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Abstract: In this paper, we investigate the existence of solutions for a class of p-Laplacian fractional order
Kirchhoff-type system with Riemann–Liouville fractional derivatives and a parameter λ. By mountain
pass theorem, we obtain that system has at least one non-trivial weak solution uλ under some local
conditions for each given large parameter λ. We get a concrete lower bound of the parameter λ,
and then obtain two estimates of weak solutions uλ. We also obtain that uλ → 0 if λ tends to ∞.
Finally, we present an example as an application of our results.
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1. Introduction and Main Results

In recent decades, the subjects about fractional calculus have been investigated extensively
because of their applications to many fields. Among all these subjects, ordinary and partial fractional
differential equations have attracted considerable attentions in both mathematical aspects and their
applications. It has been proved that fractional differential equations can provide a natural framework
in the modeling of many complex real phenomena in many fields including mechanics, quantum
field theory, electromagnetic theory, transport theory, fractal, biology, robotics, chemical processes,
control theory, and so on ([1–20] and references therein). In this paper, we are concerned with the
following system{

A(u(t))[tDα
Tφp(0Dα

t u(t)) + V(t)φp(u(t))] = λ∇F(t, u(t)), a.e. t ∈ [0, T],

u(0) = u(T) = 0,
(1)

where

A(u(t)) =
[

a + b
∫ T

0
(|0Dα

t u(t)|p + V(t)|u(t)|p)dt
]p−1

,

a, b, λ > 0, p > 1 and 1/p < α ≤ 1 are constants, p is an integer, u(t) = (u1(t), · · · , uN(t))τ ∈ RN

for a.e. t ∈ [0, T], T > 0, and N is a given positive integer, (·)τ denote the transpose of a vector,
V(t) ∈ C([0, T],R) with min

t∈[0,T]
V(t) > 0, 0Dα

t and tDα
T are the left and right Riemann–Liouville

fractional derivatives, respectively, φp(s) := |s|p−2s, ∇F(t, x) is the gradient of F with respect to
x = (x1, · · · , xN) ∈ RN , that is, ∇F(t, x) = ( ∂F

∂x1
, · · · , ∂F

∂xN
)τ , and F : [0, T] × RN → R satisfies the

following condition:
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(H0) there exists a constant δ > 0 such that F(t, x) is continuously differentiable in x ∈ RN with |x| ≤ δ

for a.e. t ∈ [0, T], measurable in t for every x ∈ RN with |x| ≤ δ, and there exist a ∈ C(R+,R+) and
b ∈ L1([0, T];R+) such that

|F(t, x)|, |∇F(t, x)| ≤ a(|x|)b(t)

for all x ∈ RN with |x| ≤ δ and a.e. t ∈ [0, T].
When α = 1, the operator tDα

T(0Dα
t u(t)) reduces to the usual second order differential operator

−d2/dt2. Hence, if α = 1, p = 2, N = 1, λ = 1 and V(t) = 0 for a.e. t ∈ [0, T], system (1) becomes the
equation with Dirichlet boundary condition−

(
a + b

∫ T
0 |u

′(t)|2dt
)

u′′(t) = f (t, u(t)), a.e. t ∈ [0, T],

u(0) = u(T) = 0,
(2)

where f (t, x) = ∂F(t,x)
∂x and F : [0, T]× R → R. It is well known that Equation (2) is related to the

stationary problem of a classical model introduced by Kirchhoff [21]. To be precise, in [21], Kirchhoff
introduced the model

ρ
∂2u
∂t2 =

(
P0 +

Eh
2L

∫ L

0

(
∂u
∂y

)2
dy

)
∂2u
∂y2 , (3)

where 0 ≤ y ≤ L, t ≥ 0, u is the lateral deflection, ρ is the mass density, h is the cross-sectional area, L
is the length, E is the Young’s modulus and P0 is the initial axial tension. (Notations: in model (3), (7)
and (8) below, t is time variable and y is spatial variable, which are conventional notations in partial
differential equations. One needs to distinguish them to t in (1), (2), (4)–(6) below, where t corresponds
to the spatial variable x). The model (3) is used to describe small vibrations of an elastic stretched
string. Equation (3) has been studied extensively, for instance, [22–34] and references therein. For
p > 1, the reader can consult [35–39] and references therein.

When α < 1, 0Dα
t and tDα

T are the left and right Riemann–Liouville fractional derivatives,
respectively, which have been given some physical interpretations in [40]. Moreover, they are also
applied to describe the anomalous diffusion, Lévy flights and traps in [41,42]. In [43], Jiao and Zhou
considered the system {

tDα
T(0Dα

t u(t)) = ∇F(t, u(t)), a.e. t ∈ [0, T],

u(0) = u(T) = 0.
(4)

They successfully applied critical point theory to investigate the existence of weak solutions for
system (4). To be precise, they obtained that system (4) has at least one weak solution when F has
a quadratic growth or a superquadratic growth by using the least action principle and mountain
pass theorem. Subsequently, this topic related to system (4) attracted lots of attentions, for example,
Ref. [44–49] and references therein. It is obvious that system (1) is much more complicated than
system (4) since the appearance of nonlocal term A(u(t)) and p-Laplacian term φp(s). Recently, in [50],
the following fractional Kirchhoff equation with Dirichlet boundary condition was investigated

