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Abstract: There are many characterizations of linear operators from various matrix spaces into
themselves which preserve term rank. In this research, we characterize the linear maps which preserve
any two term ranks between different matrix spaces over anti-negative semirings, which extends the
previous results on characterizations of linear operators from some matrix spaces into themselves.
That is, a linear map T from p× q matrix spaces into m× n matrix spaces preserves any two term
ranks if and only if T preserves all term ranks if and only if T is a (P, Q, B)-block map.
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1. Introduction

There are many characterizations of linear operators from various matrix spaces into themselves
which preserve term rank. Beasley and Pullman ([1]) determined the linear operators on the p× q
Boolean matrices, which preserve Boolean term rank. Their results are the following: For a linear
operator on the p× q Boolean matrices,

T preserves Boolean term rank if and only if it preserves Boolean term ranks 1 and 2; (1)

T preserves Boolean term rank if and only if it doubly preserves Boolean term rank 1 or p. (2)

Beasley et al. ([2]) characterized linear operators on the p× q matrices over a commutative anti-negative
semiring which preserve term rank. The results are the following: For a linear operator on the p× q
commutative anti-negative semiring matrices,

T preserves term rank if and only if it preserves term ranks 1 and k. (3)

Song and Beasley([3]) characterized the linear maps that preserve term rank between different
Boolean matrix spaces.

For the case of symmetric matrices, we have some results on the term rank preservers in [4,5].
In this paper, we investigate the characterizations of linear maps which preserve term rank

between different matrix spaces over anti-negative commutative semirings, which extends the previous
results on characterizations of linear operators between different matrix spaces.

2. Preliminaries

In this section, we give some definitions and basic results for our main results.
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A semiring [1] is a set S with addition(+) and multiplication (·) such that (S,+) is a commutative
semigroup with identity 0 and (S, ·) is a semigroup with identity 1. Moreover, the operation · is
distributive over +. A semiring is called anti-negative if only 0 has an additive inverse. A semiring is
called commutative if s · t = t · s for all s, t ∈ S.

The following are interesting examples of some anti-negative commutative semirings.
For a fixed positive integer h, let Bh be the Boolean algebra [6] of subsets of an h-element set Sh

and σ1, σ2, . . . , σh denote the singleton subsets of Sh. Union is denoted by + (addition) and intersection
by juxtaposition (multiplication); 0 denotes the empty set and 1 the whole set Sh. Under these two
operations, Bh is a commutative anti-negative semiring, which is called generalized Boolean algebra.
Then all of its elements, except 0 and 1, are zero-divisors because each proper subset of Sh has empty
intersection with its complement. In particular, if h = 1, B1 is called the binary Boolean algebra [6].

Let C be any set with at least two elements. If C is totally ordered by < (i.e., a < b or b < a for
any two distinct elements a, b in C), then define a + b as max(a, b) and ab as min(a, b) for all a, b ∈ C.
If C has a universal upper bound and a universal lower bound, then C is a semiring, which is called a
chain semiring [6].

Let R be the field of real numbers, let F = {a ∈ R|0≤ a ≤1} be a subset of R. Define a + b =

max{a, b} and a · b = min{a, b} for any a, b ∈ F. Thus (F,+, ·) is a chain semiring, which is called a
fuzzy semiring [7]. In particular, if we take F = {r}, a singleton set and we denote ∅ by 0 and {r} by 1,
then this chain semiring is the binary Boolean algebra B = {0, 1}, which is a subsemiring of any chain
semiring. Since a Boolean algebra Bk(k ≥ 2) is not totally ordered under inclusion, it does not become
a chain semiring.

In the following, S will denote an arbitrary commutative anti-negative semiring. For all a, b
∈ S, we supress the dot of a · b, and simply write ab. Let Mp,q(S) (Mm,n(S) ) be the set of all p× q
(m× n respectively) matrices with entries in S. The addition and multiplication on Mp,q(S) are defined
as usual.

In the following, we assume that integers p, q, m and n are positive integers with p ≤ q and
m ≤ n.

Let Eh,k be the p× q (0,1)-matrix whose only (h, k)th entry is 1, and Eh,k be called a cell. O is the
p× q zero matrix, Ip is the p× p identity matrix and J is the p× q matrix all of whose entries are 1.

