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Abstract: In this note, we consider a subclass H3/,(p) of starlike functions f with f”/(0) = p for
a prescribed p € [0,2]. Usually, in the study of univalent functions, estimates on the Taylor
coefficients, Fekete-Szego functional or Hankel determinats are given. Another coefficient problem
which has attracted considerable attention is to estimate the moduli of successive coefficients
|ay+1| — |an|. Recently, the related functional |a,1 — a,| for the initial successive coefficients
has been investigated for several classes of univalent functions. We continue this study and for
functions f(z) = z+ Y, a,2" € Hz/(p), we investigate upper bounds of initial coefficients and
the difference of moduli of successive coefficients a3 — a;| and |a4 — a3|. Estimates of the functionals
|azay — a§| and |as — apas| are also derived. The obtained results expand the scope of the theoretical
results related with the functional |a, ;1 — a,| for various subclasses of univalent functions.
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1. Introduction

As usual, denote by A the family of all normalized analytic functions
flz)=z+ ) anz" )
n=2

defined in the open unit disk U = {z € C: |z] < 1} and let 8 be the subset of univalent functions in A.
Let

!

8*(&):{f€A:§RZf(Z)>¢x,z€U,0§uc<1} (2)
f(2)

be the class of starlike functions of order « (see [1]). The family 8*(0) = 8* is the well-known class of

starlike functions in U. Denote by X the class of convex functions in U, i.e.,

x:{mw%(ui{,ﬁ?)>o,zetu}. ®)

In 1997, Silverman [2] investigated the properties of a subclass of A, defined in terms of the

quotient (1 + ZJJ://;S) )/ zﬁg) More precisely, for 0 < b < 1, Silverman’s class G, is defined as follows

1+ zf/”(z)
#,7{252)—1 <bzeUy. @)
@)

Gy=¢qfeA:
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In [2], Silverman proved that all functions in G, are starlike of order 2/(1 + v/1+ 8b).
Lately, Obradovi¢ and Tuneski [3] improved the results of Silverman and obtained new starlike
criteria for the class §;. Among others, they obtained the next result.

1+ zf,"(z)
e (”Z)) < §, zeU,

Theorem 1 ([3]). Let f € A. If

2f'(z) 2
fz)

then f € 8.

Starting from the above result, we consider the following subclass of 8*:

1+ zf"(z)
_ G ) 8
%3/2—{](6./[.8%( () <2,ZEU . 5)
f@2)
It is not difficult to show that for |a| < 1/2, the function f(z) = 17z € Hz/2.
During the years, great attention has been given to the difference of moduli of
successive coefficients ||a,41| — |ax|| of a function in 8*. In 1963, Hayman [4] proved that

l|laps1| — lan|| < A (A >1) for f € 8*. Further, Leung [5] proved Pommerenke’s [6] conjecture
llap41] — lan|] < 1 for f € 8*. Estimates of the difference of moduli of successive coefficients,
for certain subclasses of 8*, were also obtained by Z. Ye [7,8], and others (see, for example [9]).
Moreover, since ||a,41| — |an|| < |ay+1 — ax|, the study of the functional |a,,1 — a,| has been also
considered. For all functions f € K, Robertson [10] obtained the inequality |a,+1 — a,| < 25 2, — 1|
and proved that the factor (21 + 1)/3 cannot be replaced by any smaller number independent of f.
Recently, Li and Sugawa [11] investigated the problem of maximizing the functionals |a3 — a;| and
|ag — a3 for a refined subclass of K, X(p) = {f € K : f”(0) = p, p € [0,2]}. The upper bounds of the
same funtionals |a3 — a3| and |a4 — a3| for various subclasses of univalent functions were obtained by
Peng and Obradovi¢ [12] and L. Shi et al. [13].

Motivated by the results given in [11-13], in the present paper we obtain upper bounds of the
initial coefficients and upper bounds of |a3 — a3 | and |a4 — a3| for a refined subclass of H3 /», defined by

Hapo(p) = {f € Hzpa: f'(0) = p}, (6)

where p is a given number satisfying —2 < p < 2.

Moreover, upper bounds for functionals [axa4 — 43| and |a4 — aa;3| for the same subclass H3 5 (p)
are also derived. The first functional is known as the second Hankel determinant, studied in many
papers (see [14-17]). The second functional is a particular case of the generalized Zalcman functional,
investigated by Ma [18], Efraimidis and Vukoti¢ [19] and many others (see [20-23]).