(
a + b

∫ T
0 |0Dα

t u(t)|2dt
)

tDα
T(0Dα

t u(t)) + λV(t)u(t) = f (t, u(t)), a.e. t ∈ [0, T],

u(0) = u(T) = 0,
(5)

where a, b, λ > 0, f ∈ C([0, T]×R,R). By using the mountain pass theorem in [51] and the linking
theorem in [52], the authors established some existence results of nontrivial solutions for system (5) if
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f satisfies
(f1) there exist constants µ > 4, 0 < τ < 2 and a nonnegative function g ∈ L

2
2−τ such that

F(t, x)− 1
µ

f (t, x)x ≤ g(t)|x|τ , for a.e. t ∈ [0, T], x ∈ R;

(f2) there exists θ > 2 such that lim|x|→∞ inft∈[0,T]
F(t,x)
|x|θ > 0;

(or (f2)′ there exists θ > 4 such that lim|x|→∞ inft∈[0,T]
F(t,x)
|x|θ > 0);

(f3) there exists σ > 2 such that lim|x|→0 supt∈[0,T]
F(t,x)
|x|σ < ∞,

and some other reasonable conditions.
In [53], Chen-Liu investigated the Kirchhoff-type fractional Dirichlet problem with p-Laplacian

(
a + b

∫ T
0 |0Dα

t u(t)|pdt
)p−1

tDα
Tφp(0Dα

t u(t)) = f (t, u(t)), t ∈ (0, T),

u(0) = u(T) = 0.
(6)

where a, b, λ > 0, f ∈ C1([0, T]×R,R). By the Nehari method, they established the existence result of
ground state solution for system (6) if f satisfies
(f4) f (t, x) = o(|x|p−1) as |x| → 0 uniformly for all t ∈ [0, T],
and the well-known Ambrosetti–Rabinowitz (AR for short) condition
(AR) there exist two constants µ > p2, R > 0 such that

0 < µF(t, x) ≤ x f (t, x), for ∀t ∈ [0, T], x ∈ R with |x| ≥ R,

where F(t, x) =
∫ x

0 f (t, s)ds, and some additional conditions. It is easy to see that all of these conditions
(f1), (f2), (f2)′ and (AR) imply that F(t, x) needs to have a growth near the infinity about x, and (f3) and
(f4) imply that F(t, x) needs to have a growth near 0 about x.

In this paper, we investigate the existence of solutions for system (1) when the nonlinear term F
has local assumptions only near 0 about x. Our work is mainly motivated by [32,54]. In [54], Costa and
Wang investigated the multiplicity of both signed and sign-changing solutions for the one-parameter
family of elliptic problems {

−∆u = λ f (u) in Ω,

u(y) = 0 in ∂Ω,
(7)

where λ > 0 is a parameter, Ω is a bounded smooth domain in RN(N ≥ 3) and f ∈ C1(R,R). They
assumed that the nonlinearity f (u) has superlinear growth only in a neighborhood of u = 0 and then
obtained the number of signed and sign-changing solutions which are dependent on the parameter λ.
They used a cut-off technique together with energy estimates given by minimax methods. The idea
in [54] has been applied to some different problems, for example, [55,56] for quasilinear elliptic problems
with p-Laplacian operator, [57] for an elliptic problem with fractional Laplacian operator, Ref. [58] for
Schrödinger equations, [59] for Neumann problem with nonhomogeneous differential operator and
critical growth, and [60] for quasilinear Schrödinger equations. Especially, in [32], Li and Su investigated
the Kirchhoff-type equations{

−
[
1 +

∫
R3(|∇u|2 + V(y)u2)dy

]
[∆u + V(y)u] = λQ(y) f (u), y ∈ R3,

u(y)→ 0, as |y| → ∞,
(8)

where λ > 0, V, Q are radial functions and f ∈ C((−δ0, δ0),R) for some δ0 > 0. Via the idea
in [54], they also established the existence result of solutions when f (u) has superlinear growth in a
neighborhood of u = 0. It is worthy to note that λ usually needs to be sufficiently large, that is, λ has
a lower bound λ∗. However, the concrete values of λ∗ are not given in these references. Similar to
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Equation (8), comparing with Equations (5) and (6), we add a nonlocal term
∫ T

0 V(t)|u(t)|pdt in system
(1) where mint∈[0,T] V(t) > 0, and multiply V(t)φp(u(t)) by the nonlocal part A(u(t)). Moreover, we
consider the high-dimensional case, that is, N ≥ 1. Since mint∈[0,T] V(t) > 0, system (1) is different
from Equations (2), (5), (6) and system (4). More importantly, we present a concrete value of the lower
bound λ∗ for system (1) and then obtain two estimates of the solutions family {uλ} for all λ > λ∗.
Next, we make some assumptions for F.
(H1) there exist constants q1 > p2, q2 ∈ (p2, q1), M1 > 0 and M2 > 0 such that

M1|x|q1 ≤ F(t, x) ≤ M2|x|q2

for all x ∈ RN with |x| ≤ δ and a.e. t ∈ [0, T];
(H2) there exists a constant β > p2 such that

0 ≤ βF(t, x) ≤ (∇F(t, x), x)

for all x ∈ RN with |x| ≤ δ and a.e. t ∈ [0, T].

