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Abstract: The propagation of a forest fire can be described by a convection–diffusion–reaction
problem in two spatial dimensions, where the unknowns are the local temperature and the portion
of fuel consumed as functions of spatial position and time. This model can be solved numerically
in an efficient way by a linearly implicit–explicit (IMEX) method to discretize the convection and
nonlinear diffusion terms combined with a Strang-type operator splitting to handle the reaction term.
This method is applied to several variants of the model with variable, nonlinear diffusion functions,
where it turns out that increasing diffusivity (with respect to a given base case) significantly enlarges
the portion of fuel burnt within a given time while choosing an equivalent constant diffusivity or
a degenerate one produces comparable results for that quantity. In addition, the effect of spatial
heterogeneity as described by a variable topography is studied. The variability of topography
influences the local velocity and direction of wind. It is demonstrated how this variability affects
the direction and speed of propagation of the wildfire and the location and size of the area of fuel
consumed. The possibility to solve the base model efficiently is utilized for the computation of
so-called risk maps. Here the risk associated with a given position in a sub-area of the computational
domain is quantified by the rapidity of consumption of a given amount of fuel by a fire starting in that
position. As a result, we obtain that, in comparison with the planar case and under the same wind
conditions, the model predicts a higher risk for those areas where both the variability of topography
(as expressed by the gradient of its height function) and the wind velocity are influential. In general,
numerical simulations show that in all cases the risk map with for a non-planar topography includes
areas with a reduced risk as well as such with an enhanced risk as compared to the planar case.

Keywords: forest fire model; numerical solution; convection–diffusion–reaction problem;
implicit–explicit time integration; weighted essentially non-oscillatory reconstruction; nonlinear
diffusion function; topography; risk map
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1. Introduction

It is the purpose of this contribution to apply a recently-developed efficient numerical method [1]
for the solution of a wildland fire model [2] to simulate the propagation of a wildfire in various spatially
heterogeneous environments. In particular we demonstrate the use of the method for the computation
of so-called risk maps that are based on solving the model under systematic variations of the initial
focus of wildfire. The governing model is a particular system of convection–diffusion–reaction partial
differential equations (PDEs) that is specified in Section 2.

General principles for the design of models of wildland fire are outlined, for instance, in [3,4].
The model employed herein, due to Asensio and Ferragut [2], is described in detail in [1].
Further references to this model and its variants include [5–7]. Applications of this model to real-world
wildfire scenarios in several specific geographic regions are documented in [4,8,9]. It is also the basis
of the spectral algorithm advanced by San Martin and Torres [10,11], but the particular nature of that
numerical method is applicable to a constant diffusion coefficient only. An alternative approach to
the description of wildfires through partial differential equations, and their numerical solution by
explicit methods is provided in [12,13]. These models and simulators are all based on the principles
of combustion theory (see, for instance, [14,15]). Under simplifying assumptions one then obtains
a fully three-dimensional reaction–diffusion–convection system governed by thermodynamics [16].
Such systems are usually reduced to two horizontal space dimensions based on the consideration
that the ratio of height of vegetation with respect to the characteristic size of a forest is small [17].
Thus, although the combustion process is fully turbulent and three-dimensional, most models used for
the simulation of wildfire propagation are formulated and eventually solved in two horizontal space
dimensions, although some three-dimensional effects, for instance due to variation of topography,
are considered. These include, in particular, [1,2,4–13]. This simplifaction, especially for large terrains,
also reflects limitations in computational resources available. In this context we refer to Tables I and II
in [10] for an overview on models, their assumptions, and the corresponding computational treatment.
Explicit treatments of the vertical propagation of a forest fire (but on domains of limited horizontal
extension) include [18,19]; see also the references cited in these works.

The simulation of a wildfire by numerical solution of an initial-boundary value problem for the
governing convection–diffusion–reaction model is a well-known challenge [20] due to the presence of
a diffusion term and stiff reaction terms. As a consequence of this property, explicit finite difference
schemes are usually associated with a stability condition (CFL condition) that enforces very small time
steps for moderate to fine spatial discretizations. This restriction can be avoided by implicit–explicit
(IMEX) time discretizations that were introduced for the present wildfire model in our previous
paper [1]. These methods impose a less restrictive limitation of the time step than explicit methods.
This is achieved by carefully distinguishing between stiff and non-stiff occurrence of the vector of
unknowns in the spatially-discretized equations, and choosing the time discretization of the respective
terms in a corresponding either implicit or explicit fashion. However, IMEX methods are more
general than semi-implicit methods and are based on interlacing evaluations of the stages of particular
explicit and implicit Runge–Kutta (RK) schemes [21,22]. We refer to [23,24] as the earliest references to
IMEX methods in the context of time-dependent partial differential equations and [25–35] for various
applications of IMEX-RK schemes.

