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Abstract: This article researches an ill-posed Cauchy problem of the elliptic-type equation. By placing
the a-priori restriction on the exact solution we establish conditional stability. Then, based on
the generalized Tikhonov and fractional Tikhonov methods, we construct a generalized-fractional
Tikhonov-type regularized solution to recover the stability of the considered problem, and some
sharp-type estimates of convergence for the regularized method are derived under the a-priori and
a-posteriori selection rules for the regularized parameter. Finally, we verify that the proposed method
is efficient and acceptable by making the corresponding numerical experiments.

Keywords: Cauchy problem; elliptic equation; regularization method; a-priori and a-posteriori
convergence estimates; numerical simulation

1. Introduction

Let Ω ⊂ Rn(n ≥ 1) be a connected and bounded region, ∂Ω be the smooth boundary of Ω,
Lx : H2(Ω)

⋂
H1

0(Ω) ⊂ L2(Ω) → L2(Ω) be a linear elliptic operator, which is densely defined,
self-adjoint and positive-definite with regard to the variable x. Suppose that the eigenvalues of Lx are
λn(n ≥ 1), i.e., there is one nontrivial solution Xn ∈ L2(Ω), and it satisfies the below boundary problem{

LxXn = λnXn in Ω,

Xn = 0, on ∂Ω.
(1)

Further assume that the eigenvalues of Lx satisfies

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . , lim
n→∞

λn = ∞. (2)

The present article studies the problem below
wyy(y, x)− Lxw(y, x) = 0, x ∈ Ω, 0 < y < T,

w(y, x) = 0, x ∈ ∂Ω, 0 ≤ y ≤ T,

w(0, x) = ϕ(x), x ∈ Ω,

wy(0, x) = ψ(x), x ∈ Ω,

(3)

which is a Cauchy problem for elliptic-type equation. We seek u(y, ·)(0 < y ≤ T) under the Cauchy
datum ϕ, ψ ∈ L2(Ω) are given.

In many engineering and science areas, the Cauchy problem for elliptic-type equations has many
important applications, see [1–4]. Note that, as Lx = − ∂2

∂x2 , (3) is a special ill-posed problem—the
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Cauchy problem of the Laplace equation. If Lx = − ∂2

∂x2 + k2(k > 0), we know that (3) becomes the
Cauchy problem of modified Helmholtz equation.

In fact, we can divided (3) into two linear problem
uyy(y, x)− Lxu(y, x) = 0, x ∈ Ω, 0 < y < T,

u(y, x) = 0, x ∈ ∂Ω, 0 ≤ y ≤ T,

u(0, x) = ϕ(x), x ∈ Ω,

uy(0, x) = 0, x ∈ Ω,

(4)

and 
vyy(y, x)− Lxv(y, x) = 0, x ∈ Ω, 0 < y < T,

v(y, x) = 0, x ∈ ∂Ω, 0 ≤ y ≤ T,

v(0, x) = 0, x ∈ Ω,

vy(0, x) = ψ(x), x ∈ Ω,

(5)

thus, the solution of (3) can be expressed as w = u + v.
It can be found that many scholars have researched this kind of problem in the aspect of theory

and algorithm, such as [5–17], and so on. In [14], the author solved (4), (5) by constructing a
generalized Tikhonov regularization method, meanwhile derived the a-priori convergence estimate of
regularized method. In [18], Hochstenbach-Reichel studied the ill-posed problems of discrete type
by using a fractional Tikhonov regularization method. In the present paper, by placing the a-priori
restrictions on the exact solutions, we establish and prove the conditional stability of problems (4), (5).
Meanwhile, inspired by the methods in [14,18], we develop a generalized-fractional Tikhonov-type
regularization method to do with (4), (5), then adopt the a-priori and a-posteriori rules to choose the
regularized parameters, and give and prove some sharp estimates of convergence for our method. In
fact, the proposed method is a generalization for the nonlocal boundary value problem method (or
quasi-boundary value method), the boundary (or modified) Tikhonov method, and the generalized
Tikhonov method, it also can be regarded as a modification on the fractional Tikhonov method (see
Remark 1). So far, there are no related references where this method is proposed to study (4), (5). In the
numerical simulation aspect, we also notice that the computation effect of this method is also efficient
and feasible.

We arrange the structure of the article as below. We give the conditional stabilities of
problems (4), (5) in Section 2. Section 3 describes the construction procedure of regularization method,
and Section 4 provides some necessary preparation knowledge. We give the results of convergence
estimate in Section 5. Section 6 is arranged as the numerical simulation part. A summary of the article
and further outlook are given in Section 7. The proofs of related Lemmas and Theorems are arranged
in Appendix A.

2. Conditional Stability

The conditional stability means that the solution is continuously dependent on the given datum
under certain additional condition [5,19,20]. This section establishes the conditional stability of
problems (4), (5) by imposing the corresponding a-priori conditions for the exact solutions.

Define

Dξ
γ,q =

{
ξ ∈ L2(Ω);

∞

∑
n=1

λ
2γ
n e2qT

√
λn |< ξ, Xn >|2 < +∞

}
, γ ≥ 1, q > 1, (6)
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where < ·, · > is the inner product in L2(Ω), Xn = Xn(x) are the eigenfunctions of Lx, and it is the
orthogonal basis of space L2(Ω). We define the norm of Dξ

γ,q as

‖ξ‖Dξ
γ,q

=

(
∞

∑
n=1

λ
2γ
n e2qT

√
λn |< ξ, Xn >|2

)1/2

. (7)

By adopting the Fourier method, we respectively can express the solutions of (4) and (5) as

u(y, x) =
∞

∑
n=1

cosh(
√

λny)ϕnXn, ϕn = 〈ϕ, Xn〉, (8)

v(y, x) =
∞

∑
n=1

sinh(
√

λny)√
λn

ψnXn, ψn = 〈ψ, Xn〉. (9)

In 1996, [14] considered problems (4) and (5). For (4), the author formulated the problem as

A1(y)u(y, x) = u(0, x) = ϕ(x), (10)

here the linear operator A1(y) = 1/ cosh(
√

Lxy) : L2(Ω) → L2(Ω) is self-adjoint and compact,
and 1/ cosh(

√
λny) are its eigenvalues, Xn are the corresponding eigenelements. For (5), the author

formulated the problem as
A2(y)v(y, x) = vy(0, x) = ψ(x), (11)

here A2(y) =
√

Lx/ sinh(
√

Lxy) : L2(Ω) → L2(Ω) is self-adjoint, linear bounded, and compact,√
λn/ sinh(

√
λny) are its eigenvalues, Xn are the corresponding eigenelements.