Theorem 1. Suppose that (H0)–(H2) hold. Then system (1) has at least a nontrivial weak solution uλ for all
λ > λ∗ := max{Λ1, Λ2, Λ3} and

‖uλ‖
p
V ≤

p2θ

ap−1(θ − p2)
C∗λ

− p−1
q1−p ≤ p2θ

ap−1(θ − p2)
C∗max{Λ1, Λ2, Λ3}

− p−1
q1−p ,

‖uλ‖∞ ≤
Tα− 1

p

Γ(α)(αq− q + 1)
1
q
· p2θ

ap−1(θ − p2)
C∗λ

− p−1
q1−p

≤ Tα− 1
p

Γ(α)(αq− q + 1)
1
q
· p2θ

ap−1(θ − p2)
C∗max{Λ1, Λ2, Λ3}

− p−1
q1−p ,

lim
λ→∞

‖uλ‖V = 0 = lim
λ→∞

‖uλ‖∞,

where θ = min{β, q2}, q = p
p−1 ,

‖uλ‖V =

(∫ T

0
|0Dα

t uλ(t)|pdt +
∫ T

0
V(t)|uλ(t)|pdt

)1/p

, ‖uλ‖∞ = max
t∈[0,T]

uλ(t), (9)

Λ1 = max

 V∞ap−1(Γ(α)(αq−q+1)
1
q G0)

q2−p

2p2 M2T(α− 1
p )(q2−p)

(δ min{1,V∞}D)q2−p
,

1
bp2 (a+ bδp

Gp
0

max{1,V∞}(Dp+Gp))p

M1
δq1

G
q1
0

T1− q1
p Dq1

 , (10)

Λ2 =

[
a + b[max{1, V∞}]p δp

Gp
0
(Dp + Gp)

]q1(p−1)

, (11)

Λ3 =

 Tpα−1[
Γ(α)(αq− q + 1)

1
q

]p ·
p2θC∗

ap−1(θ − p2)
· 2p

δp


q1−p
p−1

, (12)

V∞ = max
t∈[0,T]

V(t), V∞ = min
t∈[0,T]

V(t),

C∗ =

 1

p(M1q1)
p

q1−p
− M1

(M1q1)
q1

q1−p

( [max{1, V∞}]1/p(Dp + Gp)1/p

T
1

q1
− 1

p D

) pq1
q1−p

, (13)
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D =


(

Tp+1

πp+1 ·
2(p−1)!!

p!!

) 1
p , if p is odd,(

Tp+1

πp · (p−1)!!
p!!

) 1
p , if p is even,

G =

(
Tp+1−pα

[Γ(2− α)]p(p + 1− pα)

)1/p

,

G0 =
Tα− 1

p

Γ(α)(αq− q + 1)
1
q

G,

Γ(z) =
∫ ∞

0
tz−1e−tdt ( for all z > 0).

We organize this paper as follows. In Section 2, we recall some preliminary results including
the definitions of Riemann–Liouville fractional derivatives and working spaces, some conclusions for
the working spaces and mountain pass theorem. In Section 3, we complete the proof of Theorem 1.
In Section 4, we apply Theorem 1 to an example and compute the value of lower bound λ∗ in
the example.

2. Preliminaries

In this section, we mainly recall some basic definitions and results.

Definition 1 (Left and Right Riemann–Liouville Fractional Integrals [44,61]). Let f be a function defined
on [a, b]. The left and right Riemann–Liouville fractional integrals of order γ > 0 for function f denoted by
aD−γ

t f (t) and tD
−γ
b f (t) , respectively, are defined by

aD−γ
t f (t) =

1
Γ(γ)

∫ t

a
(t− s)γ−1 f (s)ds, t ∈ [a, b], γ > 0,

tD
−γ
b f (t) =

1
Γ(γ)

∫ b

t
(s− t)γ−1 f (s)ds, t ∈ [a, b], γ > 0,

provided the right-hand sides are pointwise defined on [a, b], where Γ > 0 is the Gamma function.

Definition 2 (Left and Right Riemann–Liouville Fractional Derivatives [44,61]). Let f be a function
defined on [a, b]. The left and right Riemann–Liouville fractional derivatives of order γ > 0 for function f
denoted by aDγ

t f (t) and tD
γ
b f (t), respectively, are defined by

aDγ
t f (t) =

dn

dtn aDγ−n
t f (t) =

1
Γ(n− γ)

dn

dtn

(∫ t

a
(t− s)n−γ−1 f (s)ds

)
,

tD
γ
b f (t) = (−1)n dn

dtn tD
γ−n
b f (t) =

(−1)n

Γ(n− γ)

dn

dtn

(∫ b

t
(s− t)n−γ−1 f (s)ds

)
,

where t ∈ [a, b], n− 1 ≤ γ < n and n ∈ N.

Definition 3 ([43]). Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα,p
0 is defined by the

closure of C∞
0 ([0, T],RN) with the norm

‖u‖ =
(∫ T

0
|0Dα

t u(t)|pdt +
∫ T

0
|u(t)|pdt

)1/p

, ∀ u ∈ Eα,p
0 .
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From the definition of Eα,p
0 , it is apparent that the fractional derivative space Eα,p

0 is the space of functions
u : [0, T]→ RN which is absolutely continuous and has an α-order left Riemann–Liouville fractional derivative
0Dα

t u ∈ Lp([0, T],RN) and u(0) = u(T) = 0 and one can define the norm on Lp([0, T],RN) as

‖u‖Lp =

(∫ T

0
|u(t)|pdt

)1/p

.

Eα,p
0 is uniformly convex by the uniform convexity of Lp ([43]).