2. Preliminary Results

Let P be the class of analytic functions p with a positive real part in U, satisfying the condition
p(0) = 1. Amember p € P is called a Carathéodory function and has the Taylor series expansion

p(z) =14 ) puz". )
n=1
It is known that |p,| < 2forp € Pandn =1,2,... (see [1]).
In order to prove our main results, the following two lemmas will be used. The first is due to
Libera and Zlotkiewicz [24,25].
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Lemma 1. Let —2 < py < 2and py, p3 € C. Then there exists a function p € P of the form (7) such that
2p2 = pt+x(4-p}) ®)

and
4ps = pi +2(4 - pHprx — (4= ph)pi® +2(4 - p) (1= [x[)y ©
for some x,y € Cwith |x| < 1and |y| <1.

The second lemma is a special case of a more general result due to Ohno and Sugawa [26]
(see also [11]).

Lemma 2. For some given real numbers a, b, c, let

Y(a,b,c) = max(|a+ bz +cz?| +1— |z[?). (10)
zelU
Ifac > 0, then
( { |a] + |b] + [c] 2 |b] >2(1—c])
Y(a,b,c) = b (11)
1+al+-——F-+, |b] <2(1—]c|).
o+ gy <201
Ifac <0, then
1—la|l+ P —4ac(c™? —1) < b? and |b| <2(1—|c|)
4(1—e[) -

Y(a,b,c) = b? (12)

Vol + gy s < min {40 ) —dace? - 1))
R(ﬂ, b/ C) ’ otherwise
where
|a| +[b] — e[, |c|([b] + 4[a]) < |ab]
Ria,byc) = 4 —lal+ oI+ el,  labl < [el(|b] - 4lal) -

b2
(el +lan/1- 2, ot

We begin this section by finding the absolute values of the first three initial coefficients in the
function class Hs/,(p).

3. Main Results

Theorem 2. Let 0 < p < 2and let f, given by (1), be in the class Hsz 5 (p). Then

\a2| <1 (14)
L
jas] < 5(1* +2) (15)
135p% + 210p? + 512
Proof. Let f € H3,5(p). Then
14 4@
/') 3
§R< 7@ ) <2,z€[U
fz)
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or equivalently

L4
R(3-—2—SE |50 zeu.

zf'(z)
f(z)
Therefore, there exists a function p € P, given by (7), such that
zf'(2) ( Zf”(Z)> zf'(2)
3 -2(1+ =plz . 17
) 7o )~ P 1

Making use of the Taylor series representations for functions f and p and equating the coefficients
of z" (n =1,2,3) on both sides of (17), we obtain

1
ay = —% az = g(—pz — p1ax + 611%) (18)
1
ay = E(I% +2p183 + paaz — p1a3 — 30aa3 + 1443). (19)

Since f € Hz/»(p) we have 2a; = f”(0) = p and then, by (18), we get p1 = —2a; = —p. In view
of the last equality and Lemma 1, we obtain

2p2 =p*+ (4—p)x (20)

dps=—p> —2(4—pP)px+ (4= pP)px® +2(4 — p*) (1 — |x|?)y, (1)

where x,y € C with x| < 1and |y| < 1. Making use of (18)—(21), elementary calculations yield to

1
m=5 4= - 4-px] (22)
04 =70 |76V~ 1g¢ —PIpx = (4= p)pxt = S (4= p) (1~ [x[y| - (23)

Since p € [0,2], we get |ap| < 1. We have

1 1
jas] < $£18p* = (4= p*)x| < 1 Bp* +4—p?) = S (1 +2).

r
16

For the estimate of |a4|, we obtain

)
) < 47;71/(01, b,c),

4—p? ) 19p° Bp po
< 1— il AR ied VN 4
laa] < —3¢ ( ] *‘ 8( B R R TS

4—p%) 8 2

where Y(a, b, c) is given by (10) and
3

R R )

8(4 — p?) 8 2

Since p € [0,2], it is easy to verify that ac < 0 and b? < min {4(1 + |c[)?, —4ac(c™2 — 1) }. In view

of Lemma 2, we have
 135p% +210p* + 512

Y(a,b,c) =
(a,b,c) 128(4 — p2)
and thus ) 3 )
4-p 135p3 + 210p2 + 512
< —
jaa] < =3 Y(a,b,c) 4608
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Denote by

Hap(+) = U Haplp). (24)
0<p<L2

Then, by using (15) and (16), a simple computation shows that

sup as(f)| = 3

feFHz/(+)
and 19
swp las(f)| = 2o,

f€335(+)

where a3(f) and a4(f) are the coefficients of f. [

The upper bounds for the difference of the initial coefficients for the class Hj,,(p) are given in
the next result.

Theorem 3. Let 0 < p < 2and f(z) =z+ Y, »anz" € Hz2(p). Then,

33—l < 3 (-PP+2p+1) 25)
and
75p3+18ﬁ4— 18p+36/ pe :0, ﬂ
04— 3] < —135p3+606f620;612p+1160/ pe éiﬂ 26)
_9p3+18p722+ 17p—18, pe 24112}

Proof. Proceeding as in the proof of Theorem 2 and making use of (22), we obtain

1
a3 — oz = - [3p” = 8p — (4= p)x| < L (=p* +2p +1).