Below, we give the conditional stabilities for problems (4) and (5), respectively.

Theorem 1. Assume that u(T, x) satisfies

‖u(T, x)‖Du
γ,q
≤ E, (12)

then the below stability estimate of condition can be established

‖u(y, x)‖L2(Ω) ≤ 2
y

qT
(

λ
γ
1 e
√

λ1T
)− y

qT E
y

qT ‖ϕ‖
1− y

qT

L2(Ω)
. (13)

Theorem 2. Suppose that v(T, x) satisfies

‖v(T, x)‖Dv
γ,q
≤ E, (14)

then we can establish the following result of conditional stability

‖v(y, x)‖L2(Ω) ≤ 2
y

qT λ
( 1

2−γ)− qT
2y

1

(
e
√

λ1T
(

1− e−2
√

λ1T
))− y

qT E
y

qT ‖ψ‖
1− y

qT

L2(Ω)
. (15)

3. Regularization Method

From (8), (9), we know that, as n→ ∞, the limits of the sequences {cosh(
√

λny)} and
{

sinh(
√

λny)√
λn

}
are infinities, respectively, hence problems (4), (5) are both severely ill-posed. To recover the continuous
dependence of the solutions on the datum ϕ, ψ, we need construct the corresponding regularization
solutions for (4), (5). For the references which describe the usual regularization theory, we can refer
to [21,22], etc.
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3.1. Regularization Method for Problem (4)

In [14], the author considered (4) and expressed it as the operator equation (10). Then let γ > 0,
ϕδ(x) = uδ(0, x) be the observation data, δ is the observed error bound, µ is the regularized parameter,
the author proposed a generalized Tikhonov method by solving the minimum value problem

min
u∈L2(Ω)

Jµ(u), Jµ(u) =
∥∥∥∥ 1

cosh(
√

Lxy)
u− uδ(0, x)

∥∥∥∥2
+ µ

∥∥∥∥L
γ
2
x

cosh(
√

LxT)
cosh(

√
Lxy)

u
∥∥∥∥2

, (16)

denote uδ
µ(y, x) be the regularization solution, then it satisfies the normal equation(

1
cosh2(

√
Lxy)

+ µLγ
x

cosh2(
√

LxT)
cosh2(

√
Lxy)

)
uδ

µ(y, x) =
1

cosh(
√

Lxy)
uδ(0, x), (17)

from (17), we can get that the regularized solution is

uδ
µ(y, x) =

∞

∑
n=1

cosh(
√

λny)ϕδ
n

1 + µλ
γ
n cosh2(

√
λnT)

Xn(x), (18)

where ϕδ
n = 〈ϕδ, Xn〉L2(Ω), the error data ϕδ satisfies

‖ϕδ − ϕ‖L2(Ω) ≤ δ. (19)

In 2011, Hochstenbach-Reichel studied the ill-posed problems of discrete type by using a fractional
Tikhonov regularization method [18]. Note that, if applying the method of [18] to problem (4), we can
write the regularized solution as

uδ
µ(y, x) =

∞

∑
n=1

cosh(
√

λny)ϕδ
n

1 + µ coshq(
√

λny)
Xn(x), q > 1. (20)

Inspired by the ideas of [14,18], setting γ ≥ 1, q > 1, α is the regularized parameter,
we develop a generalized-fractional Tikhonov-type regularized solution uδ

α(y, x) by solving the
minimum value problem

min
u∈L2(Ω)

Jα(u), Jα(u) =
∥∥∥∥ 1

cosh(
√

Lxy)
u− uδ(0, x)

∥∥∥∥2
+ α

∥∥∥∥∥L
γ
2
x

cosh
q
2 (
√

LxT)
cosh(

√
Lxy)

u

∥∥∥∥∥
2

, (21)

from the necessary condition of the first order, we know that uδ
α(y, x) satisfies the normal equation(

1
cosh2(

√
Lxy)

+ αLγ
x

coshq(
√

LxT)
cosh2(

√
Lxy)

)
uδ

α(y, x) =
1

cosh(
√

Lxy)
uδ(0, x), (22)

from (22), we can express the regularized solution of (4) as

uδ
α(y, x) =

∞

∑
n=1

cosh(
√

λny)ϕδ
n

1 + αλ
γ
n coshq(

√
λnT)

Xn(x), q > 1. (23)

Remark 1. In the process of definition for the regularization solution (23), we always assume that γ ≥ 1 and
q > 1, this assumption mainly is used to derive the sharp convergence estimate of regularization method. In fact, if
γ = 0, q = 1, the method in this paper becomes the nonlocal boundary value problem method (or quasi-boundary
value method) in [13]. If γ = 0, q > 1, compared with (20), (23) can be seen as a modification on fractional
Tikhonov method in [18]. When γ = 0, q = 2, our method is the boundary (or modified) Tikhonov method (you
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can see [23,24], etc). As γ > 0, q = 2, our method is the generalized Tikhonov method in [14]. In summary, the
proposed method in this paper is a meaningful expansion and extension on the these existing works.

3.2. Regularization Method for Problem (5)

For (5), [14] expressed it as the operator equation (11) equivalently. Then let γ > 0, µ is the
regularized parameter, δ is the bound of observed error, ψδ(x) = vδ

y(0, x) is the observed data,
the author designed a generalized Tikhonov regularized method by solving the minimum value
problem below

min
v∈L2(Ω)

Jµ(v), Jµ(v) =
∥∥∥∥ √

Lx

sinh(
√

Lxy)
v− vδ

y(0, x)
∥∥∥∥2

+ µ

∥∥∥∥L
γ
2
x

sinh(
√

LxT)
sinh(

√
Lxy)

v
∥∥∥∥2

, (24)

denote vδ
µ(y, x) be the regularized solution, then it satisfies the normal equation(

Lx

sinh2(
√

Lxy)
+ µLγ

x
sinh2(

√
LxT)

sinh2(
√

Lxy)

)
vδ

α(y, x) =
√

Lx

sinh(
√

Lxy)
vδ

y(0, x), (25)

from (25), the expression of the regularized solution of (5) is

vδ
µ(y, x) =

∞

∑
n=1

sinh(
√

λny)ψδ
n√

λn(1 + µλ
γ−1
n sinh2(

√
λnT))

Xn(x), (26)

where ψδ
n = 〈ψδ, Xn〉L2(Ω), and

‖ψδ − ψ‖L2(Ω) ≤ δ. (27)