Remark 1. It is easy to see that ‖u‖V defined by (9) is also a norm on Eα,p
0 and ‖u‖V and ‖u‖ are equivalent and

min{1, V∞}‖u‖p ≤ ‖u‖p
V ≤ max{1, V∞}‖u‖p. (14)

Lemma 1 ([43]). Let 0 < α ≤ 1 and 1 < p < ∞. Eα,p
0 is a reflexive and separable Banach space.

Lemma 2 ([43]). Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ Eα,p
0 , there has

‖u‖Lp ≤ Cp‖0Dα
t u‖Lp ,

where
Cp =

Tα

Γ(α + 1)
> 0.

Moreover, if α > 1
p , then

‖u‖∞ ≤
Tα− 1

p

Γ(α)(αq− q + 1)
1
q
‖0Dα

t u‖Lp ,
1
p
+

1
q
= 1. (15)

Lemma 3 ([43]). Let 1/p < α ≤ 1 and 1 < p < ∞. The imbedding of Eα,p
0 in C([0, T],RN) is compact.

Let X be a Banach space. ϕ ∈ C1(X,R) and c ∈ R. A sequence {un} ⊂ X is called (PS)c sequence
(named after Palais and Smale) if the sequence {un} satisfies

ϕ(un)→ c, ϕ′(un)→ 0.

Lemma 4 (Mountain Pass Theorem [62,63]). Let X be a Banach space, ϕ ∈ C1(X,R), w ∈ X and r > 0 be
such that ‖w‖ > r and

b := inf
‖u‖=r

ϕ(u) > ϕ(0) ≥ ϕ(w).

Then there exists a (PS)c sequence with

c := inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)),

Γ := {γ ∈ ([0, 1], X]) : γ(0) = 0, γ(1) = w}.

As in [53], for each λ > 0, we can define the functional Iλ : Eα,p
0 → R as

Iλ(u) =
1

bp2

(
a + b

∫ T

0
(|0Dα

t u(t)|p + V(t)|u(t)|p)dt
)p

− λ
∫ T

0
F(t, u(t))dt− ap

bp2 .

It is easy to see that the assumption (H0)–(H2) can not ensure that Iλ is well defined on Eα,p
0 . So

we follow the idea in [54] and simply sketch the outline of proof here. We use Lemma 4 to complete the
proof. Since F satisfies the growth condition only near 0 by (H0)-(H2), in order to use the conditions
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globally, we modify and extend F to F̄ defined in section 3, and the corresponding functional is defined
as Īλ. Next we prove that Īλ has mountain pass geometry on Eα,p

0 . Then Lemma 4 implies that Īλ has
a (PS)cλ

sequence. Then by a standard analysis, a convergent subsequence of the (PS)cλ
sequence is

obtained to ensure that cλ is the critical value of Īλ. Finally, by an estimate about ‖uλ‖∞, we obtain
that the critical point uλ of Īλ with ‖uλ‖∞ ≤ δ/2 is just right the solution of system (1) for all λ > λ∗

for some concrete λ∗.

3. Proofs

Define m(s) ∈ C1(R, [0, 1]) as an even cut-off function satisfying sm′(s) ≤ 0 and

m(s) =

{
1, if |s| 6 δ/2,

0, if |s| > δ.
(16)

Define F̄ : [0, T]×RN → R as

F̄(t, x) = m(|x|)F(t, x) + (1−m(|x|))M2|x|q2 .

We define the variational functional corresponding to F̄ as

Īλ(u) =
1

bp2

(
a + b

∫ T

0
(|0Dα

t u(t)|p + V(t)|u(t)|p)dt
)p

− λ
∫ T

0
F̄(t, u(t))dt− ap

bp2

=
1

bp2

(
a + b‖u‖p

V

)p
− λ

∫ T

0
F̄(t, u(t))dt− ap

bp2 (17)

for all u ∈ Eα,p
0 . By (H0) and the definition of F̄, it is easy to obtain that F̄ satisfies

(H0)′ F̄(t, x) is continuously differentiable in RN for a.e. t ∈ [0, T], measurable in t for every x ∈ RN , and there
exists b ∈ L1([0, T];R+) such that

|F̄(t, x)| ≤ a0b(t) + M2|x|q2 ,

|∇F̄(t, x)| ≤ (1 + m0)a0b(t) + M2q2|x|q2−1 + m0M2|x|q2

for all x ∈ RN and a.e. t ∈ [0, T], a0 = maxs∈[0,δ] a(s) and m0 = maxs∈[ δ
2 ,δ] |m

′(s)|.
Hence, a standard argument shows that Īλ ∈ C1(Eα,p

0 ,R) and

〈 Ī′λ(u), v〉 =
(

a + b‖u‖p
V

)p−1 (∫ T
0 [|0Dα

t u(t)|p−2(0Dα
t u(t), 0Dα

t v(t))dt + V(t)|u(t)|p−2(u(t), v(t))]dt
)

−λ
∫ T

0 (∇F̄(t, u(t)), v(t))dt

for all u, v ∈ Eα,p
0 . Hence

〈 Ī′λ(u), u〉 =
(

a + b‖u‖p
V

)p−1
‖u‖p

V − λ
∫ T

0
(∇F̄(t, u(t)), u(t))dt

for all u ∈ Eα,p
0 .

Lemma 5. Assume that (H1)–(H2) hold. Then
(H1)′

0 ≤ F̄(t, x) ≤ M2|x|q2 , for all x ∈ RN ;

(H2)′

0 < θF̄(t, x) ≤ (∇F̄(t, x), x), for all x ∈ RN/{0},
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where θ = min{q2, β}.

