,β,t
n (x) is b,

(ii) if n = 0, Gα,β,t
0 (x) = b. Otherwise, for i = 0, . . . , n− 1,

(1− t)n−i

(1− t)α+β+1
n−i−1

∑
k=0

(−1)n−i−k−1
(

n− k− 1
i

) Φα,β
n,n−k−1 Γ(β + 1)

(n + α + β + 1)n

+ b
n−i

∑
k=0

(−1)n−i−k
(

n− k
i

)
j
α,β
n,n−k

]

is the coefficient of the power xi of Gα,β,t
n (x), and

(iii) for i = 0, . . . , n,

(1− t)n−i
n−i

∑
k=0

(−1)k
(

n− k
i

)
j
α,β
n,n−k

is the coefficient of the power x2i+1 of F α,β
2n+1(x, t).

Remark 1. In Theorem 4, notice that we have considered (1− t) Qα,β,t
n (x) instead of Qα,β,t

n (x) to compute
Gα,β,t

n (x). This is because we want to avoid negative values in the powers of (1− t) when α > −1 and β > 0.
On the other hand, jα,β

n,i is defined in (26).

Thus, proceeding as in the previous Subsection, Theorems 3 and 4 imply the following result
about behavior for the zeros of F α,β

n (x, t), n > 1, when t→ 1.

Corollary 5. For n a positive integer, α > −1, β > 0, and t < 1, let us denote by yα,β
n,1(t), . . . , yα,β

n,n(t) the n

zeros of F α,β
n (x, t). Then, there exists k0 ∈ {1, . . . , n} such that the following statements hold.

(i) If n is odd, for k = 1, . . . , n, lim
t→1

yα,β
n,k (t) = −b δk0,k.

(ii) If n is even, for k = 1, . . . , n, lim
t→1

yα,β
n,k (t) = 0.

On the other hand, as a consequence of Proposition 4, the sequence of Hurwitz polynomials
constructed via Theorems 3 and 4 satisfies the following recurrence relation.

Corollary 6. Let α > −1, β > 0, and t < 1. If b > (1 − t)α+β+1 B(α + 1, β), then the sequence
{F α,β

n ( · , t)}n>1 of Hurwitz polynomials satisfies

F α,β
n (x, t) =

(
x2 +

(
1 + ε

α,β
bn/2c−1

) 1− t
2

)
F α,β

n−2(x, t)− λ
α,β,t
bn/2c−1 F

α,β
n−4(x, t), n > 2,
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with initial conditions

λ
α,β,t
0 F α,β

−2 (x, t) = −(1− t)α+β+1 B(α + 1, β + 1) x, F α,β
0 (x, t) = 1,

λ
α,β,t
0 F α,β

−1 (x, t) = (1− t)α+β+2 B(α + 1, β + 1), F α,β
1 (x, t) = x + b,

and λ
α,β,t
n = 1

4 (1− t)2 ε
α,β
n for n > 1. ε

α,β
n and ε

α,β
n are given in Proposition 2.

5. Numerical Examples

In this section, we provide some numerical examples computed using Mathematica R©, to illustrate
the behavior of the zeros of Hurwitz polynomials associated with Laguerre-type and Jacobi-type
weights defined in (11) and (21), respectively. More specifically, we will show the location of
the zeros of some elements of the sequences {zα

n( · , t)}n>1 and {F α,β
n ( · , t)}n>1 with respect to its

parameters. In order to construct the odd degree polynomials, it is convenient to choose b with
explicit dependency of the parameters t and α (and also β for the Jacobi-type case) for the numerical
experiments presented below.

In general, the first Laguerre-type monic polynomials and the corresponding second kind
polynomials are

Lα,t
0 (x) = 1,

Lα,t
1 (x) = x− α + 1

t
,

Lα,t
2 (x) = x2 − 2α + 4

t
x +

α2 + 3α + 2
t2 ,

Lα,t
3 (x) = x3 − 3α + 9

t
x2 +

3(α2 + 5α + 6)
t2 x− α3 + 6α2 + 11α + 6

t3 ,

Qα,t
1 (x) =

Γ(α + 1)
tα+1 ,

Qα,t
2 (x) =

Γ(α + 1)
tα+1

(
x− α + 3

t

)
,

Qα,t
3 (x) =

Γ(α + 1)
tα+1

(
x2 − 2(α + 4)

t
x +

α(α + 6) + 11
t2

)
.