IMEX schemes can be understood as sophisticated time discretizations to be applied to the spatial
discretization of a partial differential equation, that is, to the governing equation semi-discretized
(discrete in space, continuous in time) in a so-called method-of-lines formulation. The spatial
discretization itself needs to be done separately. To this end, we herein employ a fifth-order
weighted essentially non-oscillatory (WENO) finite-difference discretization [36–38] of convective
terms on Cartesian grids that can also be regarded as a second-order fully conservative finite-volume
discretization on these grids. Our preference for this technique with respect to others, such as finite
volume schemes with flux limiters (see [36,39,40] for these and many other alternative schemes) stems
from our familiarity with it, in particular in the context of convection–diffusion models related to
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eco-epidemiological problems [30,31] and non-local models of pedestrian flow [32]. In this work,
discontinuous solutions may arise due to degenerate diffusion, as well as sharp gradients, that are
dealt with in a robust manner by the WENO reconstructions. Articles that use some mathematics,
to make the techniques used more plausible, also include [41].

From a scientific point of view, the contribution and novelty of the present paper is threefold.
Firstly, we complement the description of an efficient new numerical method (provided in detail
in [1]), namely a linearly implicit IMEX time discretization involving Strang-type operator splitting
and WENO spatial discretization by additional examples that demonstrate that the method is flexible
enough to handle nonlinear or degenerating diffusion functions and variable topographies. Secondly,
we obtain some qualitative insight into the predictions made by the underlying wildfire model. Thirdly,
it is demonstrated how the availability of an efficient numerical simulation method can be employed
to construct wildfire risk maps for portions of a given terrain.

The remainder of the paper is organized as follows. In Section 2 the governing mathematical model
is summarized. We only introduce the model in its final, dimensionless form. Detailed derivations
of the wildfire model and its ingredients are provided in [1,2,4]. Next, in Section 3 we outline the
numerical method. Numerical results are presented in Section 4. Specifically, after introducing
preliminaries in Section 4.1, we simulate in Section 4.2 four scenarios (Scenarios 1.1 to 1.4) with
different definitions of K(u). Then, in Section 4.3 we fix the diffusion coefficient K(u) and evaluate
the influence of the topography of the terrain that affects the wind velocity w through its gradient.
To this end we simulate Scenarios 2.1 to 2.4 that differ in the topography of the terrain, in particular
the steepness of mountains. Then, based on these topographies, we proceed in Section 4.4 with
the computation of risk maps, where the specific risk associated with a point or small patch of the
computational domain is the smallness of the time needed to burn a determined fixed amount of fuel
(here measured as a percentage of the fuel initially available in Ω) by a wildfire having its initial focus
at that position. Some conclusions are collected in Section 5.

2. Summary of the Mathematical Model

The governing model is the system of convection–diffusion–reaction partial differential
equations (PDEs)

∂u
∂t

+∇ ·
(
w(x, t)u

)
= ∇ ·

(
K(u)∇u

)
+ f (u, v, x),

∂v
∂t

= g(u, v), (1)

where t is time, x ∈ Ω is the spatial variable where the domain Ω ⊂ R2 represents the forest in
which the fire may propagate, and u = u(x, t) and v = v(x, t) are the scalar unknowns. Here u is
the non-dimensionalized temperature and v the non-dimensionalized mass fraction of solid fuel.
Moreover, K = K(u) is a given diffusion coefficient, and w is an advection velocity that represents
wind speed. The functions f (u, v, x) and g(u, v) are the reactive part of the model. (These ingredients
will be specified further below.) The complete wildfire model is described by the system (1) along with
zero-flux boundary conditions(

uw− K(u)∇u
)
· n = 0, (x, t) ∈ ∂Ω× (0,+∞), (2)

where n is the unit normal vector to ∂Ω, and the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω. (3)

We here state the model ingredients in final form, based on the assumption that the dimensional
rate r of the chemical reaction of fuel and oxidants into products is given by the Arrhenius equation
r = A exp(−EA/(RU)), where A is a constant, EA denotes the activation energy, R is the universal gas
constant, and U is absolute temperature (values of parameters are specified in Section 4.1). We mention
that precise statements of the assumptions involved in the model development are provided in [1,2,4].
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In particular, it is assumed that there is always sufficient amount of oxidant provided by air, so that
the conservation law for the oxidant can be ignored (as is stated in the Section 2 of [2]).

If a reference ambient temperature Uref = U∞ and the non-dimensional inverse of the activation
energy ε = RU∞/EA are given, then the non-dimensional temperature is u = (U − U∞)/(εU∞).
Furthermore, time t and the spatial coordinates x and y within x = (x, y) are understood as
dimensionless variables. Here the original dimensional quantities are non-dimensionalized by the time
scale t0 = (ε/(qreact A)) exp(1/ε), where qreact is a non-dimensional reaction heat, and the length scale
l0 = (t0k/(ρC))1/2, where k is thermal conductivity, C is specific heat, and ρ is the density of the fuel.