Proof. • If |x| ≤ δ
2 , then by (H1), the conclusion (H1)′ holds;

If δ
2 < |x| ≤ δ, by (H1), we have

0 ≤ F̄(t, x) = m(|x|)F(t, x) + (1−m(|x|))M2|x|q2 ≤ m(|x|)M2|x|q2 + (1−m(|x|))M2|x|q2 = M2|x|q2 ;

If |x| ≥ δ, then by the definition of m, we have F̄(t, x) = M2|x|q2 .
• For all x ∈ RN/{0}, we have

∇F̄(t, x) = m′(|x|) x
|x|F(t, x) + m(|x|)∇F(t, x) + (1−m(|x|))q2M2|x|q2−2x−m′(|x|) x

|x|M2|x|q2 .

Then

(∇F̄(t, x), x) = |x|m′(|x|)(F(t, x)−M2|x|q2) + m(|x|)(∇F(t, x), x) + (1−m(|x|))q2M2|x|q2 .

and

θF̄(t, x)− (∇F̄(t, x), x) = m(|x|)(θF(t, x)− (∇F(t, x), x)) + (θ − q2)(1−m(|x|))M2|x|q2

−|x|m′(|x|)(F(t, x)−M2|x|q2).

Apparently, the conclusion holds for 0 ≤ |x| ≤ δ/2 and |x| ≥ δ. If δ/2 < |x| < δ, by using θ ≤ q2,
the conclusion (H1), (H2) and the fact sm′(s) ≤ 0 for all s ∈ R, we can get the conclusion (H2)′.

Lemma 6. Īλ satisfies the mountain pass geometry for all λ > Λ1, where Λ1 is defined in (10).

Proof. Note that q2 > p2 > p. By Lemma 5 and (15) , we have

Īλ(u) =
1

bp2 (a + b‖u‖p
V)

p − λ
∫ T

0
F̄(t, u(t))dt− ap

bp2

≥ ap

bp2 +
ap−1

p2 ‖u‖
p
V − λM2

∫ T

0
|u(t)|q2 dt− ap

bp2

≥ ap−1

p2 ‖u‖
p
V − λM2‖u‖

q2−p
∞

∫ T

0
|u(t)|pdt

≥ ap−1

p2 ‖u‖
p
V − λM2

 Tα− 1
p

Γ(α)(αq− q + 1)
1
q

q2−p

‖u‖q2−p
V ‖u‖p

Lp

≥ ap−1

p2 ‖u‖
p
V − λ

M2

V∞

 Tα− 1
p

Γ(α)(αq− q + 1)
1
q

q2−p

‖u‖q2
V .

We choose νλ =

 ap−1V∞

2p2λM2

 T
α− 1

p

Γ(α)(αq−q+1)
1
q

q2−p


1

q2−p

for any given λ > 0. Then we have

Īλ(u) > dλ :=
ap−1

p2 ν
p
λ − λ

M2

V∞

 Tα− 1
p

Γ(α)(αq− q + 1)
1
q

q2−p

ν
q2
λ > 0, for all ‖u‖V = νλ. (18)
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Choose

e =
(

T
π

sin
πt
T

, 0, · · · , 0
)
∈ Eα,p

0 . (19)

Then

‖e‖Lp = D :=


(

Tp+1

πp+1
2(p−1)!!

p!!

) 1
p , if p is odd,(

Tp+1

πp
(p−1)!!

p!!

) 1
p , if p is even

(20)

and

‖0Dα
t e‖Lp ≤ G :=

Tp+1−pα

Γp(2− α)(p + 1− pα)
. (21)

By (15),

‖e‖∞ ≤
Tα− 1

p

Γ(α)(αq− q + 1)
1
q
‖0Dα

t e‖Lp ≤ G0 :=
Tα− 1

p

Γ(α)(αq− q + 1)
1
q

G. (22)

Note that

Λ1 = max


V∞ap−1(Γ(α)(αq− q + 1)

1
q G0)

q2−p

2p2M2T(α− 1
p )(q2−p)

(δ min{1, V∞}D)q2−p
,

1
bp2 (a + bδp

Gp
0

max{1, V∞}(Dp + Gp))p

M1
δq1

G
q1
0

T1− q1
p Dq1

 .

Then

‖ δ

G0
e‖V ≥

δ min{1, V∞}
G0

‖e‖Lp ≥ νλ

for all λ > Λ1. By (22), we have ‖ δ
G0

e‖∞ ≤ δ. By the definition of F̄ and (H1), we have F̄(t, x) =

F(t, x) ≥ M1|x|q1 for all |x| ≤ δ/2, and

F̄(t, x) = m(|x|)F(t, x) + (1−m(x))M2|x|q2 ≥ m(|x|)M1|x|q1 + (1−m(x))M1|x|q1 = M1|x|q1

for all δ
2 < |x| ≤ δ. Hence, by Hölder inequality, we have

Īλ(
δ

G0
e) =

1
bp2 (a + b‖ δ

G0
e‖p

V)
p − λ

∫ T

0
F̄(t,

δ

G0
e(t))dt− ap

bp2

≤ 1
bp2 (a + b‖ δ

G0
e‖p

V)
p − λM1

∫ T

0
| δ

G0
e(t)|q1 dt− ap

bp2

≤ 1
bp2 (a +

bδp

Gp
0

max{1, V∞}‖e‖p)p − λM1
δq1

Gq1
0

T1− q1
p ‖e‖q1

Lp

≤ 1
bp2 (a +

bδp

Gp
0

max{1, V∞}(Dp + Gp))p − λM1
δq1

Gq1
0

T1− q1
p Dq1

< 0

for all λ > Λ1.