A p× q matrix Rh =
q
∑

k=1
Eh,k is the hth full row matrix and Ck =

p
∑

h=1
Eh,k is the kth full column

matrix. A p× q matrix L is called a full line matrix if L = Rh or L = Ck for some h ∈ {1, . . . , p} or for
some k ∈ {1, . . . , q}.

A line of matrix U ∈Mp,q(S) is a column or a row of U.
A matrix U ∈Mp,q(S) has TR t (or term rank t) if the minimum number of lines needed to cover

all nonzero entries of U is equal to t. We denote τ(U) = t if U has TR t.
For matrices U, V ∈ Mp,q(S), it is said that V = [vi,j] dominates U = [ui,j] (denoted U v V or

V w U) if vh,k = 0 implies uh,k = 0 for all h and k.

Lemma 1. For matrices U, V ∈Mp,q(S), we have
(1) τ(U + V) ≤ τ(U) + τ(V);
(2) τ(U) ≤ τ(U + V);
(3) U v V implies that τ(U) ≤ τ(V).

Proof. (1) It is trivial from the definition.
(2) If τ(U) = t, then we can find t lines that cover all nonzero entries of U. If these lines cover all

nonzero entries of V, then τ(U) = τ(U + V). However, If these lines cannot cover all nonzero entries
of V, then τ(U) < τ(U + V). Thus, τ(U) ≤ τ(U + V).

(3) If τ(V) = t, then we can find t lines that cover all nonzero entries of V. Since U v V, these lines
can cover all nonzero entries of U. Thus τ(U) ≤ t = τ(V).
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For a matrix U and lists i(C) and i(R) of column and row indices, respectively, U(i(R) | i(C))
denotes the submatrix constructed by deleting the columns i(C) and rows i(R) from U and U[i(R) |
i(C)] denotes the submatrix constructed by taking the columns i(C) and rows i(R) from U.

For matrices U, V ∈Mp,q(S), the matrix U ◦V denotes the Schur or Hadamard product of U and
V. That is, the (h, k)th entry of U ◦V is uh,kvh,k.

A map T : Mp,q(S)→Mm,n(S) is said to be linear if T(rU + sV) = rT(U) + sT(V) for all r, s ∈ S
and U, V ∈Mp,q(S).

If T : Mp,q(S) → Mm,n(S) is a map, then T is called a (P, Q, B)-block map if there is a p × p
permutation matrix P and a q× q permutation matrix Q, and B ∈Mp,q(S) with nonzero bh,k, such that

• p ≤ m and q ≤ n, and T(U) = P[(U ◦ B)⊕O]Q for any U ∈Mp,q(S) or
• p ≤ n and q ≤ m, and T(U) = P[(U ◦ B)t ⊕O]Q for any U ∈Mp,q(S).

It is obvious that (P, Q, B)-block map is a linear map.

3. Linear Maps that Preserve TR of Matrices over Anti-Negative Commutative Semirings

In this section, we characterize the linear maps that preserve TR of p × q matrices over
anti-negative commutative semirings, which are contained in Theorem 2.

For a linear map T : Mp,q(S)→Mm,n(S) , we say that T

(i) preserves TR t if τ(T(U)) = t whenever τ(U) = t for all U ∈Mp,q(S);
(ii) doubly (or strongly) preserves TR t if τ(T(U)) = t if and only if τ(U) = t for all U ∈Mp,q(S);

(iii) preserves TR if it preserves any TR t with t ≤ p.

Throughout this section, T denotes a linear map T : Mp,q(S)→Mm,n(S).

Lemma 2. Let T be a (P, Q, B)-block map. Then T doubly preserves any TR t for t = 1, · · · , p.

Suppose that T is a (P, Q, B)-block map, and U∈Mp,q(S) with τ(U) = t with t ≤ p. Then T(U) =

P[(U ◦ B)⊕O]Q or T(U) = P[(U ◦ B)t ⊕O]Q.
Consider the first case: T(U) = P[(U ◦ B)⊕O]Q. Since all entries of B are not zero, τ(U ◦ B) =

τ(U), and τ((U ◦ B)⊕O) = τ(U ◦ B). Since the permuting columns and rows does not change the
TR, we have

τ(T(U)) = τ(P[(U ◦ B)⊕O]Q) = τ((U ◦ B)⊕O) = τ(U ◦ B) = τ(U) = t.
Thus T preserves TR t.