Meanwhile, if applying the fractional Tikhonov method of Hochstenbach-Reichel [18] to problem
(5), the expression of regularization solution is

vδ
µ(y, x) =

∞

∑
n=1

sinh(
√

λny)ψδ
nXn(x)

√
λn

(
1 + µ

(
sinh(

√
λny)/

√
λn
)q
) , q > 1. (28)

Similar with Section 3.1, let γ ≥ 1, q > 1, β be the regularized parameter, by solving the following
minimization problem we constructed a generalized-fractional Tikhonov-type regularization solution
of (5)

min
v∈L2(Ω)

Jβ(v), Jβ(v) =
∥∥∥∥ √

Lx

sinh(
√

Lxy)
v− vδ

y(0, x)
∥∥∥∥2

+ β

∥∥∥∥∥L
γ
2
x

sinh
q
2 (
√

LxT)
sinh(

√
Lxy)

v

∥∥∥∥∥
2

, (29)

from the necessary condition of the first order, we can derive that the regularized solution vδ
β(y, x)

satisfies the normal equation(
Lx

sinh2(
√

Lxy)
+ βLγ

x
sinhq(

√
LxT)

sinh2(
√

Lxy)

)
vδ

β(y, x) =
√

Lx

sinh(
√

Lxy)
vδ

y(0, x), (30)

from (30), the expression of regularized solution of (5) is

vδ
β(y, x) =

∞

∑
n=1

sinh(
√

λny)ψδ
n√

λn

(
1 + βλ

γ−1
n sinhq(

√
λnT)

)Xn(x), q > 1. (31)

4. Preparation Knowledge

We need three functions and get help from some useful inequalities, which will be used in the
procedure of the proof for the convergence of regularized solutions.
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Let α, β > 0, 0 < y ≤ T, the following two functions G1(λn) and G2(λn) are defined

G1(λn) =
e−(qT−y)

√
λn

α
2q λ

γ
n + e−qT

√
λn

, γ ≥ 1, q > 1, (32)

G2(λn) =
e−(qT−y)

√
λn

√
λ1

(
βλ

γ−1
n

(
1−e−2

√
λ1T

2

)q
+ e−qT

√
λn

) , γ ≥ 1, q > 1. (33)

Simultaneously, the function H(η) also will be used, and it is given in [13].

H(η) =

{
ηη(1− η)1−η , η ∈ (0, 1).

1, η = 0, 1,
(34)

Lemma 1. [13] Assume that 0 ≤ r ≤ s < ∞, s 6= 0, ν > 0, thus

νe−r

ν + e−s ≤ H
( r

s

)
ν

r
s . (35)

Theorem 3. Assume that α > 0, G1(λn) is given by (32), hence we can derive that

G1(λn) ≤ 2C1α
− y

qT , C1 = max{1, (λγ
1 )
−1}. (36)

Theorem 4. Suppose that β > 0, G2(λn) is the function given in (33), we have the result as below

G2(λn) ≤ 2D1β
− y

qT , D1 = C1λ
y

qT−
1
2

1

(
1− e−2

√
λ1T
)− y

T . (37)

5. Convergence Estimate

This section gives the a-priori and a-posteriori convergence results of the proposed method.

5.1. The Estimate of Convergence for the Method in (4)

5.1.1. The Estimate of a-Priori Convergence

Theorem 5. We denote u, uδ
α as the exact and regularized solutions given in (8) and (23), respectively,

ϕδ denotes the observed data and satisfy (19). Assume that there holds the a-priori condition

‖u(T, ·)‖2
Du

γ,q
=

∞

∑
n=1

λ
2γ
n e2qT

√
λn |〈u(T, ·), Xn〉|2 ≤ E2, (38)

α is the regularized parameter, and we select it by

α = δ/E, (39)

thus we can establish the below result of convergence

‖uδ
α(y, ·)− u(y, ·)‖ ≤ 4C1E

y
qT δ

1− y
qT . (40)

5.1.2. The Estimate of a-Posteriori Convergence

In Theorem 5, we adopt the a-priori rule to select the regularized parameter α, i.e., α = δ/E.
But in some actual problems, since the analysis form of the exact solution cannot be sought easily,
the computation of E usually has certain difficulty. In view of this, it is necessary to consider the
a-posteriori selection rule of α. Now, we give an a-posteriori rule and use it to choose α, which is
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similar to the discrepancy principle described in [25]. In this rule, the regularized parameter α only
depends on the bound of observed error δ and the observed data ϕδ, we need not know the a-priori
bound E.

We choose α by the equation below

‖uδ
α(0, x)− ϕδ(x)‖ = τδ, τ > 1. (41)

The following two Lemmas are necessary and meaningful in deriving the a-posteriori result
of convergence.

Lemma 2. Denote the function ρ(α) = ‖uδ
α(0, x)− ϕδ(x)‖, then there hold the following assertions: (i) In

the interval (0,+∞), ρ(α) is consecutive; (ii) limα→0 ρ(α) = 0; (iii) limα→+∞ ρ(α) = ‖ϕδ‖; (iv) For
α ∈ (0,+∞), ρ(α) is increasing and strictly incremental.

Lemma 3. Let τ > 1, the regularized parameter α = α(δ, ϕδ) determined by (41) satisfies that

α ≥ (τ−1)e
√

λ1T

2
δ
E .

Theorem 6. Let u, uδ
α be the exact and regularized solutions given in (8) and (23), respectively, ϕδ denotes the

observed data and satisfy (19). Assume that there holds the a-priori condition (38), the regularized parameter is
selected by (41), then the below a-posteriori estimate of convergence can be established

‖uδ
α(y, ·)− u(y, ·)‖ ≤ C2E

y
qT δ

1− y
qT , (42)

where C2 = max
{

2C1

(
(τ − 1)e

√
λ1T/2

)− y
qT , 2

y
qT
(

λ
γ
1 e
√

λ1T
)− y

qT
(τ + 1)1− y

qT

}
.

Remark 2. We all know that, as we use one regularized method to solve the ill-posed operator equation K f = g,
let δ be the observed error bound, gδ denotes the error data which satisfies ‖gδ − g‖ < δ, f δ

α is the regularization
solution, the basic idea of selecting the regularized parameter by a-posteriori rule is to seek α by ‖K f δ

α − gδ‖ = τδ,
(τ > 1). Based on this description, we can verify that the a-posteriori selection rule (41) actually can written as
‖A1(y)uδ

α(y, ·)− ϕδ(x)‖ = τδ, so it is consistent with the idea of [25].

