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Abstract: Let R ⊆ T be an extension of commutative rings with identity and H(R, T) (respectively,
h(R, T)) the composite Hurwitz series ring (respectively, composite Hurwitz polynomial ring). In this
article, we study equivalent conditions for the rings H(R, T) and h(R, T) to be PF-rings and PP-rings.
We also give some examples of PP-rings and PF-rings via the rings H(R, T) and h(R, T).
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1. Introduction

1.1. Composite Hurwitz Rings

Let R be a commutative ring with identity and let H(R) be the set of formal expressions of the
type ∑∞

n=0 anXn, where an ∈ R for all n ≥ 0. Define addition and ∗-product on H(R) as follows: for
f = ∑∞

n=0 anXn, g = ∑∞
n=0 bnXn ∈ H(R),

f + g =
∞

∑
n=0

(an + bn)Xn and f ∗ g =
∞

∑
n=0

cnXn,

where cn = ∑n
i=0 (

n
i )aibn−i. Then, H(R) becomes a commutative ring with identity containing R under

these two operations. The ring H(R) is called the Hurwitz series ring over R. The Hurwitz polynomial
ring h(R) is the subring of H(R) consisting of formal expressions of the form ∑n

i=0 aiXi. The Hurwitz
rings were first introduced by Keigher [1] to study differential algebra.

Let R ⊆ T be an extension of commutative rings with identity. Let H(R, T) = { f ∈ H(T) |
be the constant term of f belonging to R} and let h(R, T) = { f ∈ h(T) | be the constant term
of f belonging to R}. Then, H(R, T) and h(R, T) are commutative rings with identity satisfying
H(R) ⊆ H(R, T) ⊆ H(T) and h(R) ⊆ h(R, T) ⊆ h(T). The rings H(R, T) and h(R, T) are called
the composite Hurwitz series ring and the composite Hurwitz polynomial ring, respectively. Note that,
if R ( T, then H(R, T) (respectively, h(R, T)) gives algebraic properties of Hurwitz series type rings
(respectively, Hurwitz polynomial type rings) strictly between two Hurwitz series rings H(R) and
H(T) (respectively, Hurwitz polynomial rings h(R) and h(T)). In many cases, algebraic structures of
H(R, T) (respectively, h(R, T)) are completely different from those of H(R) and H(T) (respectively,
h(R) and h(T)); thus, these kinds of rings have been studied by several mathematicians.
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Let R ⊆ T be an extension of commutative rings with identity, u : R → T the natural
monomorphism and v : H(T)→ T the canonical epimorphism. Then, H(R, T) can be understood as a
pullback of R and H(T) as follows:

H(R, T) = R×T H(T) −−−−→ Ry u
y

H(T) v−−−−→ T ∼= H(T)/XT[[X]].

Similarly, h(R, T) is also considered as a pullback of R and h(T).
The readers can refer to [1–4] for the Hurwitz rings and to [5–7] for the composite Hurwitz rings.

1.2. PP-Rings and PF-Rings

Let R be a commutative ring with identity and, for each a ∈ R, set annR(a) = {r ∈ R | ra = 0}.
Then, annR(a) is an ideal of R. Recall that R is a PP-ring if every principal ideal of R is projective as an
R-module; and R is a PF-ring if every principal ideal of R is flat as an R-module. Since every projective
module is flat, every PP-ring is a PF-ring. In fact, the concepts of PP-rings and PF-rings were first
introduced by Hattori in a noncommutative setting [8] (page 151). In [9] (page 687), Evans mentioned
that R is a PP-ring if and only if, for each a ∈ R, annR(a) is generated by an idempotent element of
R. In [10] (Theorem 1), Al-Ezeh proved that R is a PF-ring if and only if for each a ∈ R, annR(a) is a
pure ideal of R (or, equivalently, for each a ∈ R and b ∈ annR(a), there exists an element c ∈ annR(a)
such that b = bc). (Recall that an ideal I of R is pure if, for any a ∈ I, there exists an element b ∈ I
such that ab = a.) It is well known that R is a PP-ring if and only if R is a PF-ring and Min(R) with
the induced Zariski topology is compact, where Min(R) is the set of minimal prime ideals of R [11]
(Theorem 4.2.10). In addition, it was shown in [12] (Lemma 2.2) that a PF-ring is a reduced ring. (Recall
that the ring R is a reduced ring if R has no nonzero nilpotent elements.)

In this paper, we study equivalence conditions for composite Hurwitz rings H(R, T) and h(R, T) to
be PF-rings and PP-rings, where R ⊆ T is an extension of commutative rings with identity. In Section 2,
we study the McCoy condition in the composite Hurwitz rings. We show that, if T is both a reduced
ring and a torsion-free Z-module and f = ∑∞

i=0 aiXi and g = ∑∞
i=0 biXi are elements of H(R, T) with

f ∗ g = 0, then aibj = 0 for all i, j ∈ N0. We also prove that T is a torsion-free Z-module if and only
if for each zero-divisor f of h(R, T), there exists a nonzero element t ∈ T such that t ∗ f = 0 in h(T).
In Section 3, we investigate when the composite Hurwitz rings H(R, T) and h(R, T) are PF-rings.
We show that H(R, T) (respectively, h(R, T)) is a PF-ring if and only if for each f , g ∈ H(R, T)
(respectively, h(R, T)) with f ∗ g = 0, there exists an element r ∈ R such that r ∗ f = 0 and r ∗ g = g.
We also prove that, if T is a Noetherian ring, then H(R, T) is a PF-ring if and only if h(R, T) is a
PF-ring. In Section 4, we study when the composite Hurwitz rings H(R, T) and h(R, T) are PP-rings.
We show that H(R, T) is a PP-ring if and only if R is a PP-ring, T is a torsion-free Z-module, for each
a ∈ T, there exists an element e ∈ Idem(R) such that annT(a) = eT, and any (increasing) sequence in
Idem(R) admits the least upper bound in (R,≤) that belongs to Idem(R). We also prove that h(R, T)
is a PP-ring if and only if R is a PP-ring, T is a torsion-free Z-module and, for each a ∈ T, there exists
an element e ∈ Idem(R) such that annT(a) = eT. We show that, if R is a Noetherian ring, then H(R, T)
is a PP-ring if and only if h(R, T) is a PP-ring. Finally, in Section 5, we give some examples of PP-rings
and PF-rings via the composite Hurwitz rings. By these examples, we indicate that the converse of
some results are not generally true and the Noetherian condition in some results is essential.

2. The McCoy Condition in Composite Hurwitz Rings

We start this section with a simple result. The proof is straightforward; thus, we omit it.

Lemma 1. If R ⊆ T is an extension of commutative rings with identity, then the following assertions hold.
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(1) If T is a reduced ring, then so is R.
(2) If T is a torsion-free Z-module, then so is R.

Let R ⊆ T be an extension of commutative rings with identity. We next study zero-divisors in
composite Hurwitz rings H(R, T) and h(R, T).