Conversely if τ(T(U)) = t, then
τ(T(U)) = τ(P[(U ◦ B)⊕O]Q) = τ((U ◦ B)⊕O) = τ(U ◦ B) = τ(U).

Thus τ(U) = t. That is, T doubly preserves TR t.
Consider the second case: T(U) = P[(U ◦ B)t ⊕O]Q. As in the first case, a similar argument

shows the same results. That is, T doubly preserves TR t.

Theorem 1. Let T doubly preserve TR 1. Then T is a (P, Q, B)-block map, and vice versa. (Here, we have
either m ≥ p and n ≥ q, or n ≥ p and m ≥ q.)

Suppose that T doubly preserves TR 1. Then, the image of each line under T in Mp,q(S) is a line
in Mm,n(S) since T preserves TR 1. Thus we assume that either T(R1) v R1 or T(R1) v C1.

Consider the first case: T(R1) v R1. Assume that T(Ck) v Rh. Then, since E1,k is in both R1 and Ck
and since T(E1,k) 6= O and lies in the first row R1, h must be 1. However, then, for k 6= j T(E1,j + E2,k) v
R1. Hence, T(E1,j + E2,k) has TR 1. However, τ(E1,j + E2,k) = 2, a contradiction. Thus we conclude that
the image of any full column matrix is contained in a column matrix. By a similar argument, the image
of any full row matrix is contained in a row matrix. And, since two columns have TR 2, the image
of distinct full columns must be contained in distinct columns. Let α : {1, · · · p} → {1, · · · , m} be



Mathematics 2020, 8, 41 4 of 8

defined by α(h) = k if T(Rh) v Rk and define β : {1, · · · q} → {1, · · · , n} by β(h) = k if T(Ch) v Ck.
Then, α and β are injective maps, and hence, p ≤ m and q ≤ n. Let α′ : {1, · · · , m} → {1, · · · , m} and
β′ : {1, · · · , n} → {1, · · · , n} be a bijective maps such that α′ |{1,··· ,p}= α and β′ |{1,··· ,q}= β. Let Pα′

and Qβ′ be the permutation matrices of order p and q, respectively, that correspond to the bijective
maps α′ and β′.

Thus we obtain that p ≤ m and q ≤ n, and there is some nonzero bh,k ∈ S such that B = [bh,k] ,
T(Eh,k) = bh,k(Pα′ [Er,s ⊕O]Qβ′) for every cell Eh,k. Therefore,

T(U) = T

(
p

∑
h=1

q

∑
k=1

uh,kEh,k

)
=

p

∑
h=1

q

∑
k=1

uh,kT(Eh,k)

=
p

∑
h=1

q

∑
k=1

uh,kbh,k(P[Eh,k ⊕O]Q) = P[(U ◦ B)⊕O]Q

for every U = [ui,j] ∈Mp,q(S). Thus T is a (P, Q, B)-block map.
Consider the second case: T(R1) v C1. As in the first case, a similar argument implies that p ≤ n

and q ≤ m. We obtain T(Eh,k) = bh,k(Pα′ [Eh,k ⊕O]tQβ′) for all Eh,k. Hence

T(U) = T

(
p

∑
h=1

q

∑
k=1

uh,kEh,k

)
=

p

∑
h=1

q

∑
k=1

uh,kT(Eh,k)

=
p

∑
h=1

q

∑
k=1

uh,kbh,k(P[Eh,k ⊕O]tQ) = P[(U ◦ B)t ⊕O]Q

for every U = [ui,j] ∈Mp,q(S). This implies that T is a (P, Q, B)-block map.
Conversely, if T is a (P, Q, B)-block map, then T doubly preserves TR 1 by Lemma 2.

Lemma 3. Suppose that T preserves TR 1 and TR t(≥ 2). Then we have
(1) T doubly preserves TR 1;
(2) T is a (P, Q, B)-block map.

