
mathematics

Article

SE-IYOLOV3: An Accurate Small Scale Face Detector
for Outdoor Security

Zhenrong Deng 1, Rui Yang 2, Rushi Lan 2,3,*, Zhenbing Liu 2 and Xiaonan Luo 2

1 School of Computer Science and Information Security, Guilin University of Electronic Technology,
Guilin 541004, China; zhrdeng@guet.edu.cn

2 Guangxi Key Laboratory of Images and Graphics Intelligent Processing, Guilin University of Electronic
Technology, Guilin 541004, China; 1803304025@mails.guet.edu.cn (R.Y.); zbliu@guet.edu.cn (Z.L.);
luoxn@guet.edu.cn (X.L.)

3 School of Computer Science and Engineering, South China University of Technology,
Guangzhou 510000, China

* Correspondence: rslan@guet.edu.cn

Received: 10 December 2019; Accepted: 27 December 2019; Published: 7 January 2020
����������
�������

Abstract: Small scale face detection is a very difficult problem. In order to achieve a higher detection
accuracy, we propose a novel method, termed SE-IYOLOV3, for small scale face in this work.
In SE-IYOLOV3, we improve the YOLOV3 first, in which the anchorage box with a higher average
intersection ratio is obtained by combining niche technology on the basis of the k-means algorithm.
An upsampling scale is added to form a face network structure that is suitable for detecting dense
small scale faces. The number of prediction boxes is five times more than the YOLOV3 network.
To further improve the detection performance, we adopt the SENet structure to enhance the global
receptive field of the network. The experimental results on the WIDERFACE dataset show that the
IYOLOV3 network embedded in the SENet structure can significantly improve the detection accuracy
of dense small scale faces.
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1. Introduction

Face detection refers to the detection of the relative position and size information of all face targets
in the image through the computer intelligence system. Small scale face detection means that on the
basis of face detection, the small face information of the target can be accurately detected. This subject
has a wide range of application prospects, including security [1], traffic statistics [2], digital cameras [3],
pattern recognition [4], and other aspects.

Traditional face detection methods are mostly used for single face matching in a simple
background [5]. For example, the PCA method [6] is used to extract facial features; serial and parallel
methods are used to combine the extracted facial features [7]; and the LBP pattern is widely used for
face recognition [8–10]. Due to the limitations of traditional face detection algorithms, it is usually
effective to detect a single face in a specific environment, but the accuracy of face recognition for a
dense small scale is low.

Since the emergence of the AlexNet network structure model in 2012 [11], the application of
convolutional neural networks in face detection has been greatly developed [12]. The powerful learning
ability of convolutional neural networks can greatly improve the accuracy of image detection; among
them from R-CNN [13] generated by region proposal using selective search technology, spatial pyramid
pooling network [14], single stage training Fast R-CNN [15], to improved Faster R-CNN [16] based on
a fully convolutional neural network [17]. Researchers found that the corresponding improvement
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of the general target detection method applied to face detection tasks can achieve better results than
traditional methods [18]. Jiang Het al. used the face dataset to retrain Faster R-CNN [19] for face
detection. Wan S et al. improved the Faster R-CNN model [20] and iteratively trained for face detection
on the FDDB dataset [21]. Li used the cascaded Faster R-CNN structure [22] to improve detection
accuracy. However, the above network adopted a two stage detection method, and the speed was
slow. To solve this problem, Redmon et al. proposed the YOLO (You Only Look Once) model [23].
Using the whole graph as the input of the network, the position of the bounding box and the category
of the bounding box were directly regressed in the output layer, which greatly improved the detection
speed, but the detection accuracy was low. Later, he proposed the YOLOV2 [24] and YOLOV3 [25]
detection algorithms successively in 2017 and 2018. Among them, YOLOV3 had a better detection
effect, achieving an MAP effect of 57.9 percent within 51 ms on the COCO dataset [26]. Therefore,
YOLOV3 could guarantee the accuracy and detection rate at the same time in the target detection field.

Face detection is a major issue in target detection. Many scholars have made significant progress
in related fields [27–29]. For faces of different sizes, Guo et al. [30] proposed MSFD, which is a
multi-scale face detector in the reception domain and can detect faces of different scales. For face
clustering, Wang [31] proposed using graph convolutional networks [32] for face clustering to improve
the recall rate of multiple faces. Luo et al. [33] added two residual units to the original YOLOV3 to
detect smaller targets. Wu proposed that SENet [34] be embedded into the DenseNet [35] network
prediction model, which can realize feature re-calibration in the process of feature extraction and
improve the accuracy of network prediction.