Proposition 1. Let R ⊆ T be an extension of commutative rings with identity. Suppose that T is a reduced
ring which is a torsion-free Z-module. If f = ∑∞

i=0 aiXi and g = ∑∞
j=0 bjX j are elements of H(R, T) such that

f ∗ g = 0, then aibj = 0 for all i, j ∈ N0.

Proof. Suppose that f ∗ g = 0. Then, a0b0 = 0. Suppose that a0b0 = · · · = a0bn = 0 for some
n ∈ N0. Then, the coefficient of Xn+1 in f ∗ g is ∑n+1

i=0 (n+1
i )aibn+1−i = 0. Multiplying both sides by a0,

a2
0bn+1 = 0. Since T is a reduced ring, a0bn+1 = 0. By the induction, a0bj = 0 for all j ∈ N0. This also

implies that a0 ∗ g = 0.
We next suppose that a0 ∗ g = · · · = amXm ∗ g = 0 for some m ∈ N0. Let h =

(
∑∞

i=m+1 aiXi) ∗ g.
Then, h = f ∗ g − (∑m

i=0 aiXi) ∗ g = 0; thus, am+1b0 = 0. Suppose that am+1b0 = · · · = am+1bn =

0 for some n ∈ N0. Note that the coefficient of Xm+n+2 in h is ∑m+n+2
i=m+1 (m+n+2

i )aibm+n+2−i = 0.
By multiplying both sides by am+1, (m+n+2

m+1 )a2
m+1bn+1 = 0. Since T is a torsion free Z-module,

a2
m+1bn+1 = 0. Since T is a reduced ring, am+1bn+1 = 0. By the induction, am+1bj = 0 for all j ∈ N0.

This shows that am+1Xm+1 ∗ g = 0.
Thus, by the induction, aibj = 0 for all i, j ∈ N0.

We give examples which show that two conditions “T is a reduced ring” and “T is a torsion-free
Z-module” in Proposition 1 are not superfluous.

Example 1. Let Z6 be the ring of integers modulo 6. Then, Z6 is a reduced ring which is not a torsion-free
Z-module. Note that 2X ∗ 5X2 = 0 in H(Z6) but 2 · 5 6= 0 in Z6. Hence, the condition “T is a torsion-free
Z-module" in Proposition 1 is essential.

Example 2. Let A = {Y} ∪ {Zn | n ∈ N0} be a set of indeterminates over Q, I the ideal of Q[A] generated by
the set {YZ0} ∪ {(n + 1)Zn + YZn+1 | n ∈ N0} and R = Q[A]/I. For an element h ∈ Q[A], let h denote
the homomorphic image of h in R.

(1) Suppose that there exist an integer m ≥ 2 and an element h ∈ Q[A] such that mh = 0. Then, mh ∈ I.
Since m is a unit in Q, h ∈ I; thus, h = 0. Hence, R is a torsion-free Z-module.

(2) Note that Y2Z1 = (Z0 + YZ1)Y− YZ0 ∈ I; thus, (YZ1)
2 ∈ I. Suppose to the contrary that YZ1 ∈ I.

Then, YZ1 = YZ0 f0 + ∑n
i=1(iZi−1 + YZi) fi for some f0, . . . , fn ∈ Q[A]; thus, by an easy calculation,

the constant term of f1 is 0 and, for each k ∈ {2, . . . , n}, the coefficient of Yk−1 in fk is (−1)k 1
k! .

Therefore, the coefficient of YnZn in YZ1 is (−1)n 1
n! , which is absurd. Hence, YZ1 6∈ I. Thus, R is not a

reduced ring.
(3) Let f = Y + X and g = ∑∞

i=0 ZiXi be elements of H(R). Then, f ∗ g = 0 but Y Z1 6= 0. This shows that
the condition “T is a reduced ring" in Proposition 1 is essential.

Let R be a commutative ring with identity and Z(R) the set of nonzero zero-divisors of R.
Recall that h(R) satisfies the McCoy condition if for any f ∈ Z(h(R)), there exists a nonzero element
a ∈ R such that a ∗ f = 0 ([2] Section 4).

Proposition 2. If R ⊆ T is an extension of commutative rings with identity, then the following assertions
are equivalent.

(1) For each f ∈ Z(h(R, T)), there exists a nonzero element t ∈ T such that t ∗ f = 0 in h(T).
(2) T is a torsion-free Z-module.
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(3) h(T) satisfies the McCoy condition.

Proof. (1)⇒ (2) Suppose that T is not a torsion-free Z-module. Then, there exist an integer m ≥ 2 and
a nonzero element a of T such that ma = 0; thus, aXm−1 ∗ X = maXm = 0. Hence, X ∈ Z(h(R, T)).
However, t ∗ X 6= 0 for any nonzero element t of T. This is a contradiction to the hypothesis. Thus,
T is a torsion-free Z-module.

(2)⇔ (3) The equivalence appears in [2] (Theorem 4.1).
(3) ⇒ (1) Let f ∈ Z(h(R, T)). Then, f ∈ Z(h(T)). Since h(T) satisfies the McCoy condition,

there exists a nonzero element t ∈ T such that t ∗ f = 0.

3. PF-Rings

Let R ⊆ T be an extension of commutative rings with identity. In this section, we give necessary
and sufficient conditions for the rings H(R, T) and h(R, T) to be PF-rings. To do this, we first study
some relations among H(R, T), h(R, T), R and T in the view of PF-rings.

Lemma 2. Let R ⊆ T be an extension of commutative rings with identity and let D be either H(R, T) or
h(R, T). If D is a PF-ring, then R and T are both PF-rings and torsion-free Z-modules.

Proof. Let a ∈ T and b ∈ annT(a). Then, aX, bX ∈ D with bX ∈ annD(aX). Since D is a PF-ring,
there exists an element f = ∑i≥0 ciXi ∈ annD(aX) such that bX ∗ f = bX. Hence, ac0 = 0 and bc0 = b.
Thus, T is a PF-ring. A similar argument also shows that R is a PF-ring.

Let a ∈ T and suppose that there exists an integer m ≥ 2 such that ma = 0. Then, aXm−1 ∗ X =

maXm = 0; thus, aXm−1 ∈ annD(X). Since D is a PF-ring, we can find an element g = ∑i≥0 biXi ∈
annD(X) such that aXm−1 ∗ g = aXm−1. Hence, ab0 = a and b0 = 0, which indicates that a = 0. Thus,
T is a torsion-free Z-module. By Lemma 1(2), R is also a torsion-free Z-module.

Let R be a commutative ring with identity. Then, it is obvious that, if R is a torsion-free Z-module,
then char(R) = 0. Hence, by Lemma 2, we obtain

Corollary 1. Let R ⊆ T be an extension of commutative rings with identity. If char(T) > 0, then neither
H(R, T) nor h(R, T) is a PF-ring.

We give necessary and sufficient conditions for the composite Hurwitz series ring to be a PF-ring.