(1) Consider the first case that t = 2: If U ∈Mp,q(S) has TR 1, then T(U) also has TR 1.
Conversely, if V ∈ Mp,q(S) is the matrix with τ(T(V)) = 1, and τ(V) 6= 1, then τ(V) ≥ 2.

However, τ(V) 6= 2 since τ(V) = 2 implies τ(T(V)) = 2 by assumption that t = 2. Thus τ(V) ≥ 3.
Let V1 v V such that τ(V1) = 2 and V = V1 + V2 with τ(V2) ≥ 1. Then T(V1) v T(V1) + T(V2) =

T(V1 + V2) = T(V). Thus 2 = τ(T(V1)) ≤ τ(T(V)) = 1 by Lemma 1, which inequality is impossible.
That is, T doubly preserves TR 1.

Consider the second case that t ≥ 3: Assume that a TR 2 matrix is mapped to a TR 1 matrix.
Then we may consider τ(T(E1,1 + E2,2)) = 1 without loss of generality. Then, since T preserves TR 1
and TR t,

t = τ(T(E1,1 + E2,2 + E3,3 + · · ·+ Et,t)) = τ(T(E1,1 + E2,2)+ T(E3,3)+ · · ·+ T(Et,t)) ≤ τ(T(E1,1 +

E2,2)) + τ(T(E3,3)) + · · ·+ τ(T(Et,t))) = 1 + (t− 2) < t,
which is impossible. Hence, T doubly preserves TR 1.

(2) By (1), T doubly preserves TR 1. Hence T is a (P, Q, B)-block map by Theorem 1.

Lemma 4. Suppose that T preserves TR t.
(1) If t ≥ 2 and T does not preserve TR 1, then there is a matrix U such that τ(U) = 1 and τ(T(U)) ≥ 2.
(2) If τ(U) ≤ t for some U ∈Mp,q(S), then τ(T(U)) ≤ t.

(1) Assume that T does not preserve TR 1 and τ(T(U)) ≤ 1 for all U with τ(U) = 1. Then,
there is a cell Eh,k with T(Eh,k) = O. We may assume that T(E1,1) = O without loss of generality.
Since τ(E1,1 + E2,2 + · · · + Et,t) = t and T preserves TR t, we get τ(T(E2,2 + E3,3 + · · · + Et,t)) =
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τ(T(E1,1 + E2,2 + · · ·+ Et,t)) = t. If we make V = T(E2,2 + · · ·+ Et,t), then we can take some cells
C1, C2, · · · , Ct such that V w Ch for all h = 1, · · · , t, and τ(C1 + C2 + · · ·+ Ct) = t. Since T(E2,2 +

· · ·+ Et,t) = V w C1 + C2 + · · ·+ Ct, there is a cell in {E2,2, · · · , Et,t} whose image dominates two
cells in {C1, C2, · · · , Ct}, which contradicts τ(T(U)) ≤ 1 for all U with τ(U) = 1 in the assumption.
This contradiction implies that there is a matrix U such that τ(U) = 1 and τ(T(U)) ≥ 2.

(2) If τ(U) = t, then τ(T(U)) = t since T preserves TR t. Assume that τ(U) = s < t,
and τ(T(U)) > t. Then there exists a matrix V such that τ(U + V) = t and hence τ(T(U + V)) = t.
However, by Lemma 1,

t = τ(T(U + V)) = τ(T(U) + T(V)) ≥ τ(T(U)) > t,
which is impossible. Therefore it follows that τ(T(U)) ≤ t.

Lemma 5. If T preserves any TR t(≥ 2), but does not preserve TR 1, then τ(T(J)) ≤ (t + 2), where J is the
p× q matrix with all entries 1.

By Lemma 4, if T does not preserve TR 1, then there is some matrix U such that τ(U) = 1 and
τ(T(U)) ≥ 2. So without loss of generality we may assume that T(E1,1 + E1,2) w E1,1 + E2,2.