5.2. The Estimate of Convergence for the Method in (5)

5.2.1. The Estimate of a-Priori Convergence

Theorem 7. Let v given by (9), vδ
β defined by (31) be the exact and regularized solutions, respectively, ψδ is the

observation data and (27) is satisfied. Assume that the a-priori condition

‖v(T, ·)‖2
Dv

γ,q
=

∞

∑
n=1

λ
2γ
n e2qT

√
λn |〈v(T, ·), Xn〉|2 ≤ E2, (43)

is valid, and we choose the regularized parameter β as

β = δ/E, (44)

thus, the below estimate of convergence can be derived

‖vδ
β(y, ·)− v(y, ·)‖ ≤ 2

(
1 + 1/(

√
λ1e
√

λ1y)
)

D1E
y

qT δ
1− y

qT . (45)
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5.2.2. The Estimate of a-Posteriori Convergence

Let us seek β by the equation below

‖(vδ
β)y(0, x)− ψδ(x)‖ = τδ, τ > 1. (46)

Lemma 4. Denote $(β) = ‖(vδ
β)y(0, x)− ψδ(x)‖, there hold the following assertions: (i) ∀β ∈ (0,+∞),

$(β) is consecutive; (ii) limβ→0 $(β) = 0; (iii) limβ→+∞ $(β) = ‖ψδ‖; (iv) $(β) increases strictly in the
interval (0,+∞).

Lemma 5. Let τ > 1 is a constant, the regularized parameter β = β(δ, ψδ) determined by (46) satisfies that
β ≥
√

λ1 sinh(
√

λ1T)(τ − 1) δ
E .

Theorem 8. Let v, vδ
β be given in (9), (31), respectively, ψδ is the observed data and (27) is satisfied.

We assume (43) to be true, and choose the regularized parameter β by a-posteriori rule (46), then the a-posteriori
estimate of convergence below can be established

‖vδ
β(y, ·)− v(y, ·)‖ ≤ D2E

y
qT δ

1− y
qT , (47)

where D2 = max

{
2D1

(√
λ1 sinh(

√
λ1T)(τ − 1)

)− y
qT , 2

y
qT λ

( 1
2−γ)− qT

2y
1

(
e
√

λ1T
(

1− e−2
√

λ1T
))− y

qT
(τ + 1)1− y

qT

}
.

Remark 3. We can verify that the a-posteriori selection rule (46) is equivalent to the form ‖A2(y)vδ
β(y, ·)−

ψδ(x)‖ = τδ, which is also consistent with the idea of [25].

Remark 4. We derive the sharp results of convergence (40), (42), (45), and (47) by imposing the a-priori
assumptions (38), (43) and applying the conclusions of Theorems 3, 4. We know that (38) and (43) are the
stronger conditions, however we can verify that they can be accepted and natural, we can set some functions
that satisfy this two conditions. For example, in order to verify the feasibility of (38), we take T = 1,
Lx = − ∂2

∂x2 : H2(0, π)
⋂

H1
0(0, π) ⊂ L2(0, π) → L2(0, π), here λn = n2, Xn(x) =

√
2/π sin(nx).

Taking u(y, x) = sin(x) cosh(y), then

‖u(T, ·)‖2
Du

γ,q
=

∞

∑
n=1

n4γe2nqT |〈u(T, ·), Xn〉|2 =
∞

∑
n=1

n4γe2nqT

∣∣∣∣∣
〈√

π

2
cosh(T)

√
2
π

sin(x),

√
2
π

sin(nx)

〉∣∣∣∣∣
2

= e2qT

∣∣∣∣∣
〈√

π

2
cosh(T)

√
2
π

sin(x),

√
2
π

sin(x)

〉∣∣∣∣∣
2

= (2/π)e2qT cosh2(T)
(∫ π

0
sin2 xdx

)2

= (π/2)e2qT cosh2(T).

For all γ ≥ 1, q > 1, there always exists a positive number µ, subject to µ > q, hence it can be obtained

‖u(T, ·)‖2
Du

γ,q
=

∞

∑
n=1

n4γe2nqT |〈u(T, ·), Xn〉|2 = (π/2)e2qT cosh2(T) ≤ (π/2)e2µT cosh2(T).

Choosing E = E(µ) =
√

π/2eµT cosh(T), we can find that u(y, x) = sin(x) cosh(y) satisfies (38).
Note that, as setting u(y, x) = sin(lx) cosh(ly), these functions also satisfy (38). For the feasibility of (43), we
can explain it by adopting the similar way as above, and it is ignored here.

Remark 5. We can apply this regularized method to solve the following classical problem
∆u(y, x) + k2u(y, x) = 0, x ∈ (0, π), y ∈ (0, 1),

u(0, x) = ϕ(x), x ∈ [0, π],

uy(0, x) = 0, x ∈ [0, π],

u(y, 0) = u(y, π) = 0, y ∈ [0, 1],

(48)
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this is a Cauchy problem for Helmholtz equation in rectangular area. Using the Fourier method, we can express
the exact solution as

u(y, x) =
[k]

∑
n=1

cos
(√

k2 − n2y
)

ϕnXn(x) +
∞

∑
n=[k]+1

cosh
(√

n2 − k2y
)

ϕnXn(x), (49)

denote 〈·, ·〉 as the inner product of L2(0, π), then in (49), ϕn = 〈ϕ(x), Xn〉, the eigenfunction of L2(0, π) is

Xn(x) =
√

2
π sin(nx).

Since the main factor that leads to the ill-posedness of (48) is the second term of right hand side in (49),
similar with the procedure of Section 3.1, we can construct the following regularization solution of (48)

uδ
α(y, x) =

[k]

∑
n=1

cos
(√

k2 − n2y
)

ϕδ
nXn +

∞

∑
n=[k]+1

cosh(
√

n2 − k2y)ϕδ
n

1 + α(n2 − k2)γ coshq(
√

n2 − k2T)
Xn, (50)

here ϕδ
n = 〈ϕδ, Xn〉, α is the regularization parameter. About the convergence estimate, the process is almost the

same as one in this paper, we omit it.

6. Numerical Experiments

In this section, by doing the corresponding numerical experiment we verify the simulation effect
of the proposed method. For convenience, we only investigate the case of inhomogeneous Dirichlet
data in two dimensions.

