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Abstract: In this note, we consider a subclass H3/2(p) of starlike functions f with f ′′(0) = p for
a prescribed p ∈ [0, 2]. Usually, in the study of univalent functions, estimates on the Taylor
coefficients, Fekete–Szegö functional or Hankel determinats are given. Another coefficient problem
which has attracted considerable attention is to estimate the moduli of successive coefficients
|an+1| − |an|. Recently, the related functional |an+1 − an| for the initial successive coefficients
has been investigated for several classes of univalent functions. We continue this study and for
functions f (z) = z + ∑∞

n=2 anzn ∈ H3/2(p), we investigate upper bounds of initial coefficients and
the difference of moduli of successive coefficients |a3 − a2| and |a4 − a3|. Estimates of the functionals
|a2a4 − a2

3| and |a4 − a2a3| are also derived. The obtained results expand the scope of the theoretical
results related with the functional |an+1 − an| for various subclasses of univalent functions.
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1. Introduction

As usual, denote by A the family of all normalized analytic functions

f (z) = z +
∞

∑
n=2

anzn (1)

defined in the open unit disk U = {z ∈ C : |z| < 1} and let S be the subset of univalent functions in A.
Let

S∗(α) =

{
f ∈ A : < z f ′(z)

f (z)
> α, z ∈ U, 0 ≤ α < 1

}
(2)

be the class of starlike functions of order α (see [1]). The family S∗(0) = S∗ is the well-known class of
starlike functions in U. Denote by K the class of convex functions in U, i.e.,

K =

{
f ∈ A : <

(
1 +

z f ′′(z)
f ′(z)

)
> 0, z ∈ U

}
. (3)

In 1997, Silverman [2] investigated the properties of a subclass of A, defined in terms of the
quotient (1 + z f ′′(z)

f ′(z) )/
z f ′(z)

f (z) . More precisely, for 0 < b ≤ 1, Silverman’s class Gb is defined as follows

Gb =

 f ∈ A :

∣∣∣∣∣∣
1 + z f ′′(z)

f ′(z)
z f ′(z)

f (z)

− 1

∣∣∣∣∣∣ < b, z ∈ U

 . (4)
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In [2], Silverman proved that all functions in Gb are starlike of order 2/(1 +
√

1 + 8b).
Lately, Obradović and Tuneski [3] improved the results of Silverman and obtained new starlike
criteria for the class Gb. Among others, they obtained the next result.

Theorem 1 ([3]). Let f ∈ A. If

<

1 + z f ′′(z)
f ′(z)

z f ′(z)
f (z)

 <
3
2

, z ∈ U,

then f ∈ S∗.

Starting from the above result, we consider the following subclass of S∗:

H3/2 =

 f ∈ A : <

1 + z f ′′(z)
f ′(z)

z f ′(z)
f (z)

 <
3
2

, z ∈ U

 . (5)

It is not difficult to show that for |a| < 1/2, the function f (z) = z
1+az ∈ H3/2.

During the years, great attention has been given to the difference of moduli of
successive coefficients ||an+1| − |an|| of a function in S∗. In 1963, Hayman [4] proved that
||an+1| − |an|| ≤ A (A ≥ 1) for f ∈ S∗. Further, Leung [5] proved Pommerenke’s [6] conjecture
||an+1| − |an|| ≤ 1 for f ∈ S∗. Estimates of the difference of moduli of successive coefficients,
for certain subclasses of S∗, were also obtained by Z. Ye [7,8], and others (see, for example [9]).
Moreover, since ||an+1| − |an|| < |an+1 − an|, the study of the functional |an+1 − an| has been also
considered. For all functions f ∈ K, Robertson [10] obtained the inequality |an+1 − an| ≤ 2n+1

3 |a2 − 1|
and proved that the factor (2n + 1)/3 cannot be replaced by any smaller number independent of f .
Recently, Li and Sugawa [11] investigated the problem of maximizing the functionals |a3 − a2| and
|a4 − a3| for a refined subclass of K, K(p) = { f ∈ K : f ′′(0) = p, p ∈ [0, 2]}. The upper bounds of the
same funtionals |a3 − a2| and |a4 − a3| for various subclasses of univalent functions were obtained by
Peng and Obradović [12] and L. Shi et al. [13].