Theorem 1. If R ⊆ T is an extension of commutative rings with identity, then the following statements
are equivalent.

(1) H(R, T) is a PF-ring.
(2) T is a torsion-free Z-module and if a0, b0 ∈ R and ai, bi ∈ T for all i ≥ 1 satisfy aibj = 0 for all i, j ∈ N0,

then there exists an element r ∈ R such that rai = 0 and rbi = bi for all i ∈ N0.
(3) For each f , g ∈ H(R, T) such that f ∗ g = 0, there exists an element r ∈ R such that r ∗ f = 0 and

r ∗ g = g.

Proof. (1)⇒ (2) Let f = ∑∞
i=0 aiXi and g = ∑∞

i=0 biXi. Then, by the assumption, f , g ∈ H(R, T) and
f ∗ g = 0. Since H(R, T) is a PF-ring, there exists an element h = ∑∞

i=0 ciXi ∈ H(R, T) such that
f ∗ h = 0 and g ∗ h = g. By Lemma 2 and [12] (Lemma 2.2), T is both a reduced ring and a torsion-free
Z-module. Thus, by Proposition 1, c0ai = 0 and c0bi = bi for all i ∈ N0.

(2) ⇒ (3) Let f = ∑∞
i=0 aiXi and g = ∑∞

i=0 biXi be elements of H(R, T) such that f ∗ g = 0.
Note that, by the assumption, T is a PF-ring; thus, T is a reduced ring. Since T is a torsion-free
Z-module, by Proposition 1, aibj = 0 for all i, j ∈ N0. Hence, we can find an element r ∈ R such that
rai = 0 and rbi = bi for all i ∈ N0. Thus, r ∗ f = 0 and r ∗ g = g.

(3)⇒ (1) This implication comes from the definition of PF-rings.
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Let R be a commutative ring with identity and let D be either H(R) or h(R). Recall that R is a
Noetherian ring if every ideal of R is finitely generated. For an f = ∑i≥0 aiXi ∈ D, the content ideal of f
is the ideal of R generated by the set {ai | i ∈ N0} and is denoted by cR( f ).

Corollary 2. Let R ⊆ T be an extension of commutative rings with identity. If T is a Noetherian ring, then the
following assertions are equivalent.

(1) H(R, T) is a PF-ring.
(2) T is a torsion-free Z-module and, for each a ∈ T and b ∈ annT(a), there exists an element r ∈ R such

that ra = 0 and rb = b.

Proof. (1)⇒ (2) Suppose that H(R, T) is a PF-ring. Then, by Lemma 2, T is a torsion-free Z-module.
Let a ∈ T and b ∈ annT(a). Then, aX, bX ∈ H(R, T) with aX ∗ bX = 0; thus, by Theorem 1, there exists
an element r ∈ R such that r ∗ aX = 0 and r ∗ bX = bX. Thus, ra = 0 and rb = b.

(2)⇒ (1) Let f = ∑∞
i=0 aiXi ∈ H(R, T) and g = ∑∞

i=0 biXi ∈ annH(R,T)( f ). Since T is a Noetherian
ring, cT( f ) = (a0, . . . , am) and cT(g) = (b0, . . . , bn) for some m, n ∈ N0. Note that, by the hypothesis,
T is a PF-ring; thus, T is a reduced ring. Since T is a torsion-free Z-module, Proposition 1 indicates that
aibj = 0 for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}. Therefore, by the hypothesis, for each i ∈ {0, . . . , m}
and j ∈ {0, . . . , n}, there exists an element rij ∈ R such that rijai = 0 and rijbj = bj. For each
j ∈ {0, . . . , n}, set dj = r0j · · · rmj. Then, for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}, djai = 0 and djbj = bj.

Let c0 = d0 and, for each k ∈ {0, . . . , n− 1}, let ck+1 = ck + dk+1 − ckdk+1. Then, ck ∈ R for all
k ∈ {0, . . . , n}. By an iterative calculation, it can be shown that for each k ∈ {0, . . . , n}, ckai = 0 and
ckbj = bj for all i ∈ {0, . . . , m} and j ∈ {0, . . . , k}. Hence, cnai = 0 and cnbj = bj for all i ∈ {0, . . . , m}
and j ∈ {0, . . . , n}. Since cT( f ) = (a0, . . . , am) and cT(g) = (b0, . . . , bn), cn ∗ f = 0 and cn ∗ g = g.
Thus, by Theorem 1, H(R, T) is a PF-ring.

By Theorem 1 and Corollary 2, we can regain

Corollary 3 ([12] (Theorem 2.5 and Corollary 2.7)). If R is a commutative ring with identity, then the
following assertions hold.

(1) H(R) is a PF-ring if and only if for each f , g ∈ H(R) with f ∗ g = 0, there exists an element r ∈ R such
that r ∗ f = 0 and r ∗ g = g.

(2) If R is a Noetherian ring, then H(R) is a PF-ring if and only if R is a PF-ring which is a torsion-free
Z-module.

Corollary 4. Let R ⊆ T be an extension of commutative rings with identity. If H(R, T) is a PF-ring,
then H(R) and H(T) are PF-rings.

Proof. Let f and g be elements of H(T) such that f ∗ g = 0. Then, f ∗ X and g ∗ X are elements of
H(R, T) such that ( f ∗ X) ∗ (g ∗ X) = 0. Since H(R, T) is a PF-ring, by Theorem 1, there exists an
element r ∈ R such that r ∗ ( f ∗ X) = 0 and r ∗ (g ∗ X) = g ∗ X. Note that, by Theorem 1, T is a
torsion-free Z-module; thus, r ∗ f = 0 and r ∗ g = g. Thus, by Corollary 3(1), H(T) is a PF-ring.

Let f and g be elements of H(R) such that f ∗ g = 0. Then, f and g are elements of H(R, T) such
that f ∗ g = 0. Since H(R, T) is a PF-ring, by Theorem 1, there exists an element r ∈ R such that
r ∗ f = 0 and r ∗ g = g. Thus, by Corollary 3(1), H(T) is a PF-ring.

We next study when the composite Hurwitz polynomial ring is a PF-ring.

Theorem 2. If R ⊆ T is an extension of commutative rings with identity, then the following statements
are equivalent.

(1) h(R, T) is a PF-ring.
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(2) T is a torsion-free Z-module and if a0, b0 ∈ R and ai, bj ∈ T for all i ∈ {1, . . . , m} and j ∈ {1, . . . , n}
are such that aibj = 0 for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}, then there exists an element r ∈ R such
that rai = 0 and rbj = bj for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}.

(3) For each f , g ∈ h(R, T) such that f ∗ g = 0, there exists an element r ∈ R such that r ∗ f = 0 and
r ∗ g = g.