Mathematics 2020, 8, 106 10 of 17

Let w = δ
G0

e and ϕ = Īλ. Then for any given λ > Λ1, Lemmas 4 and 6 imply that Īλ has a (PS)cλ

sequence {un} := {un,λ}, that is, there exists a sequence {un} satisfying

Īλ(un)→ cλ, Ī′λ(un)→ 0, as n→ ∞, (23)

where

cλ := inf
γ∈Γ

max
t∈[0,1]

Īλ(γ(t)), (24)

Γ := {γ ∈ ([0, 1], X]) : γ(0) = 0, γ(1) = w}.

Lemma 7. The (PS)cλ
sequence {un} has a convergent subsequence.

Proof. By virtue of Lemma 5, (23) and θ = min{q2, β} > p2, there exists a positive constant M > 0
such that

M + ‖un‖V ≥ Īλ(un)−
1
θ
〈 Ī′λ(un), un〉

= (a + b‖un‖p
V)

p−1
[

1
bp2 (a + b‖un‖p

V)−
1
θ
‖un‖p

V

]
−λ

∫ T

0

[
F̄(t, un)−

1
θ
(∇F̄(t, un), un)

]
dt− ap

bp2 (25)

≥ (a + b‖un‖p
V)

p−1
[

1
bp2 (a + b‖un‖p

V)−
1
θ
‖un‖p

V

]
− ap

bp2

≥ ap−1
[

a
bp2 +

(
1
p2 −

1
θ

)
‖un‖p

V

]
− ap

bp2

= ap−1
(

1
p2 −

1
θ

)
‖un‖p

V

for n large enough, which shows that {un} is bounded in Eα,p
0 by p > 1. By Lemma 1, we can assume

that, up to a subsequence, for some uλ ∈ Eα,p
0 ,

un ⇀ uλ in Eα,p
0 , (26)

un → uλ in C([0, T],RN).

The following argument is similar to [64] with some modifications. Since〈
I′λ (un) , un − uλ

〉
=

(
a + b‖u‖p

V

)p−1
( ∫ T

0
(|0Dα

t un|p−2
0Dα

t un, 0Dα
t (un − uλ))dt (27)

+
∫ T

0
V(t)(|un|p−2un, un − uλ)dt

)
− λ

∫ T

0
(∇F̄(t, un), un − uλ)dt,
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we have 〈
I′λ (un)− I′λ(uλ), un − uλ

〉
= (a + b‖un‖p

V)
p−1
( ∫ T

0 (|0Dα
t un|p−2

0Dα
t un, 0Dα

t (un − uλ))dt

+
∫ T

0 V(t)(|un|p−2un, un − uλ)dt
)
− λ

∫ T
0 (∇F̄(t, un), un − uλ)dt

−
[
(a + b‖uλ‖

p
V)

p−1
( ∫ T

0 (|0Dα
t uλ|p−2

0Dα
t uλ, 0Dα

t (un − uλ))dt

+
∫ T

0 V(t)(|uλ|p−2uλ, un − uλ)dt
)
− λ

∫ T
0 (∇F̄(t, uλ), un − uλ)dt

]
= (a + b‖un‖p

V)
p−1
(
‖un‖p

V −
∫ T

0 (|0Dα
t un|p−2

0Dα
t un, 0Dα

t uλ)dt

−
∫ T

0 V(t)(|un|p−2un, uλ)dt
)
− (a + b‖uλ‖

p
V)

p−1
(
− ‖uλ‖

p
V

+
∫ T

0 (|0Dα
t uλ|p−2

0Dα
t uλ, 0Dα

t un)dt +
∫ T

0 V(t)(|uλ|p−2uλ, un)dt
)

−λ
∫ T

0 (∇F̄(t, un)−∇F̄(t, uλ), un − uλ)dt
≥ (a + b‖un‖p

V)
p−1‖un‖p

V + (a + b‖uλ‖
p
V)

p−1‖uλ‖
p
V

−(a + b‖un‖p
V)

p−1
[
‖0Dα

t un‖p−1
Lp ‖0Dα

t uλ‖Lp

+

( ∫ T
0 V(t)|un|pdt

)(p−1)/p( ∫ T
0 V(t)|uλ|pdt

)1/p]
−(a + b‖uλ‖

p
V)

p−1
[
‖0Dα

t uλ‖
p−1
Lp ‖0Dα

t un‖Lp

+

( ∫ T
0 V(t)|uλ|pdt

)(p−1)/p( ∫ T
0 V(t)|un|pdt

)1/p]
−λ
∫ T

0 (∇F̄(t, un)−∇F̄(t, uλ), un − uλ)dt
≥ (a + b‖un‖p

V)
p−1‖un‖p

V + (a + b‖uλ‖
p
V)

p−1‖uλ‖
p
V

−(a + b‖un‖p
V)

p−1
(
‖0Dα

t un‖p
Lp +

∫ T
0 V(t)|un|pdt

)(p−1)/p(
‖0Dα

t uλ‖
p
Lp +

∫ T
0 V(t)|uλ|pdt

)1/p

−(a + b‖uλ‖
p
V)

p−1
(
‖0Dα

t uλ‖
p
Lp +

∫ T
0 V(t)|uλ|pdt

)(p−1)/p(
‖0Dα

t un‖p
Lp +

∫ T
0 V(t)|un|pdt

)1/p

−λ
∫ T

0 (∇F̄(t, un)−∇F̄(t, uλ), un − uλ)dt
= (a + b‖un‖p

V)
p−1‖un‖p

V + (a + b‖uλ‖
p
V)

p−1‖uλ‖
p
V

−(a + b‖un‖p
V)

p−1‖un‖p−1
V ‖uλ‖V − (a + b‖uλ‖

p
V)

p−1‖un‖V‖uλ‖
p−1
V

−λ
∫ T

0 (∇F̄(t, un)−∇F̄(t, uλ), un − uλ)dt
= (a + b‖un‖p

V)
p−1‖un‖p−1

V (‖un‖V − ‖uλ‖V)