Motivated by the results given in [11–13], in the present paper we obtain upper bounds of the
initial coefficients and upper bounds of |a3− a2| and |a4− a3| for a refined subclass of H3/2, defined by

H3/2(p) =
{

f ∈ H3/2 : f ′′(0) = p
}

, (6)

where p is a given number satisfying −2 ≤ p ≤ 2.
Moreover, upper bounds for functionals |a2a4 − a2

3| and |a4 − a2a3| for the same subclass H3/2(p)
are also derived. The first functional is known as the second Hankel determinant, studied in many
papers (see [14–17]). The second functional is a particular case of the generalized Zalcman functional,
investigated by Ma [18], Efraimidis and Vukotić [19] and many others (see [20–23]).

2. Preliminary Results

Let P be the class of analytic functions p with a positive real part in U, satisfying the condition
p(0) = 1. A member p ∈ P is called a Carathéodory function and has the Taylor series expansion

p(z) = 1 +
∞

∑
n=1

pnzn. (7)

It is known that |pn| ≤ 2 for p ∈ P and n = 1, 2, . . . (see [1]).
In order to prove our main results, the following two lemmas will be used. The first is due to

Libera and Złotkiewicz [24,25].
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Lemma 1. Let −2 ≤ p1 ≤ 2 and p2, p3 ∈ C. Then there exists a function p ∈ P of the form (7) such that

2p2 = p2
1 + x(4− p2

1) (8)

and
4p3 = p3

1 + 2(4− p2
1)p1x− (4− p2

1)p1x2 + 2(4− p2
1)(1− |x|2)y (9)

for some x, y ∈ C with |x| ≤ 1 and |y| ≤ 1.

The second lemma is a special case of a more general result due to Ohno and Sugawa [26]
(see also [11]).

Lemma 2. For some given real numbers a, b, c, let

Y(a, b, c) = max
z∈U

(|a + bz + cz2|+ 1− |z|2). (10)

If ac ≥ 0, then

Y(a, b, c) =


|a|+ |b|+ |c| , |b| ≥ 2(1− |c|)

1 + |a|+ b2

4(1− |c|) , |b| < 2(1− |c|).
(11)

If ac < 0, then

Y(a, b, c) =


1− |a|+ b2

4(1− |c|) , −4ac(c−2 − 1) ≤ b2 and |b| < 2(1− |c|)

1 + |a|+ b2

4(1 + |c|) , b2 < min
{

4(1 + |c|)2,−4ac(c−2 − 1)
}

R(a, b, c) , otherwise

(12)

where

R(a, b, c) =


|a|+ |b| − |c| , |c|(|b|+ 4|a|) ≤ |ab|
−|a|+ |b|+ |c| , |ab| ≤ |c|(|b| − 4|a|)

(|c|+ |a|)
√

1− b2

4ac
, otherwise.

(13)

3. Main Results

We begin this section by finding the absolute values of the first three initial coefficients in the
function class H3/2(p).

Theorem 2. Let 0 ≤ p ≤ 2 and let f , given by (1), be in the class H3/2(p). Then

|a2| ≤ 1 (14)

|a3| ≤
1
8
(p2 + 2) (15)

|a4| ≤
135p3 + 210p2 + 512

4608
. (16)

Proof. Let f ∈ H3/2(p). Then

<

1 + z f ′′(z)
f ′(z)

z f ′(z)
f (z)

 <
3
2

, z ∈ U
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or equivalently

<

3− 2
1 + z f ′′(z)

f ′(z)
z f ′(z)

f (z)

 > 0, z ∈ U.

Therefore, there exists a function p ∈ P, given by (7), such that

3
z f ′(z)

f (z)
− 2

(
1 +

z f ′′(z)
f ′(z)

)
= p(z)

z f ′(z)
f (z)

. (17)

Making use of the Taylor series representations for functions f and p and equating the coefficients
of zn (n = 1, 2, 3) on both sides of (17), we obtain

a2 = − p1

2
a3 =

1
8
(−p2 − p1a2 + 6a2

2) (18)

a4 =
1

18
(p3 + 2p1a3 + p2a2 − p1a2

2 − 30a2a3 + 14a3
2). (19)

Since f ∈ H3/2(p) we have 2a2 = f ′′(0) = p and then, by (18), we get p1 = −2a2 = −p. In view
of the last equality and Lemma 1, we obtain