To improve the speed and accuracy of dense small scale face detection, a detection method for
embedding the squeeze-and-excitation networks (SENet) structure into an improved YOLOV3 network
is proposed. Based on the k -means algorithm [36], we used the niche technology [37] to calculate
the anchor box with higher average intersection over union (IOU) [38], which reduced the impact
of the random initialization anchor box on detection accuracy. In order to make the algorithm more
suitable for detecting smaller dense faces, the width of the prediction layer was changed, the number
of prediction frames was increased by more than five times, and the small scale face information was
captured. Finally, the SENet structure was fused to enlarge the perception field of the network and
improve the score of a face that was not easy to recognize, so as to obtain higher precision and recall.
The experimental results showed that the proposed network structure could significantly improve the
detection of dense small scale faces on WIDERFACE [39] datasets, and the speed and accuracy of face
detection achieved good results. The contributions of this paper are as follows: (1) A prediction frame
calculation method that combines the small niche technology with K-means is proposed. (2) For small
face detection, the YOLOV3 prediction layer scale is improved. (3) The SENet structure is embedded
in the YOLOV3 network model.

The remainder of this article is organized as follows. Section 2 describes the improvement of
YOLOV3 and introduces the specific composition structure of SE-IYOLOV3. Section 3 presents the
experimental results in detail. Finally, the article is summarized in Section 4.

2. SE-IYOLOV3 Model

2.1. Improved YOLOV3 Model

YOLOV3 is a new end-to-end target detection model after R-CNN, Fast R-CNN, and Faster
R-CNN. It combines the target classification and detection training, directly regresses the position
and category of the target detection frame in the output layer, and converts the detection problem
into a regression problem. At the same time, the detection task is concentrated in a convolutional
neural network, which completes the output from the input of the original image to the target category
and location.
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2.1.1. Improved Anchor Box Algorithms

In the process of detecting dense faces, the accuracy of the detection depends on the coordinates
of the last prediction frame of each grid, and the coordinate values of the anchor box are randomly
initialized when the network starts training. Therefore, the result of random initialization of the anchor
box has an important impact on the accuracy of network prediction. The YOLOV3 algorithm uses the
K-means algorithm to cluster data. The K-means algorithm has low accuracy in selecting initial points
and needs many attempts to get a better solution. Based on the K-means algorithm, this paper uses the
niche technology to adjust the fitness of individuals in a population by sharing functions reflecting the
similarity between individuals. The fitness between individuals is embodied in the similarity of the
individual genotype or individual phenotype. When individuals are comparatively similar, the value
of their shared function is relatively large; thus, the anchor box with a higher intersection ratio can be
obtained. The distance function between each prediction box and the reference standard box is defined
as Formula (1), where IOU represents the ratio of the intersection and union sets of “predicted borders”
and “real borders”.

d(x) = ∑
i

∑
j

1 − IOU(boxi, truthj) (1)

The specific steps are as follows: Step 0: Set the maximum number of iterations; set the initial
particle flying speed v = 0; and use the K-means algorithm to cluster the data to obtain m initial cluster
centers. Step 1: Calculate the sharing degree of individuals in the group. The shared function of this
paper is calculated by the distance Formula (1). The smaller the distance, the larger the shared value.
Step 2: After calculating the sharing degree of each individual in the group, adjust the fitness of each
individual according to the following formula:

Fi =
m

∑
i=1

di i = (1, 2, 3 ... m) (2)

Step 3: Arrange them in ascending order according to the fitness of each individual; remember
the first n individuals (n < m); carry out proportional selection operation on population P(m) to
obtain P(t); and then, do cross selection and uniform variation calculation on P(t) to get Pi(t). Step 4:
Combine n and t individuals in memory into a new clustering n + t. Compare the fitness of the
individuals in the clustering, and impose penalty function Fmin(xi, xj) = Penalty on the individuals
with higher fitness. Step 5: Repeat Step 3 to update the evolutionary algebraic memory e = e + 1 until
the highest number of iterations, and the population with the least fitness is the output.

By combining the K-means algorithm and the niche technology, the influence of the random initial
point on the prediction result can be reduced. By finding the cluster group with the highest fitness,
that is the higher similarity, the anchor box with the higher IOU can be obtained.