Assume that τ(T(J)) ≥ (t + 3). Then, τ(T(J)[3, · · · , m|3, · · · , n]) ≥ (t− 1). So we may assume
that T(J)[3, · · · , m|3, · · · , n] w E3,3 + E4,4 + · · ·+ Et+1,t+1 without loss of generality. Thus, there are
(t− 1) cells, C3, C4, · · · , Ct+1 such that T(C3 + C4 + · · ·+ Ct+1) w E3,3 + E4,4 + · · ·+ Et+1,t+1. Then,
T(E1,1 + E1,2 + C3 + C4 + · · ·+ Ct+1) w It+1 = E1,1 + E2,2 + · · ·+ Et+1,t+1. However, τ(E1,1 + E1,2 +

C3 + C4 + · · ·+ Ct+1) ≤ t and τ(T(E1,1 + E1,2 + C3 + C4 + · · ·+ Ct+1)) ≥ (t + 1), which contradicts
Lemma 4 (2). Thus, τ(T(J)) ≤ (t + 2).

Lemma 6. Let i, j > t. If τ(E1,1 + · · ·+ Et,t + U) ≥ (t + 1) and U[t + 1, · · · , i|t + 1, · · · , j] = O, then
there is some h, 1 ≤ h ≤ t, such that τ(E1,1 + · · ·+ Eh−1,h−1 + Eh+1h+1 + · · ·+ Et,t + U) ≥ (t + 1).

Assume that V = E1,1 + · · · + Et,t + U and τ(V) ≥ (t + 1). Then there are (t + 1) cells
C1, C2, · · · , Ct+1 such that V w C1 + C2 + · · · + Ct+1 and τ(C1 + C2 + · · · + Ct+1) = (t + 1).
If C1 + C2 + · · ·+ Ct+1 w It ⊕O then some cell Ck must be a cell Ea,b where a, b ≥ (t + 1), which is in
contradiction with the assumption U[t+ 1, · · · , i|t+ 1, · · · , j] = O. Thus C1 +C2 + · · ·+Ct+1 w It⊕O
does not hold. That is, there is some h, 1 ≤ h ≤ t, such that

τ(E1,1 + · · ·+ Eh−1,h−1 + Eh+1,h+1 + · · ·+ Et,t + U) ≥ (t + 1).

Lemma 7. For 2 ≤ (t + 1) < p, if T preserves consecutive TR t and TR (t + 1), then it preserves TR 1.

If t = 1, we have finished. Assume that t ≥ 2, and that T does not preserve TR 1. Then we have
τ(T(J)) ≤ (t + 2) by Lemma 5. Since T preserves TR (t + 1), τ(T(J)) ≥ (t + 1).

Thus, τ(T(J)) = (t + h) for h = 1 or h = 2. Now, we may assume that for some i, j(< (t + h))
with (i + j) = (t + h), T(J)[i + 1, · · · , m|j + 1, · · · , n] = O. This implies that

T(Et+1,t+1)[t + 1, · · · , m|t + 1, · · · , n] = O. (4)

Now, without loss of generality, we may assume that there are (t + h) cells C1, C2, · · · , Ct+h such
that T(Cr) w Er,r for r = 1, 2, · · · , (t + h). Assume that the image of one cell in {C1, C2, · · · , Ct+h}
dominates more than one cell in {E1,1, E2,2, · · · , Et+1,t+1}. Without loss of generality, we may assume
that T(C1) w E1,1 + E2,2. Then, T(C1 + C3 + · · · + Ct+1) w E1,1 + E2,2 + · · · + Et+1,t+1, which is a
contradiction since τ(C1 +C3 + · · ·+Ct+1) ≤ t, and hence τ(T(C1 +C3 + · · ·+Ck+1)) ≤ t by Lemma 4
(2), but τ(E1,1 + E2,2 + · · ·+ Et+1,t+1) = (t+ 1). Therefore, for each r = 1, · · · , (t+ 1), T(Cr) dominates

only one Er,r. So, by permuting we may assume that C1 + C2 + · · · + Ct v
[

Jt Ot,q−t

Op−t,t Op−t,q−t

]
.