Proof. (1)⇒ (2) Let f = ∑m
i=0 aiXi and g = ∑n

i=0 biXi. Then, by the assumption, f , g ∈ h(R, T) and
f ∗ g = 0. Since h(R, T) is a PF-ring, we can find an element h = ∑`

i=0 ciXi ∈ h(R, T) such that
f ∗ h = 0 and g ∗ h = g. By Lemma 2 and [12] (Lemma 2.2), T is both a torsion-free Z-module and a
reduced ring. Thus, by Proposition 1, c0ai = 0 and c0bj = bj for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}.

(2) ⇒ (3) Let f = ∑m
i=0 aiXi and g = ∑n

i=0 biXi be elements of h(R, T) such that f ∗ g = 0.
Note that, by the hypothesis, T is a PF-ring; thus, T is a reduced ring. Since T is a torsion-free
Z-module, Proposition 1 implies that aibj = 0 for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}. Hence, we can
find an element r ∈ R such that rai = 0 and rbj = bj for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}. Thus,
r ∗ f = 0 and r ∗ g = g.

(3)⇒ (1) This implication follows directly from the definition of PF-rings.

Corollary 5. If R ⊆ T is an extension of commutative rings with identity, then the following assertions
are equivalent.

(1) h(R, T) is a PF-ring.
(2) T is a torsion-free Z-module and, for each a ∈ T and b ∈ annT(a), there exists an element r ∈ R such

that ra = 0 and rb = b.

Proof. (1)⇒ (2) Suppose that h(R, T) is a PF-ring. Then, by Lemma 2, T is a torsion-free Z-module.
Let a ∈ T and b ∈ annT(a). Then, aX, bX ∈ h(R, T) with bX ∈ annh(R,T)(aX). Hence, by Theorem 2,
there exists an element r ∈ R such that r ∗ aX = 0 and r ∗ bX = bX. Thus, ra = 0 and rb = b.

(2) ⇒ (1) Let f = ∑m
i=0 aiXi and g = ∑n

i=0 biXi be elements of h(R, T) such that f ∗ g = 0.
Note that, by the hypothesis, T is a PF-ring; thus, T is a reduced ring. Since T is a torsion-free
Z-module, by Proposition 1, aibj = 0 for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}. Therefore, by the
hypothesis, for each i ∈ {0, . . . , m} and j ∈ {0, . . . , n}, we can find an element rij ∈ R such that
rijai = 0 and rijbj = bj. For each j ∈ {0, . . . , n}, set dj = r0j · · · rmj. Then, for all i ∈ {0, . . . , m} and
j ∈ {0, . . . , n}, djai = 0 and djbj = bj.

Let c0 = d0 and, for each k ∈ {0, . . . , n − 1}, let ck+1 = ck + dk+1 − ckdk+1. Then, a routine
calculation shows that for each k ∈ {0, . . . , n}, ckai = 0 and ckbj = bj for all i ∈ {0, . . . , m} and
j ∈ {0, . . . , k}. Therefore, cnai = 0 and cnbj = bj for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}. Hence,
cn ∗ f = 0 and cn ∗ g = g. Note that cn ∈ R. Thus, by Theorem 2, h(R, T) is a PF-ring.

Corollary 6. If R ⊆ T is an extension of commutative rings with identity, then the following assertions hold.

(1) If H(R, T) is a PF-ring, then h(R, T) is a PF-ring.
(2) If T is a Noetherian ring, then H(R, T) is a PF-ring if and only if h(R, T) is a PF-ring.

Proof. (1) This is an immediate consequence of Theorems 1 and 2.
(2) The equivalence follows directly from Corollaries 2 and 5.

Corollary 7 (cf. [12] Theorem 2.6). If R is a commutative ring with identity, then the following conditions
are equivalent.

(1) h(R) is a PF-ring.
(2) R is both a PF-ring and a torsion-free Z-module.
(3) For each f , g ∈ h(R) with f ∗ g = 0, there exists an element r ∈ R such that r ∗ f = 0 and r ∗ g = g.
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Proof. The equivalences come directly from Theorem 2 and Corollary 5.

Corollary 8. Let R ⊆ T be an extension of commutative rings with identity. If h(R, T) is a PF-ring, then h(R)
and h(T) are PF-rings.

Proof. The result follows from Lemma 2 and Corollary 7.

4. PP-Rings

Let R ⊆ T be an extension of commutative rings with identity. In this section, we give equivalent
conditions for the rings H(R, T) and h(R, T) to be PP-rings. Our first result in this section is a
characterization of idempotent elements in H(R, T) and h(R, T).

Let R be a commutative ring with identity and let Idem(R) be the set of idempotent elements
of R.

Lemma 3. If R ⊆ T is an extension of commutative rings with identity, then Idem(H(R, T)) =

Idem(h(R, T)) = Idem(R).

Proof. Clearly, Idem(R) ⊆ Idem(h(R, T)) ⊆ Idem(H(R, T)); thus, it remains to prove that
Idem(H(R, T)) ⊆ Idem(R). Let f ∈ Idem(H(R, T)). Then, f ∈ Idem(H(T)). Note that
Idem(H(T)) = Idem(T) [13] (Proposition 2.3). Thus, f ∈ Idem(T) ∩ R = Idem(R).

Let R ⊆ T be an extension of commutative rings with identity. We next study PP-properties in
terms of relations among H(R, T), h(R, T), R, and T.

Lemma 4. Let R ⊆ T be an extension of commutative rings with identity and let D be either H(R, T) or
h(R, T). If D is a PP-ring, then R and T are both PP-rings and torsion-free Z-modules.

Proof. Note that any PP-ring is a PF-ring; thus, by Lemma 2, R and T are torsion-free Z-modules.
Let a ∈ T. Since D is a PP-ring, by Lemma 3, there exists an element e ∈ Idem(R) such that
annD(aX) = e ∗ D. Let b ∈ annT(a). Then, bX ∈ annD(aX); thus, bX = e ∗ f for some f ∈ D.
Therefore, b ∈ eT, which means that annT(a) ⊆ eT. The reverse containment is obvious. Hence,
annT(a) = eT. Thus, T is a PP-ring. A similar argument shows that R is a PP-ring.

Let R be a commutative ring with identity. If char(R) > 0, then R is not a torsion-free Z-module.
Hence, by Lemma 4, we obtain

Corollary 9. Let R ⊆ T be an extension of commutative rings with identity. If char(T) > 0, then neither
H(R, T) nor h(R, T) is a PP-ring.

Lemma 5. Let R be a commutative ring with identity. If R is a reduced ring, then the following conditions hold.

(1) The relation defined on R by a ≤ b if and only if a2 = ab is a partial order.
(2) Let (en)n≥0 be a sequence of idempotent elements of R. If e is a least upper bound of (en)n≥0, which is

an idempotent element of R, and a is any upper bound of (en)n≥0, which is an idempotent element of R,
then e ≤ a.

(3) If a sequence of idempotent elements of R has a least upper bound in R which is an idempotent element,
then it is unique.

(4) If each increasing sequence of idempotent elements of R has the least upper bound in R, which is an
idempotent element, then each sequence of idempotent elements of R has the least upper bound in R,
which is an idempotent element.