2.1.2. Change the Loss Function

The loss function used by YOLOV3 is a binary cross entropy loss (BCELoss), which is
represented as:

BCEloss = − 1
n
× ∑

i
(ti × log(oi) + (1 − ti)× log(1 − oi)) (3)

where oi is the output value and ti is the target value. Since the structure of the network layer needs
to be changed after that, in order to prevent the predicted value from being too large, the negative
predicted value causes the loss function to take too long to converge or have difficulty converging, so a
sigmoid layer is added before the BCEloss loss function is used; the variable is mapped between zero
and one; and then, the value is transferred to the loss function for calculation. Therefore, replace the



Mathematics 2020, 8, 93 4 of 12

loss function with the BCEWithLogitsLoss loss function with better numerical stability, as shown in
the following formula:

BCEWithLogitsLoss = − 1
n
× ∑

i
(ti × log(sigmoid(oi))+

(1 − ti)× log(1 − sigmoid(oi)))

(4)

The BCEWithLogitsLoss loss function integrates the sigmoid layer into the BCELoss class and
uses the log-sum-exp technique to achieve numerical stability.

2.1.3. Improved Prediction Layer Scale

The YOLOV3 algorithm uses the DarkNet-53 network, which contains 53 convolutional layers.
It combines three different scale feature maps, using a high resolution of low level features and
high semantic information of high level features. By upsampling the features of different layers,
objects are detected on three different scale feature layers. As shown in Figure 1, the bottom level
downsampling feature map is 13 ∗ 13, and the two upsampling feature maps are 26 ∗ 26, 52 ∗ 52,
respectively. The YOLOV3 network has 32 times downsampling of the input detection image.
The downsampling factor is high; the receptive field of the feature map is relatively large; and
the shallow information is not fully used, which will cause some information to be lost after multi-layer
convolution. Therefore, it is suitable for detecting relatively large sized objects in an image.
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Figure 1. Original YOLOV3 network architecture.

Consider that when there are dense small scale faces in the input image, the detection effect on
small scale faces is not ideal. We improved the scale detection module in YOLOV3 and expanded the
scale of the original detection from three to four. As shown in Figure 2, when performing multi-scale
fusion, an upsampling fusion operation is used, and a feature map with an upsampling size of 104 * 104
is added. For larger feature maps, we assigned a more accurate anchor box to the target. By taking
12 different sizes of anchor boxes to predict faces of different scales, the sizes were (12, 16), (16, 24),
(21, 32), (24, 41), (24, 51), (33, 51), (28, 62), (39, 64), (35, 74), (44, 87), (53, 105), (64, 135). When the
original YOLOV3 had three scales, it could predict a total of 3549 bounding boxes. When performing
multi-scale fusion, an upsampling fusion operation was used. After adding a scale for the fusion
operation, the training model could predict 14,365 bounding boxes, which was closer to five times the
original three scale model. It could greatly improve the recognition rate of small targets.
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Figure 2. Improved YOLOV3 network structure of the prediction layer.

2.2. SE-IYOLOV3

SENet is a convolutional neural network structure proposed in 2017. It was the champion of
the Image Classification task in the last ImageNet Competition. It proposes a method to emphasize
information features selectively and suppress less useful features by learning to use global information.
The core is squeeze and excitation operations. The structure is shown in Figure 3, which is a repetitive
unit composed of the conventional shortcut layer and SE structure. The squeeze operation uses a
global average pooling. The results showed the numerical distribution of C feature maps in this layer,
also known as global information. The excitation operation uses a gating mechanism and sigmoid
activation function to describe the weight of C feature maps in the tensor. The function of two Fully
Connected layers (FC) is to fuse the feature map information of each channel.

 Shortcut

Global pooling

FC

ReLU

FC

Sigmoid

 Shortcut

Excitation

Squeeze

Scale Scale

Figure 3. SENet structure. FC, Fully Connected layer.

In densely distributed images, conventional YOLOV3 often erroneously detects or misses face
detection, which is due to misrecognition caused by an unbalanced confidence distribution. In order to
make the network learn global features and improve the detection accuracy of dense faces, the weight
of each feature channel is automatically calibrated.

SENet structure is embedded in the improved YOLOV3 network, and a feature map is transformed
into a number with global receptive fields. The robustness of the whole neural network can be
enhanced by retaining the global information under the condition of greatly reducing the computational
parameters. In YOLOV3, there is a shortcut layer whenever a 1 ∗ 1 conv and 3 ∗ 3 conv combination is
ended, so the shortcut layer aggregates multiple layers of features. Embedding the SENet structure
into the shortcut layer will expand the range of perception of the global information by the feature
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map. In the YOLOV3 network, there are 23 shortcut layers. Therefore, the improved YOLOV3 network
will be changed from the original 107 layer to the 130 layer, as shown in Figure 4.