=

Now, we shall find the estimate of |a4 — a3|. For this, using (22) and (23), we have

1 ]19p° — 54p? L 18-13p

g — a3 = 5 5 S (4= p?)x =24 = p*)px® —4(4— p?) (1 - )y

2 2 _ _
S436;7 [1_x|2+‘p(54 19p)_18 13px+3x2

4—p2
<
8(4— p?) 8 2 } = Y(ab.e),

36

where Y(a, b, c) is given by (10) and

2 _ _
L_PPG4—19p) 18— 13p

8(4—p?) ’ 8

p

dce=1L
an Cc 5

Since 0 < p < 2, we have a > 0. Note also that for p € [0,2] the inequality |b| > 2(1 —|c|) is

equivalent to
2 34
e oZ] o2
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Making use of Lemma 2, a computation gives

2 _
pr(54—19p) 18-13p p 2
8(4—p2) + 3 +2, p€_0,5
2 _ - 2 r
Y(a,b,c) =4 1+ p*(54—19p) (18 —13p)  pe E,%
8(4 — p?) 128(2 — p) 15" 21
2 _
pr(54—19p) 18-13p p 34
Therefore, we get
—5p% +18p2 — 18p + 36 [ 2
144 , pE _0, 5
_ 3 2 _
0y —a3| < 135p° + 606p~ — 612p + 1160 , g, 34
4608 5721
—9p% +18p> +17p — 18 [34
7 , pE _ﬁ,z
In view of the estimates (25) and (26), we deduce that
1
sup Jas(f) — aa(f)| =
fe32(+)
and .
58+/87 — 36
sup ‘El4(f)—b‘l3(f)| :W%O.Zfﬂ...
fEXH/2(+)

where H3 /5 (+) is given by (24) and ax(f), a3(f), 42(f) are the coefficients of f. [

In the next result, we obtain the estimates of the functionals |a2a4 — a3| and |as — aza3).

Theorem 4. Let 0 < p < 2and let f, given by (1), be in the function class Hz > (p). Then, the following

estimates hold ) 5
6 — 6+
jazay — a3 < C=P)OL7) @7)

9p3 — 6p* + 32 4
288 » P03
ay — azaz| < (28)

p 4
= =,2|.
9 ’ p E {3 ’ ]
Proof. Proceeding again as in the proof of Theorem 2 and making use of (22) and (23), we have

1
(a204 — 03] = = | =5p2 +2(4 — p?)pPx — (7p +36) (4 — p)x> = 32p(4 — p?)(1 = [x2)y

< 7 X+

P( 4 172) ) 5173 P 7172 36 ,
< 7211 + | — _
|x| ( 7) 16 3 x (a,b,c),

_pa—p?
]_72Y
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where Y(a,b, c) is given by (10) and

3

_ 5p _ P _7p2+36
v Tre A T T

The inequality |b| > 2(1 — |c|) holds true for all p € [0,2] and therefore, from Lemma 2,

we deduce that 3 2 4
_ 5 p T3 —pt36
Y(a,b,c) = 3204 p2) + 16 + 32p  8p(4—p?)

It follows that

2 2
21 < 6=p)6+p%)
lagay —aj5| < 576 .

To find the upper bound of |a; — aa3| we use once more (23) and (24) and obtain

1
a4 — aza3] = oo \—8;93 —4(4—pP)px —4(4— pP)px* —8(4— pH) (1 — |x*)y

_ 2 5
<4p[1—|x|2+‘ A P

_4-7
=736 -2 2" }_ Y@ be),

36

where Y(a, b, c) is given by (10) and

and b=c= L.

NI

4—p?

It easy to show that |b| < 2(1 — |¢|) for p € [0,4/3]. An application of Lemma 2 yields

3 2
p p 4
1+4—P2+8(2—P)’ pe{o,:_;]
Y(a,b,c) = \
o 4
4_p2+p, pe{?),z].

Hence, inequality (28) holds true.
Finally, using the estimates (27) and (28) we get

sup |a2(f)as(f) —a3(f)| = %

fe€33/2(+)

and

sup Jas(f) — aa(as(f)| = 5,

f€XH3/2(+)

where 33 /,(+) is given by (24) and ax(f), az(f), 42(f) are the coefficients of f. [

4. Conclusions

In this paper, we first considered a presumably new subclass J{3,, of starlike functions in the
open unit disk. For a refined family 33 ,,(p) (0 < p < 2) of H3,», we investigated the upper bounds
of the initial coefficients and the moduli of the initial successive coefficients. Moreover, upper bounds
for functionals |apas — a3| and |as — apa3] for the same subclass 33/5(p) were derived. The results
obtained in this note could be a subject of further investigation related to Fekete-Szego type functionals
or Hankel determinants for the functions class 33 5.
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