(5) Any finite sequence of idempotent elements of R has the least upper bound in R which is an
idempotent element.
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Proof. (1) This assertion was shown in [12] (Lemma 3.8).
(2) By the assumption, en = ene and en = ena for all n ∈ N0; thus, e2

n = e2
nea = enea for all n ∈ N0.

Therefore, ea is an upper bound of (en)n≥0. Note that (ea)2 = ea = e2a = ea2; thus, ea ≤ e and ea ≤ a.
Hence, e = ea by the minimality of e. Thus, e ≤ a.

(3) This is an immediate consequence of (2).
(4) This appears in [14] (Lemma 2.5).
(5) The result can be shown by a similar argument as in the proof of [14] (Lemma 2.5).

Example 3. Let T = ∏∞
i=1 Z, 1T = (1, 1, . . . ) and R the subring of T generated by

⊕∞
i=1 Z and 1T .

(1) Let (ti)i≥0 be an increasing sequence in Idem(T) and, for each i ≥ 0, let ti = (ti1, ti2, . . . ). For each
j ≥ 1, let

ej =

{
1 if tij 6= 0 for some i ≥ 0

0 if tij = 0 for all i ≥ 0.

Let e = (e1, e2, . . . ). Then, e ∈ Idem(T) such that e is the least upper bound of (ti)i≥0.
(2) For each i ∈ N0 and j ∈ N, let

eij =

{
1 if j ≤ 2i + 1 and j is odd

0 otherwise.

For each i ∈ N0, let ei = (ei1, ei2, . . . ). Then, (ei)i≥0 is an increasing sequence in Idem(R). Suppose to
the contrary that there exists the least upper bound a = (a1, a2, . . . ) of (ei)i≥0 in Idem(R). Then,
e2

i = eia for all i ≥ 0; thus, a2i+1 = 1 for all i ∈ N0. Since a ∈ R, we can find an integer n ≥ 1 such that
ak = 1 for all k ≥ n. Let m be the smallest even integer such that m ≥ n and, for each i ≥ 1, let

bi =

{
ai if i 6= m

0 if i = m.

Let b = (b1, b2, . . . ). Then, b ∈ Idem(R) and ei ≤ b � a for all i ∈ N0. This contradicts the fact that a
is the least upper bound of (ei)i≥0. Thus, (ei)i≥0 does not have a least upper bound in Idem(R).

Let R be a commutative ring with identity. Then, Reg(R) denotes the set of regular elements of R.

Lemma 6. If R ⊆ T is an extension of commutative rings with identity, then the following assertions
are equivalent.

(1) For each a ∈ T, there exists an element e ∈ Idem(R) such that annT(a) = eT.
(2) For each a ∈ T, there exist e ∈ Idem(R) and t ∈ Reg(T) such that a = et.

Proof. (1)⇒ (2) This implication was shown in the remark in the proof of [14] (Proposition 2.6).
(2)⇒ (1) Let a ∈ T. Then, there exist e ∈ Idem(R) and t ∈ Reg(T) such that a = et. Let b ∈

annT(a). Then, ab = 0; thus, ebt = 0. Since t is regular in T, eb = 0; thus, b = b(1− e) ∈ (1− e)T.
Note that (1− e)a = (1− e)et = 0; thus, 1− e ∈ annT(a). Thus, annT(a) = (1− e)T.

We are ready to give a necessary and sufficient conditions for the composite Hurwitz series ring
to be a PP-ring.

Theorem 3. If R ⊆ T is an extension of commutative rings with identity, then the following statements
are equivalent.

(1) H(R, T) is a PP-ring.
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(2) R is a PP-ring, T is a torsion-free Z-module, for each a ∈ T, there exists an element e ∈ Idem(R) such
that annT(a) = eT, and any sequence in Idem(R) admits the least upper bound in (R,≤) that belongs
to Idem(R).

(3) R is a PP-ring, T is a torsion-free Z-module, for each a ∈ T, there exists an element e ∈ Idem(R) such
that annT(a) = eT, and any increasing sequence in Idem(R) admits the least upper bound in (R,≤)
that belongs to Idem(R).

Proof. (1) ⇒ (2) Suppose that H(R, T) is a PP-ring. Then, by Lemma 4, R is a PP-ring and T is a
torsion-free Z-module. Let a ∈ T. Then, by Lemma 3, there exists an element e ∈ Idem(R) such
that annH(R,T)(aX) = e ∗ H(R, T); thus, e ∗ aX = 0. Therefore, ea = 0. Hence, eT ⊆ annT(a).
Let b ∈ annT(a). Then, bX ∈ annH(R,T)(aX); thus, bX = e ∗ f for some f ∈ H(R, T). Therefore, b ∈ eT.
Hence, annT(a) ⊆ eT. Thus, annT(a) = eT.

Let (en)n≥0 be a sequence of idempotent elements of R and let f = ∑∞
n=0 enXn. Then, f ∈ H(R, T).

Since H(R, T) is a PP-ring, by Lemma 3, there exists an element e ∈ Idem(R) such that annH(R,T)( f ) =
e ∗H(R, T). Now, we show that 1− e is the least upper bound of (en)n≥0. Since e ∗ f = 0, een = 0 for
all n ∈ N0; thus, en(1− e) = en = e2

n. Hence, en ≤ 1− e for all n ∈ N0. Let r ∈ R be such that en ≤ r
for all n ∈ N0. Then, enr = en; thus, (1− r) ∗ f = 0. Therefore, 1− r ∈ annH(R,T)( f ). Let g ∈ H(R, T)
be such that 1− r = e ∗ g. Then, 1− r = eg(0); thus, r(1− e) = (1− eg(0))(1− e) = 1− e = (1− e)2.
Hence, 1− e ≤ r. Thus, 1− e is the least upper bound of (en)n≥0.

(2)⇒ (1) Let f = ∑∞
n=0 anXn ∈ H(R, T). Then, by the hypothesis and Lemma 6, for each n ∈ N0,

there exist en ∈ Idem(R) and tn ∈ Reg(T) such that an = entn. In addition, by the assumption,
there exist an element e ∈ Idem(R) such that e is the least upper bound of (en)n≥0; thus, (1− e)en = 0
for all n ≥ 0. Therefore, (1− e)an = 0 for all n ≥ 0. Hence, (1− e) ∗ f = 0, which implies that
(1− e) ∗H(R, T) ⊆ annH(R,T)( f ). For the reverse containment, let g = ∑∞

n=0 bnXn ∈ annH(R,T)( f ).
Note that, by the hypothesis, T is a PP-ring; thus, T is a reduced ring. Since T is a torsion-free
Z-module, by Proposition 1, biaj = 0 for all i, j ∈ N0. Note that, by the assumption and Lemma 6,
for each n ≥ 0, there exist dn ∈ Idem(R) and xn ∈ Reg(T) such that bn = dnxn; thus, for all i, j ∈ N0,
dixiejtj = biaj = 0. Since xi and tj are regular elements of T for all i, j ∈ N0, diej = 0 for all i, j ∈ N0;
thus, (1− di)ej = ej for all i, j ∈ N0. This shows that ej ≤ 1− di for all i, j ∈ N0. Since e is the least
upper bound of (en)n≥0, Lemma 5(2) indicates that e ≤ 1− di for all i ≥ 0; thus, e(1− di) = e for
all i ≥ 0. Therefore, edi = 0 for all i ≥ 0, which shows that ebi = 0 for all i ≥ 0. Hence, e ∗ g = 0,
which implies that g = (1− e) ∗ g ∈ (1− e) ∗H(R, T). Consequently, annH(R,T)( f ) = (1− e) ∗H(R, T).
Thus, H(R, T) is a PP-ring.