Consider T(C1 + · · · + Ct + Et+1,t+1) = Z. This matrix Z must have TR (t + 1) and dominates
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E1,1 + E2,2 + · · · + Et,t + T(Et+1,t+1). Applying Equation (1) to Lemma 6, we can choose a cell Cs

in {C1, · · · , Ct} such that τ(T(C1 + · · · + Cs−1 + Cs+1 + · · · + Ct + Et+1,t+1)) = (t + 1). However,
τ(C1 + · · ·+ Cs−1 + Cs+1 + · · ·+ Ct + Et+1,t+1) = t, which is a contradiction.

This contradiction implies that T preserve TR 1.

Lemma 8. If T preserves TR t and TR s with p ≥ s ≥ (t + 3), then it preserves TR 1.

Assume that T does not preserve TR 1. Then τ(T(J)) ≤ (t + 2) by Lemma 5. For any U v J,
we have τ(T(U)) ≤ τ(T(J)) ≤ t + 2 < s by Lemma 1 and assumption. However, if we take
U = Is = E1,1 + E2,2 + · · ·+ Es,s v J, then T(Is) must have TR s by assumption, while τ(T(Is)) ≤
τ(T(J)) ≤ (t + 2) < s, a contradiction. That is, τ(T(U)) = 1 for arbitrary TR 1 matrix U. Therefore T
preserves TR 1.

Lemma 9. If T preserves TR t and TR (t + 2), then it preserves TR (t + 1).

Let U ∈Mp,q(S).
First, consider the case that τ(U) = (t + 1) and τ(T(U)) ≥ (t + 2). Let U1, U2, · · · , Ut+1 be

matrices of TR 1 such that U = U1 + U2 + · · · + Ut+1. Since tr(T(Uh)) ≥ 2 for some Uh, we may
assume that τ(T(U1 + U2 + · · ·+ Uh)) ≥ (h + 1), for every h = 1, 2, · · · (t + 1). However, then τ(U1 +

U2 + · · ·+ Ut) = t while τ(T(U1 + U2 + · · ·+ Ut)) ≥ (t + 1), a contradiction. Thus if τ(U) = (t + 1),
τ(T(U)) ≤ (t + 1).

Second, consider the cases τ(U) = (t + 1) and τ(T(U)) = r ≤ t. We may assume without
loss of generality that U = E1,1 + E2,2 + · · · + Et+1,t+1 and T(U) w E1,1 + E2,2 + · · · + Er,r. Then
there are r elements in {T(E1,1), T(E2,2), · · · , T(Et+1,t+1)} whose sum dominates E1,1 + E2,2 + · · ·+
Er,r. Say, without loss of generality, that T(E1,1 + E2,2 + · · ·+ Er,r) w E1,1 + E2,2 + · · ·+ Er,r. Now,
τ(U + Et+2,t+2) = (t + 2) so that τ(T(U + Et+2,t+2)) = (t + 2). However, since τ(T(U + Et+2,t+2)) =

τ((T(U) + T(Et+2,t+2)) ≤ τ(T(U)) + τ(T(Et+2,t+2)), it follows that τ(T(Et+2,t+2)) ≥ (t + 2 − r)
and there are r elements of {T(E1,1), T(E2,2), · · · , T(Et+1,t+1)} whose sum with T(Et+2,t+2) has TR
(t + 2), say τ(T(E1,1 + E2,2 + · · ·+ Er,r + Et+2,t+2)) = (t + 2). Since r ≤ t, τ(E1,1 + E2,2 + · · ·+ Er,r +

Er+2,r+2) ≤ (r + 1) and τ(T(E1,1 + E2,2 + · · ·+ Er,r + Et+2,t+2)) = (t + 2). By the above case, we have
a contradiction.

Thus T preserves TR (t + 1).

Lemma 10. If T doubly preserves any one TR t(≥ 2), then T preserves TR (t− 1) and hence T preserves TR 1.

Consider the first case t = 2: Assume that U ∈Mp,q(S) has TR 1. Then we may choose a matrix
V ∈ Mp,q(S) such that τ(V) = 1 and τ(U + V) = 2. Since τ(T(U)) ≤ τ(T(U + V)) = 2 since T
doubly preserves TR 2. Since τ(T(U)) 6= 2, it follows that τ(T(U)) = 1. Thus the Lemma holds in the
case t = 2.

