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Abstract: This paper reflects the effects of velocity and thermal slip conditions on the stagnation-point
mixed convective flow of Cross liquid moving over a vertical plate entrenched in a Darcy–Forchheimer
porous medium. A Cross liquid is a type of non-Newtonian liquid whose viscosity depends on
the shear rate. The leading partial differential equations (PDEs) are altered to nonlinear ordinary
differential equations (ODEs) via feasible similarity transformations. These transmuted equations
are computed numerically through the bvp4c solver. The authority of sundry parameters on the
temperature and velocity distributions is examined graphically. In addition, the characteristics of
heat transfer are analyzed in the presence of the impact of drag forces. The outcomes reveal that
the permeability parameter decelerates the drag forces and declines the rate of heat transfer in both
forms of solutions. Moreover, it is found that the drag forces decline with the growing value of the
Weissenberg parameter in the upper branch solutions, while a reverse trend is revealed in the lower
branch solutions. However, the rate of heat transfer shows a diminishing behavior with an increasing
value of the Weissenberg parameter.

Keywords: slip effects; mixed convection flow; cross fluid; Darcy–Forchheimer model

1. Introduction

Many liquids such as detergents, printer ink, animal blood, foodstuff, paints, polymer fluids, etc.,
transform their properties of flow subjected to operating shear stress, and thus diverge from viscous
fluids. These fluids are identified as non-Newtonian substances. Numerous researchers have reported
different non-Newtonian fluid models and a few of them are micropolar, Casson, Burgers, Sisko,
Maxwell, Oldroyd-B, generalized Burgers, and Cross models, etc. In this paper, we report the Cross
liquid [1] model, which states features of stress. In addition, this model sufficiently distinguishes the
flow in the region of the power law and high, as well as low, regions of shear rates. In this study, unlike
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the fluid of power law, first, we achieve a finite viscosity as the rate of shear disappears which also
involves a time constant owing to the importance of this model in numerous industrial and engineering
computations. Utilization of Cross fluid in industries comprises the polymer latex of the aqueous
solution and blood, as well as solutions of synthesis polymeric. Khan et al. [2] inspected the flow of
Cross liquid through heat transfer from a planar stretched sheet and found the numerical solution
through the shooting technique. The impact of electric field with the characteristic of heat transfer
involving Cross liquid from a stretched sheet was scrutinized by Hayat et al. [3] who found that the
liquid velocity grew with a rising Weissenberg parameter while temperature distribution decayed
due to the Pr. Khan et al. [4] scrutinized the axisymmetric flow and the characteristic of heat transfer
containing Cross liquid using a radial stretched sheet and observed that the power-law index raised
the structure of the velocity boundary layer. Ijaz Khan et al. [5] scanned the activation energy impact
on the magnetic flow of Cross liquid from a stretched surface. Another study, by Ijaz Khan et al. [6],
surveyed the magnetic influence on mixed convective flow involving Cross nanofluid with activation
energy. Recently, Azam et al. [7] applied the concept of solar energy on time-dependent flow in the
presence of Cross nanofluid from a stretched sheet with nonlinear radiation.

The impact of non-Newtonian liquids in the porous media is significant in the fields of engineering
and industries due to its numerous applications such as mud injections, cement or slurry grouts to
strengthen soils, blood circulation through the kidney, insulation of fibrous, electrochemistry, and
drilling liquid injection in rocks for ornamental oil recovery, or for the fortification of the well, etc.
Bejan et al. [8], Vafai [9], and Vadasz [10] discussed further applications in their books. Darcy’s
law has been utilized generally to inspect the behavior of flow in a porous medium. However,
the connection between the velocity of flow and pressure gradient at rates of high flow cannot be
modeled through Darcy’s law (Spivey et al. [11]). There is further indication that at a high rate
of flow, the non-Darcy involve several subsurface systems of biological porous and engineering
porous flow [12–14]. Forchheimer [15] included a term of velocity squared in the Darcy to analyze
the boundary and inertia aspects. This term is constantly applied to larger Reynolds numbers.
Rashidi et al. [16] discovered the influence of electric field on fluid flow with the characteristic of heat
transfer in a Darcy–Brinkman–Forchheimer medium. The impact of variable thermal conductivity
of Darcy–Forchheimer flow in the presence of Cattaneo–Christov heat-flux was considered by
Hayat et al. [17]. In another paper, Hayat et al. [18] examined the non-Newtonian viscoelastic
fluid involving nanoliquid through nonlinear stretched surface engrossed in the Darcy–Forchheimer
porous medium. Kang et al. [19] employed finite difference technique to discuss the Neumann condition
for the general Darcy–Forchheimer problem. Hayat et al. [20] explored the homogenous-heterogeneous
reaction of viscous liquid in a Darcy–Forchheimer porous medium through a curved stretched surface.
They scrutinized that the porosity and inertia parameters produce larger temperature. Recently,
Rasool [21] considered the Darcy–Forchheimer flow to investigate electric field containing nanoparticle
through a nonlinear stretched surface. They observed that the mass and heat flux decline due to
porosity while drag force is enhanced. A few other similar studies are given in [22–24].