(2)⇒ (3) This implication is clear.
(3)⇒ (2) This implication was shown in Lemma 5(4).

Lemma 7. Let R be a commutative ring with identity. If R is a reduced Noetherian ring and (em)m≥0 is an
increasing sequence of Idem(R), then there exists an integer n ≥ 0 such that en is an upper bound of (em)m≥0.

Proof. Let (em)m≥0 be an increasing sequence of Idem(R) and I the ideal of R generated by the set
{em |m ≥ 0}. Since R is a Noetherian ring, I = (e0, . . . , en) for some n ∈ N0. Let k be an integer
greater than n. Then, ek = rk0e0 + · · ·+ rknen for some rk0, . . . , rkn ∈ R. Note that e2

i = eien for all
i ∈ {0, . . . , n}; thus, eken = (rk0e0 + · · ·+ rknen)en = ek = e2

k . Hence, ek ≤ en. Thus, en is an upper
bound of (em)m≥0.

Corollary 10. Let R ⊆ T be an extension of commutative rings with identity. If R is a Noetherian ring,
then H(R, T) is a PP-ring if and only if R is a PP-ring, T is a torsion-free Z-module and, for each a ∈ T,
there exists an element e ∈ Idem(R) such that annT(a) = eT.

Proof. The equivalence comes directly from Theorem 3 and Lemma 7.
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Corollary 11 (cf. [12] Theorem 3.10). If R is a commutative ring with identity, then the following
assertions hold.

(1) H(R) is a PP-ring if and only if R is both a PP-ring and a torsion-free Z-module and any (increasing)
sequence in Idem(R) admits the least upper bound in (R,≤) that belongs to Idem(R).

(2) If R is a Noetherian ring, then H(R) is a PP-ring if and only if R is both a PP-ring and a torsion-free
Z-module.

Proof. (1) The equivalence is an immediate consequence of Theorem 3.
(2) The equivalence is an immediate consequence of (1) and Lemma 7.

Corollary 12. If R ⊆ T is an extension of commutative rings with identity, then the following assertions hold.

(1) H(R, T) is a PP-ring if and only if H(R) is a PP-ring, T is a torsion-free Z-module and, for each a ∈ T,
there exists an element e ∈ Idem(R) such that annT(a) = eT.

(2) If H(R, T) is a PP-ring, then H(T) is a PP-ring.

Proof. (1) This result follows directly from suitable combinations of Lemma 1(2), Theorem 3 and
Corollary 11(1).

(2) Suppose that H(R, T) is a PP-ring. Then, by Lemma 4, T is both a PP-ring and a torsion-free
Z-module. Let (em)m≥0 be a sequence in Idem(T) and let f = ∑∞

m=0 emXm+1. Then, f ∈ H(R, T).
Since H(R, T) is a PP-ring, Lemma 3 guarantees the existence of an element e ∈ Idem(R) such
that annH(R,T)( f ) = e ∗ H(R, T). We now show that 1 − e is the least upper bound of (em)m≥0.
Since e ∗ f = 0, eem = 0 for all m ∈ N0; thus, em(1− e) = em = e2

m for all m ∈ N0. Hence, em ≤ 1− e
for all m ∈ N0. Let y ∈ T be such that em ≤ y for all m ∈ N0. Then, emy = em; thus, (1− y)X ∗ f = 0.
Therefore, (1− y)X ∈ annH(R,T)( f ). Let g ∈ H(R, T) be such that (1− y)X = e ∗ g. Then, 1− y = ec
for some c ∈ T. Note that y(1− e) = (1− ec)(1− e) = 1− e = (1− e)2; thus, 1− e ≤ y. Hence,
1− e is the least upper bound of (em)m≥0 that belongs to Idem(T). Thus, by Corollary 11(1), H(T) is a
PP-ring.

We next study the equivalent condition for the composite Hurwitz polynomial ring to be a PP-ring.

Theorem 4. If R ⊆ T is an extension of commutative rings with identity, then the following statements
are equivalent.

(1) h(R, T) is a PP-ring.
(2) R is a PP-ring, T is a torsion-free Z-module and, for each a ∈ T, there exists an element e ∈ Idem(R)

such that annT(a) = eT.

Proof. (1) ⇒ (2) Suppose that h(R, T) is a PP-ring. Then, by Lemma 4, R is a PP-ring and T is a
torsion-free Z-module. Let a ∈ T. Then, by Lemma 3, there exists an element e ∈ Idem(R) such
that annh(R,T)(aX) = e ∗ h(R, T); thus, ea = 0. Hence, eT ⊆ annT(a). Let b ∈ annT(a). Then,
bX ∈ annh(R,T)(aX); thus, bX = e ∗ f for some f ∈ h(R, T). Hence, b ∈ eT, which shows that
annT(a) ⊆ eT. Thus, annT(a) = eT.

(2) ⇒ (1) Let f = ∑m
i=0 aiXi ∈ h(R, T). Then, by the hypothesis and Lemma 6, for each i ∈

{0, . . . , m}, there exist di ∈ Idem(R) and ti ∈ Reg(T) such that ai = diti. Note that, by Lemma 5(5),
(di)0≤i≤m has the least upper bound in R which is an idempotent element. Let d ∈ Idem(R) be
such that d is the least upper bound of (di)0≤i≤m. Then, (1− d)di = 0 for all i ∈ {0, . . . , m}. Hence,
(1− d) ∗ f = 0, which means that (1− d) ∗ h(R, T) ⊆ annh(R,T)( f ). For the reverse containment,
let g = ∑n

i=0 biXi ∈ annh(R,T)( f ). Note that, by the hypothesis, T is a PP-ring; thus, T is a reduced
ring. Since T is a torsion-free Z-module, Proposition 1 indicates that aibj = 0 for all i ∈ {0, . . . , m}
and j ∈ {0, . . . , n}. Note that, by the hypothesis and Lemma 6, for each j ∈ {0, . . . , n}, there exist
ej ∈ Idem(R) and xj ∈ Reg(T) such that bj = ejxj. Since ti and xj are regular elements of T and



Mathematics 2020, 8, 100 11 of 15

aibj = 0 for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}, diej = 0 for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}; thus,
di(1− ej) = di, or equivalently, di ≤ 1− ej for all i ∈ {0, . . . , m} and j ∈ {0, . . . , n}. Since d is the least
upper bound of (di)0≤i≤m, Lemma 5(2) guarantees that d ≤ 1− ej for all j ∈ {0, . . . , n}; thus, dej = 0
for all j ∈ {0, . . . , n}. Therefore, d ∗ g = 0. Hence, g = (1− d) ∗ g ∈ (1− d) ∗ h(R, T). Consequently,
annh(R,T)( f ) = (1− d) ∗ h(R, T). Thus, h(R, T) is a PP-ring.