2p2 = p2 + (4− p2)x (20)

4p3 = −p3 − 2(4− p2)px + (4− p2)px2 + 2(4− p2)(1− |x|2)y, (21)

where x, y ∈ C with |x| ≤ 1 and |y| ≤ 1. Making use of (18)–(21), elementary calculations yield to

a2 =
p
2

a3 =
1

16
[3p2 − (4− p2)x] (22)

a4 =
1

18

[
19
16

p3 − 13
16

(4− p2)px− 1
4
(4− p2)px2 − 1

2
(4− p2)(1− |x|2)y

]
. (23)

Since p ∈ [0, 2], we get |a2| ≤ 1. We have

|a3| ≤
1
16
|3p2 − (4− p2)x| ≤ 1

16
(3p2 + 4− p2) =

1
8
(p2 + 2).

For the estimate of |a4|, we obtain

|a4| ≤
4− p2

36

(
1− |x|2 +

∣∣∣∣− 19p3

8(4− p2)
+

13p
8

x +
p
2

x2
∣∣∣∣) ≤ 4− p2

36
Y(a, b, c),

where Y(a, b, c) is given by (10) and

a = − 19p3

8(4− p2)
, b =

13p
8

, c =
p
2

.

Since p ∈ [0, 2], it is easy to verify that ac < 0 and b2 < min
{

4(1 + |c|)2,−4ac(c−2 − 1)
}

. In view
of Lemma 2, we have

Y(a, b, c) =
135p3 + 210p2 + 512

128(4− p2)

and thus

|a4| ≤
4− p2

36
Y(a, b, c) =

135p3 + 210p2 + 512
4608

.
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Denote by
H3/2(+) =

⋃
0≤p≤2

H3/2(p). (24)

Then, by using (15) and (16), a simple computation shows that

sup
f∈H3/2(+)

|a3( f )| = 3
4

and
sup

f∈H3/2(+)

|a4( f )| = 19
36

,

where a3( f ) and a4( f ) are the coefficients of f .

The upper bounds for the difference of the initial coefficients for the class H3/2(p) are given in
the next result.

Theorem 3. Let 0 ≤ p ≤ 2 and f (z) = z + ∑∞
n=2 anzn ∈ H3/2(p). Then,

|a3 − a2| ≤
1
4
(−p2 + 2p + 1) (25)

and

|a4 − a3| ≤



−5p3 + 18p2 − 18p + 36
144

, p ∈
[

0,
2
5

]
−135p3 + 606p2 − 612p + 1160

4608
, p ∈

[
2
5

,
34
21

]
−9p3 + 18p2 + 17p− 18

72
, p ∈

[
34
21

, 2
]

.

(26)

Proof. Proceeding as in the proof of Theorem 2 and making use of (22), we obtain

|a3 − a2| =
1

16
|3p2 − 8p− (4− p2)x| ≤ 1

4
(−p2 + 2p + 1).

Now, we shall find the estimate of |a4 − a3|. For this, using (22) and (23), we have

|a4 − a3| =
1

144

∣∣∣∣19p3 − 54p2

2
+

18− 13p
2

(4− p2)x− 2(4− p2)px2 − 4(4− p2)(1− |x|2)y
∣∣∣∣

≤ 4− p2

36

[
1− |x|2 +

∣∣∣∣ p2(54− 19p)
8(4− p2)

− 18− 13p
8

x +
p
2

x2
∣∣∣∣] ≤ 4− p2

36
Y(a, b, c),

where Y(a, b, c) is given by (10) and

a =
p2(54− 19p)

8(4− p2)
, b = −18− 13p

8
and c =

p
2

.

Since 0 ≤ p ≤ 2, we have a > 0. Note also that for p ∈ [0, 2] the inequality |b| ≥ 2(1− |c|) is
equivalent to

p ∈
[

0,
2
5

]
∪
[

34
21

, 2
]

.
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Making use of Lemma 2, a computation gives

Y(a, b, c) =



p2(54− 19p)
8(4− p2)

+
18− 13p

8
+

p
2

, p ∈
[

0,
2
5

]

1 +
p2(54− 19p)

8(4− p2)
+

(18− 13p)2

128(2− p)
, p ∈

[
2
5

,
34
21

]
p2(54− 19p)

8(4− p2)
− 18− 13p

8
+

p
2

, p ∈
[

34
21

, 2
]

.