As mentioned above, the present literature is packed with works comprising the heat transfer
characteristics of boundary-layer flow involving Newtonian and non-Newtonian liquids. In addition,
the research regarding the Darcy–Forchheimer flow through heat transport comprising Cross liquid has
disclosed a vital pledge in industrial and environmental systems, such as the process of fermentation,
petroleum resources, usage of geothermal energy, production of crude oil, grain storage, etc. However,
the review of literature revealed that no one has considered the impact of slip effects on mixed
convection flow of Cross liquid in the porous media. Therefore, in this research, we focus our attention
to the Darcy–Forchheimer flows involving non-Newtonian Cross liquids from a vertical plate with
mixed convection and slip effects. Similarity variables are employed to metamorphose the PDEs into
nonlinear ODE’s. The metamorphosed system is then exercised through bvp4c solver. The dual nature
of solutions is acquired in opposing flow. The vital constraints in the flow field are discussed via
graphical portraits.
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2. Formulation of the Problem

Consider a steady incompressible flow of Cross liquid past a vertical plate in a porous medium
with slip impacts. The x-axis is taking along the plate and the y-axis perpendicular to it, as illustrated
in Figure 1.
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It is presumed that the free stream velocity ue(x) = bx and the wall temperature Tw(x) = T∞ + cx
vary linearly, where b and c are two constants and T∞ is the temperature away from the plate. We
utilize the Darcy–Forchheimer model in which the square of the velocity factor is included. In addition,
the rheology equations of Cross liquid in term of viscosity are
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Here, n the power-law index,
^
Γ the time constant, A1 the first tensor of Rivlin–Ericksen and
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µ0 and
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represent the zero and infinite shear rates, respectively. In the present study,
^
µ
∞

is
considered to be zero. Therefore, Equation (1) can be written as

^
µ =

^
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Γ

.
γ
)n . (3)

Keeping in mind that the temperature and velocity of the two-dimensional (2D) fluid flow are
considered in the forms T = T(x, t) and V = [u(x, y), v(x, y), 0], then the governing equations become

∂v
∂y

+
∂u
∂x

= 0 (4)
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αm
∂2T
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∂T
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∂T
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= 0 (6)

The physical boundary conditions are

u = L1
∂u
∂y , v = 0, T = Tw(x) + S1

∂T
∂y at y = 0,

u→ ue(x), T→ T∞ as y→∞.
(7)

Here, (v, u) signify, respectively, the velocity components in x- and y-directions, µe f f the effective
(or “apparent”) viscosity, νe f f = µe f f /ρ the effective kinematic viscosity, ρ the density, ε the porosity
parameter, K1 the porous medium permeability, k the thermal conductivity of fluid, CF drag coefficient,
αm the thermal diffusivity, T the temperature, L1 length of slip, and S1 proportionality constant.