Example 1. Let k > 0, the following problem is investigated
uyy + uxx − k2u = 0, 0 < x < π, 0 < y < 1,

u(0, x) = ϕ(x), 0 ≤ x ≤ π,

uy(0, x) = 0, 0 ≤ x ≤ π,

u(y, 0) = u(y, π) = 0, 0 ≤ y ≤ 1,

(51)

here, we take x ∈ Ω = (0, π), Lx = − ∂2

∂x2 + k2 : H2(Ω)
⋂

H1
0(Ω) ⊂ L2(Ω) → L2(Ω), λn = n2 + k2,

Xn(x) =
√

2
π sin(nx) are the eigenvalues and eigenfunction of Lx, respectively. This is a classical ill-posed

problem—the Cauchy problem for the modified Helmholtz equation. Generally, since the reconstruction of
solution at y = 1 is the most difficult, we mainly verify the computational effect of regularization method at
this point.

We know that, if Ω is a more complex domain, generally the analysis form of the exact solution
for a considered problem cannot be found easily, which leads to certain difficulty in constructing the
exact data ϕ(x), so in order to overcome this problem and possess the representativeness, we consider
the forward problem below

uyy + uxx − k2u = 0, 0 < x < π, 0 < y < 1,

u(1, x) = f (x), 0 ≤ x ≤ π,

uy(0, x) = 0, 0 ≤ x ≤ π,

u(y, 0) = u(y, π) = 0, 0 ≤ y ≤ 1,

(52)
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and use a finite difference method to solve problem (52), here f (x) = (1 + k2)x(x− π), and uxx, uyy,
uy(0, x) are approximated by

uxx(y, x) ≈ u(y, x + ∆x)− 2u(y, x) + u(y, x− ∆x)
(∆x)2 , (53)

uyy(y, x) ≈ u(y + ∆y, x)− 2u(y, x) + u(y− ∆y, x)
(∆y)2 , (54)

uy(0, x) ≈ 2uy(∆y, x)− uy(2∆y, x) (55)

≈ u(2∆y, x)− u(0, x)
∆y

− u(3∆y, x)− u(∆y, x)
2∆y

,

where ∆x = π
ι , ∆y = 1

κ . Thus, the discrete form of (52) can be expressed as

(∆y)2up,i−1 − (k2(∆x)2(∆y)2 + 2(∆y)2 + 2(∆x)2)up,i + (∆y)2up,i+1 + (∆x)2up−1,i + (∆x)2up+1,i = 0,

p = 1, 2, . . . , κ − 1; i = 1, 2, . . . , ι− 1,

uκ,i = fi, i = 1, 2, . . . , ι− 1,

− 2u0,i + u1,i + 2u2,i − u3,i = 0, i = 1, 2, . . . , ι− 1,

up,0 = up,ι = 0, p = 0, 1, 2, . . . , κ,

(56)

where up,i are the approximate values at (yp, xi), xi = i∆x, i = 0, 1, 2, . . . , ι, yp = p∆y, p = 0, 1, 2, . . . , κ.
Denote udif as the difference solution of (52), then we choose the exact data as

ϕ(x) = u(x, 0) ≈ udif(x, 0), (57)

the observation data is randomly generated by

ϕδ(x) = ϕ(x) + εrandn(size(ϕ(x))). (58)

We calculate the bound of observation error δ by

δ := ‖ϕδ − ϕ‖l2 . (59)

The regularized solution is calculated by (23) for n = 1, 2, . . . , M, the error is computed by

ε(u) =
‖u− uδ

α‖l2
‖u‖l2

. (60)

For k = 0.5, 1.5, γ = 2, q = 4, the exact and regularized solutions for various ε are shown in
Figures 1 and 2. We also investigate the influence of q on numerical results by taking ε = 0.01, γ = 3
to compute the errors for the different q, Table 1 presents the computational results. Meanwhile,
we choose ε = 0.01, q = 5 to investigate the influence of γ on calculation effect, Table 2 shows the
corresponding results. In practice, we cannot acquire the a-priori bound E for exact solution easily,
so in the process of computation, the regularized solution is only calculated by the rule of a-posteriori
form (41) with τ = 1.1.
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Figure 1. k = 0.5, γ = 2, q = 4; Exact and Regularized solutions for various ε. (a): ε = 0.001,
(b): ε = 0.01, (c): ε = 0.05, (d): ε = 0.1.
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Figure 2. k = 1.5, γ = 2, q = 4; Exact and Regularized solutions for various ε. (a): ε = 0.001,
(b): ε = 0.01, (c): ε = 0.05, (d): ε = 0.1.
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Table 1. k = 0.5, 1.5, γ = 3, ε = 0.01, the errors for different q.

q 2 3 4 5 6 7 8

εk=0.5(u) 0.0442 0.0441 0.0439 0.0438 0.0438 0.0438 0.0438
εk=1.5(u) 0.0487 0.0481 0.0480 0.0480 0.0480 0.0480 0.0480

Table 2. k = 0.5, 1.5, q = 5, ε = 0.01, the errors for different γ.

γ 1 2 3 4 5 6 7

εk=0.5(u) 0.0440 0.0439 0.0438 0.0438 0.0438 0.0438 0.0438
εk=1.5(u) 0.0482 0.0480 0.0480 0.0480 0.0480 0.0480 0.0480

Figures 1 and 2, Tables 1 and 2 show that generalized-fractional Tikhonov-type is stable and
feasible. Table 1 indicates that, for the same ε and fixed γ, as q becomes large, the numerical results
gradually become steady, and the best value of it should be greater than or equal to 4. The results of
Table 2 mean that the errors also become stable as γ increases for the same ε and fixed q, and the best
value of γ should be greater than or equal to 2.

7. Conclusions and Discussion

We establish the conditional stabilities by placing the a-priori restrictions on exact solutions
of (4), (5). Based on the generalized Tikhonov and fractional Tikhonov method, we construct a
generalized-fractional Tikhonov-type regularized solution to recover the stability of the considered
problem, and the convergence estimates of a-priori and an a-posteriori forms for this method are
obtained. Ultimately, by doing the related numerical simulations, we verify that the proposed method
is efficient and acceptable.