Corollary 13. If R ⊆ T is an extension of commutative rings with identity, then the following assertions hold.

(1) If H(R, T) is a PP-ring, then h(R, T) is also a PP-ring.
(2) If R is a Noetherian ring, then H(R, T) is a PP-ring if and only if h(R, T) is a PP-ring.

Proof. (1) The equivalence follows directly from Theorems 3 and 4.
(2) This equivalence comes from Corollary 10 and Theorem 4.

Corollary 14 ([12] Theorem 3.7). Let R be a commutative ring with identity. Then, h(R) is a PP-ring if and
only if R is both a PP-ring and a torsion-free Z-module.

Proof. The equivalence comes directly from Theorem 4.

Corollary 15. If R ⊆ T is an extension of commutative rings with identity, then the following assertions hold.

(1) h(R, T) is a PP-ring if and only if h(R) is a PP-ring, T is a torsion-free Z-module and, for each a ∈ T,
there exists an element e ∈ Idem(R) such that annT(a) = eT.

(2) If h(R, T) is a PP-ring, then h(T) is a PP-ring.

Proof. (1) This equivalence can be obtained by suitable combinations of Lemma 1(2), Theorem 4 and
Corollary 14.

(2) This result follows directly from Lemma 4 and Corollary 14.

5. Examples

In this section, we give some examples of PF-rings and PP-rings via composite Hurwitz rings.

Example 4. Let R = Z⊕Z, where Y an indeterminate over R and T = R[[Y]]. Then, R ( T is an extension
of commutative rings with identity.

(1) Note that T is a torsion-free Z-module.
(2) Let a0, b0 ∈ R and ai, bi ∈ T for all i ∈ N such that aibj = (0, 0) for all i, j ∈ N0. If an = (0, 0) for

all n ∈ N0, then we take r = (1, 1). Then, r ∈ R such that ran = (0, 0) and rbn = bn for all n ∈ N0.
If bn = (0, 0) for all n ∈ N0, then we take r = (0, 0). Then, r ∈ R such that ran = (0, 0) and rbn = bn

for all n ∈ N0. Suppose that (an)n≥0 and (bn)n≥0 have nonzero terms. Note that R is a reduced ring;
thus, T is a reduced ring. Let i and j be fixed nonnegative integers. Then, every coefficient of ai annihilates
bj [15] (Theorem 10); thus, by symmetry, we may assume that for all n ∈ N0, every coefficient of an is
of the form (α, 0) and every coefficient of bn is of the form (0, β). Let r = (0, 1). Then, r ∈ R such that
ran = (0, 0) and rbn = bn for all n ∈ N0. Thus, by (1) and Theorem 1, H(R, T) is a PF-ring.

(3) By (2) and Corollary 6(1), h(R, T) is a PF-ring.
(4) Let (a, b) ∈ R. If a = b = 0, then annR(a, b) is generated by (1, 1). If a = 0 and b 6= 0, then annR(a, b)

is generated by (1, 0). If a 6= 0 and b = 0, then annR(a, b) is generated by (0, 1). If a 6= 0 and b 6= 0,
then annR(a, b) is generated by (0, 0). Thus, R is a PP-ring.

(5) Let a ∈ T and, for each n = 1, 2, let

en =

{
0 if the nth coordinate of some coefficient of a is nonzero

1 otherwise.
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Let e = (e1, e2). Then, e ∈ Idem(R) such that ea = (0, 0); thus, eT ⊆ annT(a). Let b = ∑∞
j=0 tjY j be

any element of annT(a). Then, ab = (0, 0). Since T is a reduced ring, every coefficient of ab is (0, 0) [15]
(Theorem 10). Hence, tj ∈ eR for all j ∈ N0, which shows that b ∈ eT. Thus, annT(a) = eT.

(6) Note that Idem(R) = {(0, 0), (1, 0), (0, 1), (1, 1)}. Clearly, (0, 0) ≤ (1, 0) ≤ (1, 1) and (0, 0) ≤
(0, 1) ≤ (1, 1); thus, any increasing sequence in Idem(R) admits the least upper bound in (R,≤) that
belongs to Idem(R). Thus, by (1), (4), (5), and Theorem 3, H(R, T) is a PP-ring.

(7) By (6) and Corollary 13(1), h(R, T) is a PP-ring.

The next example shows that the Noetherian condition is essential in Corollaries 2, 3(2), 10 and
11(2). This also indicates that any of the converse of Corollaries 6(1) and 13(1) and [12] (Lemmas 2.2
and 3.2).

Example 5. Let D = ∏∞
n=1 Z, 1D = (1, 1, . . . ) and R the subring of D generated by

⊕∞
n=1 Z and 1D. Let Y

be an indeterminate over R and T = R[Y]. Then, R ( T is an extension of commutative rings with identity.

(1) Note that Z⊕ (0)⊕ (0)⊕ · · · ( Z⊕Z⊕ (0)⊕ · · · ( · · · is a strict ascending chain of ideals of R; thus,
R is not a Noetherian ring. Hence, T is not a Noetherian ring. In addition, it is easy to see that R and T
are torsion-free Z-modules.

(2) For each i, j ∈ N, let

aij =

{
1 if j = 2i + 1

0 otherwise

and

bij =

{
1 if j = 2i + 2

0 otherwise.

Let a0 = (1, 0, 0, . . . ), b0 = (0, 1, 0, 0, . . . ) and, for each i ∈ N, let ai = (ai1, ai2, . . . ) and bi =

(bi1, bi2, . . . ). Then, ai, bi ∈ R for all i ∈ N0 and aibj = (0, 0, . . . ) for all i, j ∈ N0. Suppose that H(R) is
a PF-ring. Then, by Theorem 1, there exists an element r = (r1, r2, . . . ) ∈ R such that rai = (0, 0, . . . )
and rbi = bi for all i ∈ N0. Hence, we obtain

rn =

{
1 if n is even

0 if n is odd.

This is impossible. Thus, H(R) is not a PF-ring.
(3) Let a ∈ R and b ∈ annR(a). For each n ∈ N, let

rn =

{
1 if the nth coordinate of b is nonzero

0 otherwise.

Let r = (r1, r2, . . . ). Then, r ∈ R such that ra = (0, 0, . . . ) and rb = b. Hence, R is a PF-ring. Thus,
by (1) and Corollary 7, h(R) is a PF-ring.