Following Rosali et al. [22], we set up the similarity transformation

η = y

√
b
αm

, ψ =
√

bαmx f (η), θ(η) =
T − T∞

Tw − T∞
. (8)

Using the similarity transformation in the above PDEs we obtain

ε1 f ′′′
(
1 + n(We f ′′)1−n

)
+

 1 + f f ′′ − ( f ′)2 + K(1− f ′)+
B
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1− ( f ′)2

)
+ λKθ

(1 + (We f ′′)1−n
)2

= 0, (9)

θ′′ + θ′ f − θ f ′ = 0. (10)

The physical boundary conditions are

f ′(0) = γ1 f ′′(0), f (0) = 0, θ(0)= 1+γ2θ′(0) at η = 0,

f ′(η)→ 1, θ(η)→ 0 as η→∞.
(11)

Here, the parameters are used in the above ODE’s are modified porosity, dimensionless
permeability, mixed convection, inertia coefficient, velocity slip, and thermal slip. These are defined as

ε1 =
ε2νe f f
αm

= ε2Pr, K = ε2ν
K1b , λ =

ε2 gβTc
b2 = Rax

Pe2
x

Pr, B = ε2ueCF

b
√

K
, γ1 = L1

√
b
αm

, γ2 =
√

b
αm

S1.

Here, Rax =
ε2 gβT(Tw−T∞)x3

νe f fαm
is the Rayleigh number and Pex = xue

αm
is the Peclet number.

3. Skin Friction and Nusselt Number

The coefficients of skin friction C f and Nusselt number Nux are identified as

C f =
2τw

ρue2 and Nux =
xqw

k(Tw − T∞)
, (12)

where qw and τw are identified as the heat flux and the shear stress, respectively, which are specified as

qw = −k
∂T
∂y

∣∣∣∣∣
y=0

and τw =


µ∂u
∂y(

1 +
(
Γ ∂u
∂y

)1−n
)


y=0

. (13)
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Utilizing Equation (8), we have

1
2

√
Rex

Pr
C f =

f ′′(0)(
1 + (We f ′′(0))1−n

) and − θ′(0) =
Nux
√

Pex
. (14)

4. Numerical Procedure

The nonlinear coupled ODEs (9) and (10) with boundary constraint (11) through the bvp4c by
converting the leading ODEs to an initial value problem (IVP). In this method, it is further helpful to
provide a fixed value to η→∞ , say η∞. The above-mentioned higher order equations are converted
into a first-order system as follows:

f ′ = p, (15)

p′ = q, (16)

q′ =

(
1 + (We f ′′)1−n

)2

ε1
(
1 + n(We f ′′)1−n

) [p2
− f q− 1 + K(1− p) − B

(
1− p2

)
− λθ

]
, (17)

θ
′

= z, (18)

z′ = pθ− f z, (19)

with
f (0) = 0, p(0) = γ1q(0), θ(0) = 1 + γ2z(0). (20)

Numerically grip the system of Equations (15)–(20) as an IVP, we require that the values for q(0)
and θ(0) are needed, however these values are not mentioned. The initial estimated values for q(0)
and θ(0) are conjectured and bvp4c is pertained on MATLAB software to achieve accurate results.
It is also noted that the multiple solutions are attained by setting different guesses. After that, the
considered values of θ(η) and f ′(η) at (η∞ = 8) are evaluated with the boundary conditions θ(η∞) = 0
and f ′(η∞) = 1, in which the predictable values of q(0) and θ(0) are prescribed by the Secant method
to achieve a better guess for the solutions. The step size is considered as ∆η = 0.01. The procedure is
iteratively repeated until required solutions with an acceptable level of accuracy (i.e., up to 10−5) to
fulfill the criterion of convergence.

5. Physical Explanation

In this study, the dimensionless parameters that were appearing in the momentum and the energy
equations and the value of these parameters were taken to be fixed for the computational purpose are
given as λ = −3.5, n = 0.5, We = 0.5, γ1 = γ2 = 0.5, ε1 = 0.5, B = 0.1. The graphical features of the
embedded flow of fluids were captured in Figures 2–21 on the velocity, temperature profiles, the skin
friction, and the local Nusselt number against the enormous distinct parameters. The numerical results
with accessible conclusions are referenced in Table 1, which shows the authenticity of our problem
by comparing the results with the available results in the literature. Additionally, the green lines
throughout the study demonstrate the first solution, which is also called the upper branch solution
while the red lines exhibit the second solution called the lower branch in all the invoked figures.
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Table 1. Comparison of the values of f ′′(0) for distinct values of ε1 and λ when K = 1 and rest of
variables are absent.