The feature map of W ∗ H ∗C is transmitted from the shortcut layer, where W is the width, H is the
height, and C is the number of channels. After the global average pooling, the feature map of 1 ∗ 1 ∗ C
is obtained. After that, the dimension reduction of the first fully connected layer becomes 1 ∗ 1 ∗ C/r,
where r is the dimension reduction parameter, and r = 16 was taken in this paper. The dimension
reduction becomes 1 ∗ 1 ∗ C after the second fully connected layer, and after the sigmoid function, the
dimension reduction becomes the weight value of 1 ∗ 1 ∗ C. Finally, the input feature map is multiplied
by the weight value as the input to the next layer. Therefore, the feature map size of the network
layer output that added the SENet block is shown in Table 1, where the CSR module is a submodule
composed of a convolutional + shortcut + SENet layer.

The number before the multiplier represents the number of modules with the same size of the
feature map, for example 4 ∗ CSR , 13 ∗ 13 ∗ 1204, indicating that there are four CSR modules with
an output feature size of 13 ∗ 13 ∗ 1204. The YOLOV3 network embedded in the SENet structure can
fuse the shallow information with the deep information and efficiently utilize the multi-dimensional
feature information, thereby expanding the global receptive field of the information, and it can slow
down the attenuation of the error items of each hidden layer and ensure the stability of the gradient
weight information.

SENetshortcut

YOLOV3 SE-YOLOV3

Conv3*3

Conv1*1

Conv3*3

Conv3*3

shortcut

Conv3*3

Conv1*1

shortcut
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Conv3*3

Conv1*1
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...

 Shortcut

Global pooling
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1*1*C

1*1*C/r

1*1*C/r

1*1*C

1*1*C

Figure 4. SE-IYOLOV3 structure.

Table 1. Feature map information output from the SENet layer.

CSRModule Output Feature Map Size

1 * CSR 208 * 208 * 64
2 * CSR 104 * 104 * 128
8 * CSR 52 * 52 * 256
8 * CSR 26 * 26 * 512
4 * CSR 13 * 13 * 1024
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3. Experimental Results

In order to speed up the convergence of the network and to avoid over-fitting, the impulse
constant was set to 0.9, the weight attenuation coefficient to 0.0005, and the initial learning rate to
0.0005. The experimental environment was the Ubuntu 14.04 operating system, Intel (R) Xeon (R) CPU
E5-2698 v4 @ 2.20 GHz processor, 16 GB running memory (RAM), GPU for NVIDIA Tesla K80, and
16 G memory.

3.1. Datasets

In YOLOV3, the features of the image were extracted mainly through the Darknet53 network, and
the facial features needed to be learned from a large number of samples. Therefore, in order to learn
better feature representation, it was necessary to adopt a dataset with obvious facial features. In this
paper, the WIDERFACE dataset with obvious facial features was used for training and testing.

The WIDERFACE detection dataset contained 32,203 images and 393,703 face images, which
showed great changes in scale, posture, occlusion, expression, dressing, and care. WIDER FACEwas
based on 61 event categories. For each event category, 50 percent of them were selected as the training
set, 10 percent for cross-validation, and 40 percent for the test set.

3.2. Convergence Verification of Improved YOLOV3 Embedded SENet Structure Model

Based on the improved YOLOV3 structure and embedded SENet structure, a training intensive
face detection model was built. The results showed that the model could converge to a stable state
quickly in the training process. The performance of the trained model on the test dataset was better
than that of the original YOLOV3 model.

In the process of training with the WIDERFACE dataset, the log information of each iteration of
training of the improved SE-YOLOV3 model was collected, including the accuracy of face detection,
the average IOU value, the accuracy of correct classification, the total number of detected faces, and the
recall rate. By visualizing the information, as shown in Figure 5, the loss function converged steadily
in the first 2000 iterations as the number of iterations increased.

Figure 5. Loss curve of model training.
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3.3. The Impact of Different Improvement Strategies on the Average IOU

The three improved strategies proposed above are respectively calculated for the accuracy of the
model, and the original YOLOV3 is used as a reference, as shown in Table 2.

Table 2. Average intersection:parallel ratio of the prediction box and real box. b, anchor box; P,
prediction layer.