(4) By (1), (2), and (3), the condition that R is a Noetherian ring is essential in Corollary 3(2).
(5) Suppose that f = ∑∞

n=0 anXn ∈ H(R) is nilpotent. Then, a0 is nilpotent and for all n ∈ N, some power
of an is with torsion [2] (Theorem 2.6) (or [16] Proposition 1.3(1)). Since R is a torsion-free Z-module
and a reduced ring, an = 0 for all n ∈ N0. Therefore, f = 0. Hence, H(R) is a reduced ring. Thus,
by (2), a reduced ring need not be a PF-ring. This shows that the converse of [12] (Lemma 3.2) is not
generally true.

(6) By (2) and Corollary 4, H(R, T) is not a PF-ring.



Mathematics 2020, 8, 100 13 of 15

(7) Let a ∈ T and b ∈ annT(a). Since R is a reduced ring, every coefficient of a annihilates b (cf. [15]
(Theorem 10)). For each n ∈ N, let

rn =

{
1 if the nth coordinate of some coefficient of b is nonzero

0 otherwise.

Let r = (r1, r2, . . . ). Then, r ∈ R such that ra = (0, 0, . . . ) and rb = b. Thus, by (1) and Corollary 5,
h(R, T) is a PF-ring.

(8) By (1), (6), and (7), the condition that T is a Noetherian ring is essential in Corollary 2.
(9) By (6) and (7), the converse of Corollary 6(1) is not true in general.

(10) By (2) and [12] (Lemma 3.2), H(R) is not a PP-ring.
(11) Let a ∈ R and, for each n ∈ N, let

en =

{
0 if the nth coordinate of a is nonzero

1 otherwise.

Let e = (e1, e2, . . . ). Then, e ∈ Idem(R) such that annR(a) = eR. Hence, R is a PP-ring. Thus, by (1)
and Corollary 14, h(R) is a PP-ring.

(12) By (1), (10) and (11), the condition that R is a Noetherian ring is not superfluous in Corollary 11(2).
(13) By (5) and (10), a reduced ring need not be a PP-ring. This shows that the converse of [12] (Lemma 2.2)

does not hold in general.
(14) By (10) and Corollary 12(1), H(R, T) is not a PP-ring.
(15) Let a ∈ T and, for each n ∈ N, let

en =

{
0 if the nth coordinate of some coefficient of a is nonzero

1 otherwise.

Let e = (e1, e2, . . . ). Then, e ∈ Idem(R) such that annT(a) = eT. Thus, by (1), (11), and Corollary
15(1), h(R, T) is a PP-ring.

(16) By (1), (11), (14), and (15), the condition that R is a Noetherian ring is essential in Corollary 10.
(17) By (14) and (15), the converse of Corollary 13(1) is not true in general.

The final example shows that any of the converse of Lemmas 2 and 4 and Corollaries 4, 8, 12(2),
and 15(2) does not hold in general. This also indicates that the annihilator condition in Corollaries 12(1)
and 15(1) is not superfluous.

Example 6. Let T = Z⊕ Z and 1T = (1, 1). Let R be the subring of T generated by 1T . Then, R ( T is an
extension of commutative rings with identity. Let D be either H(R, T) or h(R, T).

(1) Clearly, R and T are both Noetherian rings and torsion-free Z-modules.
(2) Note that R is isomorphic to Z; thus, R is a PP-ring. In addition, by Example 4(4), T is a PP-ring. Hence,

R and T are PF-rings [12] (Lemma 3.2).
(3) Let a = (1, 0) ∈ T and b = (0, 1) ∈ annT(a). Suppose that D is a PF-ring. Then, by (1) and Corollaries 2

and 5, there exists an element r = (r1, r2) ∈ R such that ra = (0, 0) and rb = b. Hence, r = (0, 1). This
is a contradiction. Thus, D is not a PF-ring.

(4) By (1), (2), and (3), the converse of Lemma 2 does not hold in general.
(5) By (1), (2), and Corollary 3(2), H(R) and H(T) are PF-rings. In addition, by (1), (2), and Corollary 7, h(R)

and h(T) are PF-rings. Hence, by (3), any of the converse of Corollaries 4 and 8 does not generally hold.
(6) While the fact that D is not a PP-ring comes from (3) and [12] (Lemma 3.2), we insert the proof for the

sake of completeness. Suppose that D is a PP-ring and let a = (1, 0) ∈ T. Then, by Theorems 3 and 4,
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there exists an element e ∈ Idem(R) such that annT(a) = eT. By an easy calculation, e = (0, 1). This is
absurd. Thus, D is not a PP-ring.

(7) By (1), (2), and (6), the converse of Lemma 4 does not hold in general.
(8) By (1), (2), and Corollary 11(2), H(R) and H(T) are PP-rings. Hence, by (1) and (6), the annihilator

condition in Corollary 12(1) is essential. In addition, by (6), the converse of Corollary 12(2) does not hold
in general.

(9) By (1), (2), and Corollary 14, h(R) and h(T) are PP-rings. Hence, by (1) and (6), the annihilator
condition in Corollary 15(1) is not superfluous. In addition, by (6), the converse of Corollary 15(2) does
not generally hold.

6. Conclusions

The Hurwitz series ring (respectively, Hurwitz polynomial ring) is a kind of power series ring
(respectively, polynomial ring) which has different algebraic structures from the usual power series
ring (respectively, polynomial ring); thus, after Keigher’s research [1], many mathematicians have
studied Hurwitz rings. In [6], the authors introduced the notion of the composite Hurwitz rings
and, in [7], they investigated further research. In contradistinction to the Hurwitz rings, all algebraic
structures of composite Hurwitz rings are determined by two rings; thus, the composite Hurwitz rings
also have completely different ring theoretic properties from the usual Hurwitz rings. In this paper,
we study equivalent conditions for the composite Hurwitz rings H(R, T) and h(R, T) to be PP-rings
and PF-rings. From our study, we find the interplay between PP- and PF-properties of composite
Hurwitz rings H(R, T) and h(R, T) and properties of zero-divisors and idempotent elements in R
and T. Moreover, we give some examples that show many conditions are not superfluous. It makes
clear the relationship between PF- and PP-properties of composite Hurwitz rings and properties of
zero-divisors and idempotent elements in R and T.

Let R = (Rn)n≥0 be an ascending chain of commutative rings with identity, R =
⋃

n≥0 Rn and
H(R) = {∑∞

n=0 anXn ∈ H(R) | an ∈ Rn for all n ≥ 0}. Then, H(R) is a subring of H(R) containing
H(R0) and is called the generalized composite Hurwitz series ring with respect toR. Let h(R) be the subset
of all polynomials in H(R). Then, h(R) is a subring of h(R) and is called the generalized composite
Hurwitz polynomial ring with respect toR. If R0 = R and Rn = T for all n ≥ 1, then H(R) = H(R, T)
and h(R) = h(R, T). In the next work, we are going to study when the generalized composite Hurwitz
rings H(R) and h(R) are PF-rings and PP-rings.
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