Therefore, we get

|a4 − a3| ≤



−5p3 + 18p2 − 18p + 36
144

, p ∈
[

0,
2
5

]
−135p3 + 606p2 − 612p + 1160

4608
, p ∈

[
2
5

,
34
21

]
−9p3 + 18p2 + 17p− 18

72
, p ∈

[
34
21

, 2
]

.

In view of the estimates (25) and (26), we deduce that

sup
f∈H3/2(+)

|a3( f )− a2( f )| = 1
2

and

sup
f∈H3/2(+)

|a4( f )− a3( f )| = 58
√

87− 36
1944

≈ 0.259 . . .

where H3/2(+) is given by (24) and a2( f ), a3( f ), 42( f ) are the coefficients of f .

In the next result, we obtain the estimates of the functionals |a2a4 − a2
3| and |a4 − a2a3|.

Theorem 4. Let 0 ≤ p ≤ 2 and let f , given by (1), be in the function class H3/2(p). Then, the following
estimates hold

|a2a4 − a2
3| ≤

(6− p2)(6 + p2)

576
(27)

|a4 − a2a3| ≤


9p3 − 6p2 + 32

288
, p ∈

[
0,

4
3

]
p
9

, p ∈
[

4
3

, 2
]

.

(28)

Proof. Proceeding again as in the proof of Theorem 2 and making use of (22) and (23), we have

|a2a4 − a2
3| =

1
2304

∣∣∣−5p2 + 2(4− p2)p2x− (7p2 + 36)(4− p2)x2 − 32p(4− p2)(1− |x|2)y
∣∣∣

≤ p(4− p2)

72

[
1− |x|2 +

∣∣∣∣ 5p3

32(4− p2)
− p

16
x +

7p2 + 36
32p

x2
∣∣∣∣] = p(4− p2)

72
Y(a, b, c),
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where Y(a, b, c) is given by (10) and

a =
5p3

32(4− p2)
, b = − p

16
and c =

7p2 + 36
32p

.

The inequality |b| ≥ 2(1 − |c|) holds true for all p ∈ [0, 2] and therefore, from Lemma 2,
we deduce that

Y(a, b, c) =
5p3

32(4− p2)
+

p
16

+
7p2 + 36

32p
=
−p4 + 36

8p(4− p2)
.

It follows that

|a2a4 − a2
3| ≤

(6− p2)(6 + p2)

576
.

To find the upper bound of |a4 − a2a3| we use once more (23) and (24) and obtain

|a4 − a2a3| =
1

288

∣∣∣−8p3 − 4(4− p2)px− 4(4− p2)px2 − 8(4− p2)(1− |x|2)y
∣∣∣

≤ 4− p2

36

[
1− |x|2 +

∣∣∣∣ p3

4− p2 +
p
2

x +
p
2

x2
∣∣∣∣] = 4− p2

36
Y(a, b, c),

where Y(a, b, c) is given by (10) and

a =
p3

4− p2 and b = c =
p
2

.

It easy to show that |b| < 2(1− |c|) for p ∈ [0, 4/3]. An application of Lemma 2 yields

Y(a, b, c) =


1 +

p3

4− p2 +
p2

8(2− p)
, p ∈

[
0,

4
3

]
p3

4− p2 + p , p ∈
[

4
3

, 2
]

.

Hence, inequality (28) holds true.
Finally, using the estimates (27) and (28) we get

sup
f∈H3/2(+)

|a2( f )a4( f )− a2
3( f )| = 1

16

and
sup

f∈H3/2(+)

|a4( f )− a2( f )a3( f )| = 2
9

,

where H3/2(+) is given by (24) and a2( f ), a3( f ), 42( f ) are the coefficients of f .

4. Conclusions

In this paper, we first considered a presumably new subclass H3/2 of starlike functions in the
open unit disk. For a refined family H3/2(p) (0 ≤ p ≤ 2) of H3/2, we investigated the upper bounds
of the initial coefficients and the moduli of the initial successive coefficients. Moreover, upper bounds
for functionals |a2a4 − a2

3| and |a4 − a2a3| for the same subclass H3/2(p) were derived. The results
obtained in this note could be a subject of further investigation related to Fekete–Szegö type functionals
or Hankel determinants for the functions class H3/2.
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