Program Name Percentage

YOLOV3 78.56
IYOLOV3-B 84.12
IYOLOV3-P 82.88
IYOLOV3-E 81.37
SE-IYOLOV3 85.98

Table 2 shows: (1) YOLOV3, the original YOLOV3 model; (2) IYOLOV3-B, the improved anchor
box algorithm is added to the original YOLOV3 model; (3) IYOLOV3-P, the structure of the Prediction
layer of the original YOLOV3 model is improved; (4) IYOLOV3-E, only the SENet module is introduced
to the original YOLOV3 model; (5) SE-IYOLOV3, the face detection model proposed in this paper.
As can be seen from Table 2, each of the improved strategies used in this paper improved the
performance of the original YOLOV3 detection network to varying degrees. Among them, the
improvement of the anchor box algorithm had the most significant improvement on the accuracy of the
model, with the mean value of IOU increased by nearly six percentage points; the improvement of the
prediction layer structure of the network raised the mean value of IOU by nearly four percentage points;
and the addition of the SENet structure raised the mean value of IOU by nearly three percentage points.
Each improvement strategy was integrated, and the final average IOU was nearly eight percentage
points higher than the original YOLOV3 network.

3.4. Comparison of Different Detection Models

Taking the Precision rate (P) and Recall rate (R) as evaluation indexes, the method was compared
with R-CNN, FAST-RCNN, FASTER-RCNN, and YOLOV3 with different improvement strategies.
In order to accelerate the convergence speed of the network and avoid over-fitting, the impulse constant
was set to 0.9, the weight attenuation coefficient to 0.0005, and the initial learning rate to 0.0005.
Moreover, the multi-step strategy was adopted, and the dataset was WIDERFACE. The detection
results are shown in Table 3. The precision and recall rate of the YOLOV3 network embedded in SENet
was the highest, because the SENet structure enhanced the global receptive field of the feature map, so
that the information learned by the network was more comprehensive. Therefore, the face features
that were not easily recognized had higher scores, which made the network’s precision and recall rate
higher. IYOLOV3-B performed better than the original YOLOV3 because it used the improved anchor
box algorithm to get an anchor box with a higher average IOU. IYOLOV3-P had higher performance
than the original YOLOV3 because it changed the prediction layer structure and increased the number
of prediction frames by more than six times, which was more accurate for capturing dense face images.
Therefore, by embedding SENet into the improved YOLOV3 structure, the precision and recall rate
were increased by 17 percent and 26 percent respectively compared with the original YOLOV3.

The detection results are shown in Figure 6. (a) is the effect of the YOLOV3 model detecting dense
small scale faces, and (b) is the effect of the method in this paper.

From the comparison of the first picture, it can be seen that YOLOV3 incorrectly recognized the
fingers of a man in green clothes as a human face in the case of a complicated background. The middle
comparison chart shows that YOLOV3 did not detect the man on the far right. In the last picture, the
face detection effect of this method was significantly better than the original YOLOV3.
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Table 3. Feature map information output from the SENet layer.

Models Improved Improved SENet Precision Recall Detection
Anchor Box Prediction Layer Added % % Speed (ms)

R-CNN [13] # # # 68.5 54.2 1300
FAST-RCNN [15] # # # 82.6 69.4 700
Faster RCNN [16] # # # 86.4 76.3 350

Single Stage Joint [40] # # # 92.1 87.8 510
YOLOV3 [25] # # # 75.6 63.4 230
IYOLOV3-B ! # # 90.5 86.1 360
IYOLOV3-P # ! # 90.1 88.2 340

SE-IYOLOV3 ! ! ! 92.3 89.6 460

(a) YOLOV3

(b) SE-IYOLOV3

Figure 6. Face detection results via YOLOV3 and the proposed SE-IYOLOV 3.

4. Conclusions

In order to solve the problem of dense face detection, this paper firstly used the niche technology
to calculate the anchor box with higher average IOU based on the K-means algorithm, which reduced
the impact of the randomly initialized anchor box on the detection accuracy. To make the algorithm
more suitable to detect smaller dense faces, the width of the prediction layer was changed, changing
three dimensions of the original network to four. Finally, the SENet structure was fused to enlarge
the perception field of the network and improve the score of the face that was not easy to recognize.
The experimental results showed that the proposed network structure could significantly improve
the detection accuracy of dense small scale faces. In future research, we will consider reducing the
parameters and network layers to improve the detection speed of the network and using a densely
connected upper sampling layer to improve detection accuracy.
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