ε1 λ Rosali et al. [22] Present Results

0.1
−0.5 4.1508 4.1389

1 6.4874 6.4864
2 7.7611 7.7614

0.5
−0.5 1.8821 1.8838

1 2.8597 2.8453
2 3.3944 3.3944

0.7
−0.5 1.5967 1.6008

1 2.4074 2.4124
2 2.8514 2.8499

1
−0.5 1.3418 1.3438

1 2.0050 2.0050
2 2.3690 2.3620

6. Deviation of the Skin Coefficient and the Local Nusselt Number

The graphical behavior of our solutions for the skin friction coefficient 0.5(Rex)
1
2 (Pr)

−1
2 C f and the

local Nusselt number Nux(Pex)
−1
2 by exercising the different parameters against the mixed convection

parameter λ are shown in all invoked Figures 2–7. The existing of dual solutions is marked in all the
aforementioned figures in the case of mixed convection opposing flow (λ < 0) while the outcome is
unique for the phenomenon of mixed convection assisting flow (λ > 0). The influence of the modified
porosity parameter ε1 on the skin friction and the local Nusselt number versus λ is depicted in Figures 2
and 3, respectively. Figure 2 shows that the values of the skin friction decelerate in the first solution
with enhancing ε1 in the range of (−4 ≤ λ), while the reverse trend is seen in the range of (λ < −4).
Figure 3 scrutinizes that the values of the Nusselt number accelerate due to ε1. It is also observed
from these sketches that the physical realizable solution is represented by the green solid lines and the
decline of the unstable solution is displayed by the red dotted lines. The critical values |λ| enhance as
ε1 augments, suggesting that the modified porosity parameter delays the boundary-layer separation.
In addition, it can be clearly observed from these figures that the skin friction as well as the Nusselt
number augments as λ increases in the assisting flow, while the contrary behavior is observed in the
opposing flow. Physically, in the assisting flow case, the favorable pressure gradient produces which
augments the motion of liquid, which consequently raises the shear stress and heat transfer rate. In
contrast, opposing flow guides to an adverse pressure gradient that delays the motion of liquid. The

impacts of the Weissenberg number We and the inertia parameter B against λ on
(
0.5(Rex)

1
2 (Pr)

−1
2 C f

)
and

(
Nux(Pex)

−1
2

)
are depicted in Figures 4–7. For the upper branch solution, both the momentum

boundary layer and the thermal boundary layer become lower by changing the value of We, while the
opposite behavior is marked for the lower branch solution as shown in Figures 4 and 5. Figures 6 and 7
suggest that the fall trend with augmenting B in the lower branch solution, while the upper branch
solution is enhanced for the similar choice of B.
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7. Deviation of the Velocity and Temperature Fields

The analyses and the behavior are captured in Figures 8 and 9, respectively, showing the tasters
of the f ′(η) and θ(η) profiles for the distinct values of the slip parameter γ1 for both branches of the
solutions, while the effects of the thermal slip parameter γ2 on the velocity and temperature for various
selected values are portrayed in Figures 10 and 11, respectively. Physically, when augmenting the
values of γ1, the wall shear stress insignificant and as a result, the momentum boundary layer (Figure 8)
becomes larger and larger for both the upper branch and lower branch solutions, while the reverse
trend is scrutinized for the temperature profile (Figure 9) due to escalating the γ1. Figure 10 shows that
the velocity of fluid rises with γ2 in the first solution and declines in the second solution, while the
opposite behavior is observed in the sketch of temperature, as shown in Figure 11. This is due to fact
that the extra flow penetrates through the thermal boundary layer which consequently transmitted the
additional heat and this guides in the decline of temperature distribution. Thus, for the authenticity of
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our solutions, it is clearly visible from behavior of momentum and temperature profiles in Figures 8–11
that these solutions satisfied the boundary conditions asymptotically. As shown in Figures 12–15,
the behavior of the fluid flow is explored by exercising the dimensionless parameters We and n on
f ′(η) and θ(η), respectively. The increment in the local Weissenberg number We and power-law
index n, both the green solid lines, as well as the red dotted lines (first and second solution) are rising
in Figures 12 and 13, while the contrary flow of fluid motion is noticeable corresponding to these
parameters in Figures 13 and 15, respectively. From the physical view, the additional relaxation time
is needed when the values of We increases and as a result, the velocity boundary layer and the fluid
temperature was shrunk and declined in Figures 12 and 13, respectively. Figure 14 exhibits that the
velocity profile increases due to the augmenting values of n in case of shear thinning and vice versa for
the temperature profile which is invoked in Figure 15. Figure 16 shows the behavior of the permeability
parameter K on f ′(η) as we enhance the parameter K, the upper solution is decelerated while the lower
solution shows increasing behavior, whereas for the same parameter, the reverse behavior is noted in
the temperature profile, as presented in Figure 17. Figure 18 illustrates that the liquid velocity enhances
in both upper and lower solutions by changing the values of the modified porosity parameter ε1, while
the temperature profile behavior is shown in Figure 19, which decelerates in both branches of solutions
as we boost up the value of ε1. In Figure 20, we plotted the velocity profile for various values of inertia
coefficient B, which shows that the first solution is enhanced and the second solution is declined. The
temperature profile declines in the upper branch solution and rises in the second branch solution as
the value of B augments and this behavior is captured in Figure 21. The cause for this trend is that the
inertia of the porous medium offers an extra confrontation to the mechanism of the liquid flow, which
grounds the liquid to progress at a retarded rate with reduced temperature.
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8. Closing Remarks