In fact, our regularized method can be seen as a variational method. Recently, we note that there
are some new works in which the variational regularized methods are researched, such as [26–30],
and so on. Meanwhile, this method is based on the eigenvalues and eigenfunctions of the operator
involved. This means it is of limited applicability since often these are not explicitly known.
For instance, many problems in science and engineering usually can be transformed into the form of
operator equations (10) or (11). For each fixed y, (10) and (11) both can be expressed as the Fredholm
integral operator with the first kind (AU)(x) :=

∫
Ω K(x, ξ)U(ξ)dξ = Φ(x). In order to overcome

the ill-posedness of this integral equation, we often discretize it to obtain the operator equation of
discrete form AU = Φ, and then restore the numerical stability by imposing one regularization method
(such as the Tikhonov method) on the operator equation of discrete form. Note that if the numerical
approximations of eigenfunctions or eigenvalues of the operator Lx are known, we can conveniently
compute the integral kernel K(x, ξ), coefficient matrix A, and construct the regularization solution.
Then, if we can obtain the numerical approximations of eigenfunctions or eigenvalues of the operator
Lx, this method can be extended to some broader application areas. In the future, we need make
further consideration in this respect and study some practical problems in science and engineering.

We should point out that, in the procedure of the computation, we need to choose suitable
parameters which include the regularization parameter α, the number of truncated term and positive
numbers γ, q. We choose the number of truncated term, γ and q by using the a-priori method, but
the a-posteriori method is not investigated. It is necessary to study the a-posteriori selection method
for the number of truncated term, γ and q in the next works. Finally, we point out that this method
also can be used to solve some other inverse problems of partial differential equations, such as the
elliptic problem of quasi-linear case, inverse initial value problem of heat equation (also called final
value problem of heat equation, or parabolic problem backward in time), and so on.

Author Contributions: Investigation, Writing—original draft preparation, H.Z.; Investigation, Writing—review
and editing, X.Z. All authors have read and agreed to the published version of the manuscript.
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Appendix A

Proof of Theorem 1. We know that, as 0 < y ≤ T, n ≥ 1, it holds that e
√

λny/2 ≤ cosh(
√

λny) ≤ e
√

λny,
λn ≥ λ1, from Hölder inequality and (8), (12), it can be derived that

‖u(y, x)‖2
L2(Ω) ≤

∞

∑
n=1

cosh2(
√

λny)ϕ2
n =

∞

∑
n=1

cosh2(
√

λny)ϕ
2y
qT
n ϕ

2− 2y
qT

n

≤
(

∞

∑
n=1

(cosh(
√

λny))
2qT

y ϕ2
n

) y
qT
(

∞

∑
n=1

ϕ2
n

)1− y
qT

≤
(

∞

∑
n=1

(e
√

λny)
2qT

y ϕ2
n

) y
qT
(

∞

∑
n=1

ϕ2
n

)1− y
qT

=

(
∞

∑
n=1

1

λ
2γ
n cosh2(

√
λnT)

· λ2γ
n e2qT

√
λn cosh2(

√
λnT)ϕ2

n

) y
qT
(

∞

∑
n=1

ϕ2
n

)1− y
qT

≤
(

4

λ
2γ
1 e2

√
λ1T

) y
qT
(

∞

∑
n=1

λ
2γ
n e2qT

√
λn | < u(T, x), Xn(x) > |2

) y
qT
(

∞

∑
n=1

ϕ2
n

)1− y
qT

≤
(

2

λ
γ
1 e
√

λ1T

) 2y
qT

E
2y
qT ‖ϕ‖

2− 2y
qT

L2(Ω)
.

The proof is completed.

Proof of Theorem 2. For 0 < y ≤ T, n ≥ 1, we know that sinh(
√

λny) ≤ e
√

λny, and λn ≥ λ1,
sinh(

√
λny) ≥ e

√
λ1y(1− e−2

√
λ1y)/2, then from (9), (14) and Hölder inequality, we have

‖v(y, x)‖2
L2(Ω) ≤

 ∞

∑
n=1

(
sinh(

√
λny)√

λn

) 2qT
y

ψ2
n


y

qT ( ∞

∑
n=1

ψ2
n

)1− y
qT

≤

 ∞

∑
n=1

(
e
√

λny
√

λn

) 2qT
y

ψ2
n


y

qT (
∞

∑
n=1

ψ2
n

)1− y
qT

=

 ∞

∑
n=1

e2qT
√

λn ψ2
n

(
1√
λn

) 2qT
y


y

qT ( ∞

∑
n=1

ψ2
n

)1− y
qT

=

 ∞

∑
n=1

(√
λn
)2

λ
2γ
n sinh2(

√
λnT)

· λ2γ
n e2qT

√
λn

sinh2(
√

λnT)
(
√

λn)2
ψ2

n

(
1√
λn

) 2qT
y


y

qT ( ∞

∑
n=1

ψ2
n

)1− y
qT

≤

 ∞

∑
n=1

(√
λ1
)2− 2qT

y

λ
2γ
1

· 4

e2T
√

λ1

(
1− e−2T

√
λ1

)2 λ
2γ
n e2qT

√
λn | < v(T, x), Xn(x) > |2


y

qT (
∞

∑
n=1

ψ2
n

)1− y
qT

≤

 2
(√

λ1
)1− qT

y

λ
γ
1 eT
√

λ1

(
1− e−2T

√
λ1

)


2y
qT ( ∞

∑
n=1

λ
2γ
n e2qT

√
λn | < v(T, x), Xn(x) > |2

) y
qT
(

∞

∑
n=1

ψ2
n

)1− y
qT

≤

 2
(√

λ1
)1− qT

y

λ
γ
1 eT
√

λ1

(
1− e−2T

√
λ1

)


2y
qT

E
2y
qT ‖ψ‖

2− 2y
qT

L2(Ω)
.

This finishes the proof of the result in (15).
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Proof of Theorem 3. We select ν = αλ
γ
n

2q , r = (qT − y)
√

λn, s = qT
√

λn, use Lemma 1, and H(η) ≤
1, then

G1(λn) =
e−(qT−y)

√
λn

α
2q λ

γ
n + e−qT

√
λn

=
1

α
2q λ

γ
n

α
2q λ

γ
n · e−(qT−y)

√
λn

α
2q λ

γ
n + e−qT

√
λn

≤
(

αλ
γ
n

2q

)−1

· H
(

qT − y
qT

)(
αλ

γ
n

2q

) qT−y
qT

=

(
1− y

qT

)1− y
qT
(

y
qT

) y
qT
(

αλ
γ
n

2q

)− y
qT

= 2
y
T (λγ

n)
− y

qT

(
1− y

qT

)1− y
qT
(

y
qT

) y
qT

α
− y

qT ≤ 2(λγ
n)
− y

qT α
− y

qT .