+(a + b‖uλ‖
p
V)

p−1‖uλ‖
p−1
V (‖uλ‖V − ‖un‖V)− λ

∫ T
0 (∇F̄(t, un)−∇F̄(t, uλ), un − uλ)dt

=

(
(a + b‖un‖p

V)
p−1‖un‖p−1

V − (a + b‖uλ‖
p
V)

p−1‖uλ‖
p−1
V

)
(‖un‖V − ‖uλ‖V)

−λ
∫ T

0 (∇F̄(t, un)−∇F̄(t, uλ), un − uλ)dt.

(28)

Note that

λ
∫ T

0
(∇F̄(t, un)−∇F̄(t, uλ), un − uλ)dt ≤ λ

∫ T

0
|∇F̄(t, un)−∇F̄(t, uλ)||un − uλ|dt→ 0, (29)

by un → uλ in C([0, T],RN) and |∇F̄(t, un)−∇F̄(t, uλ)| is bounded in [0, T] because of (H0)′ and the
boundedness of {un} in Eα,p

0 , and (23) and (26) imply that〈
I′λ (un)− I′λ(uλ), un − uλ

〉
→ 0, as n→ ∞. (30)

So by (28)–(30), we have
‖un‖V → ‖uλ‖V , as n→ ∞.
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By the uniform convexity of Eα,p
0 and un ⇀ uλ, it follows from the Kadec–Klee property (see [65])

and (14), un → uλ in Eα,p
0 .

By the continuity of Īλ, we obtain that Īλ(u) = cλ, where cλ is defined by (24). Then (18) implies
that cλ ≥ dλ > 0. Hence uλ is a nontrivial critical point of Iλ in Eα,p

0 for any given λ > Λ1.
Next, we show that uλ precisely is the nontrivial weak solution of system (1) for any given λ > λ∗.

In order to get this, we need to make an estimate for the critical level cλ. We introduce the functional
J̃λ : Eα,p

0 → R as follows

J̃λ(u) =
1

bp2 (a + b‖u‖p
V)

p − λM1

∫ T

0
|u(t)|q1 dt− ap

bp2 .

Lemma 8. For all λ ≥ max{Λ1, Λ2},

cλ ≤ C∗λ
− p−1

q1−p ,

where C∗ is defined by (13) which is obviously independent of λ.

Proof. Define fi : [0, ∞)→ R, i = 1, 2, by

f1(s) =
1

bp2 (a + bsp‖e1‖
p
V)

p − λ
1

q1 ‖e1‖
p
V

sp

p
− ap

bp2 ,

f2(s) = −λM1sq1

∫ T

0
|e1|q1 dt + λ

1
q1 ‖e1‖

p
V

sp

p
,

where e1 = δ
G0

e and e is defined in (19). Then f1(s) + f2(s) = J̃λ(se1). Let

f ′2(s) = −λM1q1‖e1‖
q1
Lq1 sq1−1 + λ

1
q1 ‖e1‖

p
Vsp−1 = 0.

Thus for each given λ > 0, we have s =

 λ
1

q1 ‖e1‖
p
V

λM1q1‖e1‖
q1
Lq1

 1
q1−p

. Then

max
s≥0

f2(s) =

 1

p(M1q1)
p

q1−p
− M1

(M1q1)
q1

q1−p

( ‖e1‖V
‖e1‖Lq1

) pq1
q1−p

λ
− p−1

q1−p .

Obviously, f1(0) = 0 and

f ′1(s) = (a + bsp‖e1‖
p
V)

p−1‖e1‖
p
Vsp−1 − λ

1
q1 ‖e1‖

p
Vsp−1.

So if

λ > Λ2 :=

[
a + b[max{1, V∞}]p δp

Gp
0
(Dp + Gp)

]q1(p−1)

=

(
a + b[max{1, V∞}]p δp

Gp
0
‖e‖p

)q1(p−1)

≥
(

a + bsp‖e1‖
p
V

)q1(p−1)
,
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f1(s) is decreasing on s ∈ [0, 1] and then f1(s) < 0 for all s ∈ [0, 1]. By (22), we have

‖se1‖∞ ≤ ‖
δ

G0
e‖∞ ≤ δ (31)

for all s ∈ [0, 1]. Then for all λ > Λ2, by (H1)′, (20), (21) and Hölder inequality, we have

cλ ≤ max
s∈[0,1]

Īλ(se1) ≤ max
s∈[0,1]

J̃λ(se1) ≤ max
s∈[0,1]

f1(s) + max
s≥0

f2(s)

≤ max
s≥0

f2(s) =

 1

p(M1q1)
p

q1−p
− M1

(M1q1)
q1

q1−p

( ‖e1‖V
‖e1‖Lq1

) pq1
q1−p

λ
− p−1

q1−p

≤

 1

p(M1q1)
p

q1−p
− M1

(M1q1)
q1

q1−p

 [max{1, V∞}]1/p(Dp + Gp)1/p

T
1

q1
− 1

p ‖e‖Lp


pq1

q1−p

λ
− p−1

q1−p

= C∗λ
− p−1

q1−p .