The impact of slip factors on the mixed convective flow of Cross liquid has been examined from a
vertical plate immersed in Darcy–Forchheimer porous medium. The similarity variables are adopted
to convert the PDEs to nonlinear ODEs. The transmuted system is numerically deciphered through the
bvp4c solver. Core verdicts of the current research are stated as follows:

• Permeability parameter decelerates the drag force, as well as the rate of heat transfer in both forms
of solutions;

• Due to the porosity parameter, the drag force slows down in upper and lower branch solutions,
while the rate of heat transfer accelerates;

• The drag forces decline with the growing values of the Weissenberg parameter in the upper branch
solutions, while a reverse trend is observed in the lower branch solutions. However, the rate of
heat transfer is diminished with the Weissenberg parameter;

• The drag forces are declined initially and then enhance due to the inertia coefficient, while the rate
of heat transfer increases in both solutions;

• Liquid velocity increases due to γ1 in both solutions, while the temperature distribution behaves
in a contrary direction;

• The temperature of the liquid is decreased due to γ2 in the upper branch solutions and augmented
in the lower branch solutions. The repeal tendency is scrutinized for the velocity;

• The velocity of the liquid has an enhancing behavior with the increasing values of We in both
solutions, while the temperature is a declining function of We;

• The power-law index accelerates the velocity and reduces the temperature of the liquid in
both solutions.

It is expected that the current numerical results provide significant knowledge for computer
routines for further complex problems involving mixed convection of non-Newtonian fluids in porous
media and stimulate curiosity for experimental work. In addition, the influence of slip effects in
Darcy–Forchheimer flow with mixed convection has been of great interest especially in the utilization
of geothermal energy and petroleum reservoir, etc.
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Nomenclature

A1 the first tensor of Rivlin–Ericksen
(b, c) positive constants
B inertia coefficient
CF drag coefficient
C f x skin friction coefficient
g gravity acceleration
Grx Grashof number
I the identity vector
k thermal conductivity of fluid
K1 porous medium permeability
K dimensionless permeability
L1 length of slip
n power-law index
Nux Nusselt number
^
p the pressure
Pex the Peclet number
qw the heat flux
Rax the Rayleigh number
Rex local Reynolds number
S1 proportionality constant
T temperature (K)
T∞ free-stream temperature (K)
Tw wall temperature (K)
ue free-stream velocity (m s−1)
(u, v) velocity components (m s−1)
We Weissenberg number
(x, y) Cartesian coordinates (m)

Greek Symbols

αm thermal diffusivity
β thermal expansion
ε1 modified porosity
.
γ the rate of shear
γ1 velocity slip
γ2 thermal slip
Γ time constant
λ mixed convective parameter
^
µ0 zero shear rate
^
µ
∞

infinite shear rate
µe f f the effective (or “apparent”) viscosity
θ dimensionless temperature
νe f f effective kinematic viscosity
ρ density
ψ stream function
τw the shear stress
η similarity variable
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Subscripts

w wall boundary condition
∞ free-stream condition

Superscripts

’ derivative w.r.t. η
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