Note that, (λγ
n)
− y

qT ≤ (λγ
1 )
− y

qT . If λ1 ≥ 1, then (λγ
1 )
− y

qT ≤ 1; as 0 < λ1 < 1, from y < qT, we get

that (λγ
1 )
− y

qT ≤ (λγ
1 )
−1. Setting C1 = max{1, (λγ

1 )
−1}, one can derive that, (λγ

n)
− y

qT ≤ (λγ
1 )
− y

qT ≤ C1,

and thus G1(λn) ≤ 2C1α
− y

qT .

Proof of Theorem 4. Selecting ν = βλ
γ−1
n

(
1−e−2

√
λ1T

2

)q
, r = (qT − y)

√
λn, s = qT

√
λn in Lemma 1,

and combining with H(η) ≤ 1, one can obtain the inequality (37).

Proof of Theorem 5. In (23), we take the exact data ϕ, and denote the corresponding solution
as uα, then

‖uδ
α − u‖ ≤ ‖uδ

α − uα‖+ ‖uα − u‖, (A1)

For 0 < y ≤ T, e
√

λny/2 ≤ cosh(
√

λny) ≤ e
√

λny, from (23), (36), (19), we note that

‖uδ
α(y, ·)− uα(y, ·)‖2 ≤

∞

∑
n=1

(
cosh(

√
λny)

1 + αλ
γ
n coshq(

√
λnT)

)2 (
ϕδ

n − ϕn

)2
(A2)

≤
∞

∑
n=1

(
e−(qT−y)

√
λn

αλ
γ
n

2q + e−qT
√

λn

)2 (
ϕδ

n − ϕn

)2
≤ 4C2

1δ2α
− 2y

qT .

On the other hand, by (8), (23), (36), (38), we can derive that

‖uα(y, ·)− u(y, ·)‖2 =

∥∥∥∥∥ ∞

∑
n=1

αλ
γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

cosh(
√

λny)ϕnXn

∥∥∥∥∥
2

≤
∞

∑
n=1

(
αλ

γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

)2 (
cosh(

√
λnT)ϕn

)2

≤ α2
∞

∑
n=1

(
e−(qT−y)

√
λn

αλ
γ
n

2q + e−qT
√

λn

)2

λ
2γ
n e2

√
λn(qT−y)|〈u(T, ·), Xn〉|2 (A3)

≤ α2
∞

∑
n=1

(
e−(qT−y)

√
λn

αλ
γ
n

2q + e−qT
√

λn

)2

λ
2γ
n e2qT

√
λn |〈u(T, ·), Xn〉|2

≤ 4C2
1α

2− 2y
qT E2.

From (A1), (A2), (A3), (39), and (19), one can obtain the estimate in (40).
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Proof of Lemma 2. By setting

ρ(α) =

(
∞

∑
n=1

(
αλ

γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

)2 (
ϕδ

n

)2
)1/2

, (A4)

one can prove it easily, here we omit it.

Proof of Lemma 3. According to (41), we can obtain that

τδ =

∥∥∥∥∥ ∞

∑
n=1

αλ
γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

ϕδ
nXn(x)

∥∥∥∥∥
≤
∥∥∥∥∥ ∞

∑
n=1

αλ
γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

(ϕδ
n − ϕn)Xn(x)

∥∥∥∥∥+
∥∥∥∥∥ ∞

∑
n=1

αλ
γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

ϕnXn(x)

∥∥∥∥∥ (A5)

≤ δ +

∥∥∥∥∥ ∞

∑
n=1

αλ
γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

ϕnXn(x)

∥∥∥∥∥ ,

and ∥∥∥∥∥ ∞

∑
n=1

αλ
γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

ϕnXn(x)

∥∥∥∥∥ ≤
(

∞

∑
n=1

(
αλ

γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

)2

ϕ2
n

)1/2

≤
(

∞

∑
n=1

α2λ
2γ
n cosh2q(

√
λnT)ϕ2

n

)1/2

≤
(

∞

∑
n=1

α2

cosh2(
√

λnT)
· λ2γ

n e2qT
√

λn cosh2(
√

λnT)ϕ2
n

)1/2

(A6)

≤
(

∞

∑
n=1

4α2

e2
√

λnT
· λ2γ

n e2qT
√

λn |〈u(T, ·), Xn〉|2
)1/2

≤ (2/e
√

λ1T)αE,

by (A5), (A6), (τ − 1)δ ≤ (2/e
√

λ1T)αE. We finish its proof.

Proof of Theorem 6. Similar to (A1), by the trigonometric inequality, then

‖uδ
α(y, ·)− u(y, ·)‖ ≤ ‖uδ

α(y, ·)− uα(y, ·)‖+ ‖uα(y, ·)− u(y, ·)‖. (A7)

By (A2) and the inequality given in Lemma 3, we can derived that

‖uδ
α(y, ·)− uα(y, ·)‖ ≤ 2C1δα

− y
qT ≤ 2C1

(
(τ − 1)e

√
λ1T/2

)− y
qT E

y
qT δ

1− y
qT . (A8)

Now we estimate ‖uα(y, ·)− u(y, ·)‖ of (A7). It is noticed that

A1(y) (uα(y, ·)− u(y, ·)) =
∞

∑
n=1

−αλ
γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

ϕnXn(x) (A9)

=
∞

∑
n=1

αλ
γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

(ϕδ
n − ϕn)Xn(x) +

∞

∑
n=1

−αλ
γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

ϕδ
nXn(x),

using (19), (41), (A9), we can obtain

‖A1(y) (uα(y, ·)− u(y, ·)) ‖ ≤ δ + τδ = (τ + 1)δ. (A10)
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Furthermore, in the light of (7) and (38), we get that

‖uα(y, ·)− u(y, ·)‖Duα−u
γ,q

=

(
∞

∑
n=1

λ
2γ
n e2qT

√
λn

(
αλ

γ
n coshq(

√
λnT)

1 + αλ
γ
n coshq(

√
λnT)

)2

cosh2(
√

λny)ϕ2
n

) 1
2

≤
(

∞

∑
n=1

λ
2γ
n e2qT

√
λn cosh2(

√
λnT)ϕ2

n

) 1
2

≤ E, (A11)

subsequently, using the result of conditional stability in (13), we have

‖uα(y, ·)− u(y, ·)‖ ≤ 2
y

qT
(

λ
γ
1 e
√

λ1T
)− y

qT
(τ + 1)1− y

qT E
y

qT δ
1− y

qT . (A12)

Ultimately, from (A8), (A12), the estimate of convergence (42) can be proven.