On the other hand, the first Jacobi-type monic polynomials and the corresponding second kind
polynomials are

Jα,β,t
0 (x) = 1,

Jα,β,t
1 (x) = x− (1 + β)

α + β + 2
(1− t),

Jα,β,t
2 (x) = x2 − 2(β + 2)

α + β + 4
(1− t) x +

(
β− α

α + β + 4
+

(α + 1)(α + 2)
(α + β + 3)(α + β + 4)

)
(1− t)2,

Qα,β,t
1 (x) = (1− t)1+α+β B(α + 1, β + 1),

Qα,β,t
2 (x) = (1− t)1+α+β B(α + 1, β + 1)

(
x− (α + β)(β + 3) + 4

(α + β + 4)(α + β + 2)
(1− t)

)
.

We point out that we recover the Laguerre polynomials in ([6], Example 3.1) when t = 1 and
α = 2, and the Jacobi polynomials when t = 0 and α = β = 2.

We choose zα
3(x, t) with b = b(α) = 0.1 + t−α Γ(α) for our first example. Figure 1 illustrates the

motion of its zeros when t varies from ti = 1 to t f = 200 with a step size of 0.5. Only one of the two
conjugate complex zeros of zα

3(x, t) was plotted, when α takes the values 1/2 (circles), 3/2 (filled
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triangles), and 3 (squares). For α = 3/2, notice that the single real zero tends to limt→∞−b = −0.1
and the complex zeros tend to the origin when t→ ∞ as described in Corollary 3.

Figure 1. Motion of the complex and real zeros of zα
3(x, t) for several values of t.

Analogously, Figure 2 shows the location of the zeros of F α,1/2
4 (x, t) when t varies from ti = −1/4

to t f = 1 (panel (a)) and from ti = −1.15 to t f = 1 (panel (b)), both cases with a step size of 0.02.
The image on the left corresponds to α = −1/2. Notice that the two real zeros (squares and circles)
approach a common point (x ≈ −0.85) just before becoming complex zeros. This occurs at t ≈ −0.1287.
A similar situation (occurring when t ≈ −1.1238) appears in the image on the right, which corresponds
to the case α = 1. Furthermore, all zeros tend to the origin when t→ 1 as described in Corollary 5.

(a) (b)

Figure 2. (a) The position of the zeros for F−1/2,β
4 (x, t) for several values of t and β = 1/2. (b) The

position of the zeros for F1,β
4 (x, t) for several values of t and β = 1/2.

To deduce equations for the curves describing the motion of the zeros in terms of t constitutes
a very interesting open problem that will be addressed in a future contribution.
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6. Conclusions and Future Work

In this paper, we have considered perturbations of well-known families of classical polynomials in
terms of a single parameter t. As a consequence, a new t-dependent sequence of Laguerre-type monic
orthogonal polynomials is obtained. Several algebraic properties, such as their expressions in terms
of hypergeometric functions (see Propositions 5 and 6), three-term recurrence relations (Corollary 1)
and equations of motion for zeros with respect to t (Propositions 5), are obtained. Similar results are
obtained for Jacobi-type orthogonal polynomials.

On the other hand, we have used such t-dependent sequences to construct sequences of Hurwitz
polynomials that are robustly stable with respect to t (see Theorems 1–4). We also show that these
polynomials satisfy a recurrence relation (Corollaries 4 and 6), in a similar way as the orthogonal
polynomials do.

Finally, we point out that the approach used in this contribution can be extended in at least two
directions that constitute open problems for future research:

• Other types of perturbations: Notice that the perturbations considered here are defined in terms
of the orthogonality weights, given by (2) and (5). In the literature, other types of perturbations
of orthogonal polynomials have been considered. In general, the interest in such perturbations
is motivated by the well-known connections of the theory of orthogonal polynomials with the
spectral theory. Thus, the focus is placed in algebraic and analytic properties of the perturbed
polynomials, expressed in terms of the original non-perturbed polynomials. For instance, in [29]
the authors consider a perturbation introduced on the coefficients of the recurrence relation,
whereas perturbations on the sequence of moments have been considered in [30]. In both cases,
an interesting problem is to construct sequences of Hurwitz polynomials by using the approach
considered here, and to determine the structure of the obtained uncertainty.

• Pole-placement design: In control theory, the aim of pole placement is to construct a controller
that gives a closed-loop system with a specified characteristic polynomial (see for instance [31,32]).
We propose this latter polynomial to be a stable polynomial associated with the Laguerre-type or
Jacobi-type weights, and to study desired capabilities of the system such as sensitivity, disturbance
rejection, and closed-loop frequency response (see [33]).
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