Consider the second case t ≥ 3: Let U ∈ Mp,q(S) and τ(U) = (t− 1). Assume that τ(T(U)) =

r < (t − 1). Say we may assume that τ(T(E1,1 + · · · + Et−1,t−1)) = r < (t − 1). Since τ(T(E1,1 +

· · ·+ Et,t)) = t, it follows that τ(T(Et,t)) ≥ (t− r). So we may assume without loss of generality,
that T(E1,1 + · · · + Et,t) w E1,1 + · · · + Et,t and that T(Et,t) w Es+1,s+1 + · · · + Et,t for some s ≤
r. Thus, there are s cells {Eh1,h1 , · · · , Ehs ,hs} in {E1,1, · · · , Et,t} such that T(Eh1,h1 + · · · + Ehs ,hs) w
E1,1 + · · ·+ Es,s. Then T(E1,1 + · · ·+ Et,t) w T(Eh1,h1 + · · ·+ Ehs ,hs + Et,t) w E1,1 + · · ·+ Et,t. Thus
τ(T(Eh1,h1 + · · ·+ Ehs ,hs + Et,t)) = t. However,

τ(E1,1 + · · ·+ Es,s + Et,t) = (s + 1) ≤ (r + 1) < (t− 1) + 1 = t,
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which contradicts the assumption that T doubly preserves TR t. Hence τ(T(U)) ≥ (t− 1). Further,
τ(T(U)) ≤ (t − 1) by Lemma 4 (2), since T doubly preserves TR t. Therefore τ(T(U)) = (t − 1),
which implies that T preserves TR (t− 1).

Moreover, T preserves TR 1 by Lemma 7.

Lemma 11. (1) If T preserves any two TR t and TR s(> t), then T is a (P, Q, B)-block map. (2) If T doubly
preserves any one TR t, then we have that T is also a (P, Q, B)-block map.

(1) First case s = (t + 1): Then T preserves TR 1 by Lemma 7.
Second case s = (t + 2): Lemma 9 implies that T preserves TR (t + 1). Hence T preserves TR 1 by

Lemma 7.
Third case s ≥ (t + 3): Then by Lemma 8, T preserves TR 1.
Consequently, T preserves TR 1 by the above three cases. Hence, T doubly preserves TR 1 by

Lemma 3. By Theorem 1, T is a (P, Q, B)-block map.
(2) By Lemma 10, T preserves TR 1. By Lemma 3, T doubly preserves TR 1. Thus T becomes a

(P, Q, B)-block map by Theorem 1.

Now we have the main theorem :

Theorem 2. The following are equivalent for T :

1. T preserves any two TR t and TR s, with t < s and (t + 1) < p;
2. T doubly preserves any one TR t, with 1 ≤ t ≤ p;
3. T preserves TR;
4. T is the (P, Q, B)-block map.

It holds trivally that 3 implies 1 and 3 implies 2. Moreover, by Lemma 2, we have that 4 implies
the other items 1, 2 and 3.

To show that 1 implies 4, suppose that T preserves TR t and TR s, with 1 ≤ t < s ≤ p ≤ q. Then,
by Lemma 11 (1), T is the (P, Q, B)-block map.

To show that 2 implies 4, suppose that T doubly preserves TR t. Then T is the (P, Q, B)-block map
Lemma 11 (2).

Thus we obtained characterizations of the linear maps that preserve any two term rank between
different matrix spaces.

4. Conclusions

There are many research articles on the linear operators which preserve term rank over some
matrix spaces. However, there are few articles for the characterizations of the linear maps that preserve
term rank between different matrix spaces over semirings. In this paper, we have characterized the
linear maps which preserve term rank between different matrix spaces over anti-negative commutative
semirings, which extend the previous results on characterizations of linear operators between the same
matrix spaces. That is, a linear map T from p× q matrix spaces into m× n matrix spaces preserves
any two term ranks if and only if T preserves all term ranks if and only if T is a (P, Q, B)-block map.
In the future, we may apply these results and this proof method to investigate the linear preserver
problems over various semirings. We hope to apply these results to characterize the linear maps that
preserve the semiring rank between different matrix spaces, which extends the previous results on
characterizations of linear operators that preserve the semiring rank between the same matrix spaces.
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