Proof of Theorem 7. In (31), Take the exact data ψ denote the corresponding solution as vβ, then

‖vδ
β − v‖ ≤ ‖vδ

β − vβ‖+ ‖vβ − v‖. (A13)

For 0 < y ≤ T, n ≥ 1, we know that sinh(
√

λny) ≤ e
√

λny, and λn ≥ λ1, sinh(
√

λny) ≥
e
√

λny(1− e−2
√

λ1y)/2, from (31), (37), (27), we note that

‖vδ
β(y, ·)− vβ(y, ·)‖2 ≤

∞

∑
n=1

 sinh(
√

λny)
√

λn

(
1 + βλ

γ−1
n sinhq(

√
λnT)

)
2 (

ψδ
n − ψn

)2
(A14)

≤
∞

∑
n=1

 e−(qT−y)
√

λn

√
λ1

(
βλ

γ−1
n

(
1−e−2

√
λ1T

2

)q
+ e−qT

√
λn

)


2 (
ψδ

n − ψn

)2
≤ 4D2

1δ2β
− 2y

qT .

On the other hand, by (9), (31), (37), (43), one gets that

‖vβ(y, ·)− v(y, ·)‖2 =

∥∥∥∥∥∥
∞

∑
n=1

βλ
γ−1
n sinhq(

√
λnT)

√
λn

(
1 + βλ

γ−1
n sinhq(

√
λnT)

) sinh(
√

λny)ψnXn

∥∥∥∥∥∥
2

≤
∞

∑
n=1

(
βλ

γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

)2 (
sinh(

√
λnT)√

λn
ψn

)2

≤ β2
∞

∑
n=1

 e
√

λny

λne
√

λny
(

1 + βλ
γ−1
n sinhq(

√
λnT)

)
2

λ
2γ
n e2qT

√
λn

(
sinh(

√
λnT)√

λn
ψn

)2

(A15)

≤ β2

λ1e2
√

λ1y

∞

∑
n=1

 e−(qT−y)
√

λn

√
λ1

(
βλ

γ−1
n

(
1−e−2

√
λ1T

2

)q
+ e−qT

√
λn

)


2

λ
2γ
n e2qT

√
λn |〈v(T, ·), Xn〉|2

≤ 4

λ1e2
√

λ1y
D2

1 β
2− 2y

qT E2.

From (44), (A13), (A14), (A15), and (27), we can derive the estimate (45).
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Proof of Lemma 4. One can prove this Lemma easily by writing

$(β) =

 ∞

∑
n=1

(
βλ

γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

)2 (
ψδ

n

)2
1/2

, (A16)

here we also skip it.

Proof of Lemma 5. According to (46), it can be known that

τδ =

∥∥∥∥∥ ∞

∑
n=1

βλ
γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

ψδ
nXn(x)

∥∥∥∥∥
≤
∥∥∥∥∥ ∞

∑
n=1

βλ
γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

(ψδ
n − ψn)Xn(x)

∥∥∥∥∥+
∥∥∥∥∥ ∞

∑
n=1

βλ
γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

ψnXn(x)

∥∥∥∥∥ (A17)

≤ δ +

∥∥∥∥∥ ∞

∑
n=1

βλ
γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

ψnXn(x)

∥∥∥∥∥ ,

and ∥∥∥∥∥ ∞

∑
n=1

βλ
γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

ψnXn(x)

∥∥∥∥∥ ≤
 ∞

∑
n=1

(
βλ

γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

)2

ψ2
n

1/2

≤
(

∞

∑
n=1

β2λ
2γ−2
n sinh2q(

√
λnT)ψ2

n

)1/2

≤
(

∞

∑
n=1

β2

λn sinh2(
√

λnT)
· λ2γ

n e2qT
√

λn
sinh2(

√
λnT)

(
√

λn)2
ψ2

n

)1/2

(A18)

≤
(

∞

∑
n=1

β2

λ1 sinh2(
√

λ1T)
· λ2γ

n e2qT
√

λn |〈v(T, ·), Xn〉|2
)1/2

≤ (1/(
√

λ1 sinh(
√

λ1T)))βE,

by (A17), (A18), (τ − 1)δ ≤ (1/(
√

λ1 sinh(
√

λ1T)))βE. We finish the proof.

Proof of Theorem 8. From (A13), we have

‖vδ
β(y, ·)− v(y, ·)‖ ≤ ‖vδ

β(y, ·)− vβ(y, ·)‖+ ‖vβ(y, ·)− v(y, ·)‖. (A19)

Using (A14) and the result in Lemma 5, it can be obtained that

‖vδ
β(y, ·)− vβ(y, ·)‖ ≤ 2D1δβ

− y
qT ≤ 2D1

(√
λ1 sinh(

√
λ1T)(τ − 1)

)− y
qT E

y
qT δ

1− y
qT . (A20)

In the following, let us estimate ‖vβ(y, ·)− v(y, ·)‖ of (A19). It is noted that

A2(y)
(
vβ(y, ·)− v(y, ·)

)
=

∞

∑
n=1

−βλ
γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

ψnXn(x) (A21)

=
∞

∑
n=1

βλ
γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

(ψδ
n − ψn)Xn(x) +

∞

∑
n=1

−βλ
γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

ψδ
nXn(x),

using (27), (46), (A21), we can obtain

‖A2(y)
(
vβ(y, ·)− v(y, ·)

)
‖ ≤ δ + τδ = (τ + 1)δ. (A22)
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Furthermore, in the light of (7) and (43), one derives that

‖vβ(y, ·)− v(y, ·)‖
D

vβ−v
γ,q

=

 ∞

∑
n=1

λ
2γ
n e2qT

√
λn

(
βλ

γ−1
n sinhq(

√
λnT)

1 + βλ
γ−1
n sinhq(

√
λnT)

)2 (
sinh(

√
λny)√

λn

)2

ψ2
n

 1
2

≤
(

∞

∑
n=1

λ
2γ
n e2qT

√
λn

(
sinh(

√
λnT)√

λn

)2

ψ2
n

) 1
2

≤ E, (A23)

subsequently, using the result of conditional stability in (15), there holds that

‖vβ(y, ·)− v(y, ·)‖ ≤ 2
y

qT λ
( 1

2−γ)− qT
2y

1

(
e
√

λ1T
(

1− e−2
√

λ1T
))− y

qT
(τ + 1)1− y

qT E
y

qT δ
1− y

qT . (A24)

Ultimately, we can prove the result of convergence (47) by combing (A20) with (A24).
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