Proof of Theorem 1. Note that uλ is a critical point of Īλ with critical value cλ. Since 〈 Ī′(uλ), uλ〉 = 0,
similar to the argument in (25) and by Lemma 8, we have

‖uλ‖
p
V ≤ p2θ

ap−1(θ − p2)
Īλ(uλ)

=
p2θ

ap−1(θ − p2)
cλ (32)

≤ p2θ

ap−1(θ − p2)
C∗λ

− p−1
q1−p .

Since

λ > Λ3 =

 Tpα−1[
Γ(α)(αq− q + 1)

1
q

]p ·
p2θC∗

ap−1(θ − p2)
· 2p

δp


q1−p
p−1

,

by (32), we have

‖uλ‖∞ ≤
Tα− 1

p

Γ(α)(αq− q + 1)
1
q
‖uλ‖V ≤ δ/2. (33)

So for all λ > Λ3, |uλ(t)| ≤ ‖uλ‖∞ ≤ δ/2 for a.e. t ∈ [0, T] and then F̄(t, u(t)) = F(t, u(t)) for a.e.
t ∈ [0, T]. Furthermore, Īλ(uλ) = Iλ(uλ) = cλ > 0 and 〈 Ī′(uλ), v〉 = 〈I′(uλ), v〉 = 0 for all v ∈ Eα,p

0 .
Thus uλ is precisely the nontrivial weak solution of system (1) when λ > λ∗ := max{Λ1, Λ2, Λ3}.
Note that p > 1 and q1 > p. By (32) and (33), it is obvious that

lim
λ→∞

‖uλ‖V = 0 = lim
λ→∞

‖uλ‖∞.
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4. Example

Assume that N = 2, a = b = T = 1, p = 3 and δ = 1. Then q = 3
2 . Let q1 = 12, q2 = 10, F(t, x) =

(t + 1)|x|11 for a.e. t ∈ [0, 1] and all x ∈ RN with |x| ≤ 1. V(t) = 7t2 + 1 for all t ∈ [0, 1]. Then V∞ = 8
and V∞ = 1. Choose α = 1

2 . Consider the system{
A(u(t))[tD1/2

1 φ3(0D1/2
t u(t)) + (7t2 + 1)φ3(u(t))] = 11λ(t + 1)|u|9u, a.e. t ∈ [0, 1],

u(0) = u(1) = 0,
(34)

where

A(u(t)) =
[

1 +
∫ 1

0
(|0D1/2

t u(t)|3 + (7t2 + 1)|u(t)|3)dt
]2

.

By Theorem 1, we can obtain that system (34) has at least a nontrivial solution uλ in E
1
2 ,3
0 for each

λ > 183.4624 and limλ→∞ ‖uλ‖V = 0 = limλ→∞ ‖uλ‖∞.
In fact, we can verify that F(t, u) satisfies (H0)-(H2) as follows.

(i) Note that

|F(t, x)| = (t + 1)|x|11, |∇F(t, x)| = 11(t + 1)|x|10

for all |x| ≤ δ . Set a(|x|) = |x|10 + 1 for all x ∈ RN with |x| ≤ 1 and b(t) = 11(t + 1) for a.e.
t ∈ [0, T]. Then assumption (H0) is satisfied.

(ii) Note that q1 = 12 > q2 = 10 > p2 = 9, and

|x|12 ≤ F(t, x) = (t + 1)|x|11 ≤ 2|x|10,

for all |x| ≤ δ and a.e. t ∈ [0, 1]. Set M1 = 1 and M2 = 2. Then assumption (H1) is also satisfied.
(iii) Let β = 10 > p2 = 9. Then

0 ≤ 10(t + 1)|x|11 = βF(t, x) ≤ 11(t + 1)|x|11 = (∇F(t, x), x)

holds for all x ∈ R2 and a.e. t ∈ [0, 1], and so assumption (H3) is satisfied. Next, we compute the
value of λ∗ by the formulas in Theorem 1. Note that Γ( 1

2 ) =
√

π, Γ(2− 1
2 ) =

√
π

2 . We obtain

D =

(
Tp+1

πp+1
2(p− 1)!!

p!!

) 1
p

=

(
4
3

) 1
3

π−
4
3 ,

G =

(
Tp+1−pα

Γp(2− α)(p + 1− pα)

)1/p

=

(
16
5

) 1
3

π−
1
2 ,

G0 =
Tα− 1

p

Γ(α)(αq− q + 1)
1
q

G = 5−
1
3 · 16

2
3 π−1.

Then by θ = min{β, q2} = 10, (10)–(12), we have

Λ1 = max

{
3

√
768

78125
π35/6,

1611/2 · 3π4

625
(1 +

5
24π

+
π3/2

2
)3

}
,
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Λ2 =

(
1 +

40
3

π−1 + 32π3/2
)24

,

Λ3 =

(
720 · 16C∗

π3/2

) 9
2

,

and by (13),

C∗ = 16
(

1
3 · 3
√

12
− 1

3√124

)(
1 +

12
5

π5/2
)4/3

.

Compared Λ1, Λ2 and Λ3, it is easy to see λ∗ = Λ2 ≈ 183.4624.
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