Next, we assume that the wind velocity w is given by

w(x, t) = w0(x, t) +∇T (x), (4)

where the vector field w0(x, t) is a given wind velocity that may depend on spatial position and
time (but is considered constant in our numerical experiments), and T (x) is the topography of the
domain [10,11]. This choice differs from that of [1], where the terrain was assumed flat, and allows us
to include spatial heterogeneity.

Furthermore, we assume that spatial propagation of heat occurs through radiation (as described
through the Stefan–Boltzmann law) as well as through natural convection. Then the diffusion function
K(u) is given by

K(u) = κ(1 + εu)3 + 1, (5)

where κ = 4σδU3
∞/k. Here σ is the Stefan–Boltzmann constant and δ is the length of the optical path

for radiation through the substance. (The particular functional form (5) is the one derived from first
principles in [1,2,4]. In particular, it is based on writing the heat flux by radiation (as defined by the
Stefan-Boltzmann law) in dimensionless form as

q = κ(1 + εu)3∇u =
(
K(u)− 1

)
∇u.

However, for illustrative purposes and since our numerical methods are able to handle a wide
range of nonlinear and even degenerate diffusion coefficients, we will also consider alternative
algebraic expressions, see Section 4.2). The reaction term f (u, v, x) is given by

f (u, v, x) = vζ(u)− αu, ζ(u) := c(u) exp
(

u
1 + εu

)
. (6)

Here the function c(u) indicates the phase change between the endothermic (solid) and the
exothermic (gaseous) phase,

c(u) =

{
1 if u ≥ upc,

0 if u < upc,
(7)

where upc is a given non-dimensional phase change temperature, and α denotes a natural convection
coefficient. Finally, the function g(u, v) that accounts for fuel consumption takes the form

g(u, v) = − εv
qreact

ζ(u). (8)

Summarizing, we may collect the model in its final form and relations necessary in the remainder
of the paper as follows. The governing partial differential equations are (1) that are solved along
with the boundary conditions (2) and the initial condition (3). As for the coefficient functions in (1),
the wind velocity w(x, t) is specified by (4) (specific choices of the topography function T (x) will be
introduced in Section 4.3), the diffusion function K(u) by (5) (alternative formulas will be discussed in
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Section 4.2), and the reaction term f (u, v, x) by (6) and (7). The fuel consumption function g(u, v) is
given by (8). Values of the constants involved in K(u), f (u, v, x) and g(u, v) are provided in Section 4.1.

3. Numerical Method

We assume (for simplicity) a quadratic domain Ω = [0, L]2 and denote by u = u(x, t) and
v = v(x, t) the solution of (1). We define a Cartesian grid with nodes xi = (xi, yj), i, j = 1, . . . , M,
with xi = yi = (i− 1/2)∆x, ∆x = L/M, and we define the index vector i = (i, j) ∈ M := {1, . . . , M}2.
The unit vectors e1 = (1, 0) and e2 = (0, 1) are used to refer to neighboring grid points, for instance
xi+e1 = (xi+1, yj) and xi+e2 = (xi, yj+1). We define u as a solution computed at an instant t in the
grid points, where ui(t) = u(xi, t), and analogous notation is used for v. For simplicity we denote
Ki = K(ui). We may then approximate (1), (5)–(8) in semi-discrete form (that is, in discrete in space
but continuous in time form) by the system of ordinary differential equations (ODEs)

du/dt = C(u) +D(u)u−Au + vζ(u), dv/dt = −(ε/qreact)vζ(u). (9)

Here the terms C(u) and D(u)u represent the spatial discretizations of the convective and
diffusive terms arising in the first PDE in (1). Their entries are given by C(u) = (C(u)i)i∈M,
D(u)u = ((D(u)u)i)i∈M, where

C(u)i = −
2

∑
l=1

1
∆x
(

f̂i+ 1
2 el
− f̂i− 1

2 el

)
,

(
D(u)u

)
i =

2

∑
l=1

1
2∆x2

(
(Ki + Ki−el )ui−el − (Ki−el + 2Ki + Ki+el )ui + (Ki + Ki+el )ui+el

)
,

where f̂i+ 1
2 el

is the numerical flux corresponding to the fifth-order WENO spatial discretization of the
convective term ∇ · (wu) [35]. For the boundary conditions (2), we can apply absorbing or reflective
boundary conditions in each dimension by imposing ghost nodes.

To summarize the strategy to convert (9) into a fully discrete method, let us consider first the ODE
system that results from (1), (5)–(8) by omitting heat transport and diffusion terms, namely

du/dt = vζ(u), dv/dt = −(ε/qreact)vζ(u). (10)

We discretize (10) implicitly in time for v and explicitly for u. The resulting scheme can be
written as

un+1 = un + ∆tζ(un)vn+1, vn+1 =
vn

1 + ∆t(ε/qreact)ζ(un)
. (11)

In order to evaluate (11) in each iteration step, we first compute the value of vn+1, then this value
is used to compute un+1. Now, we associate with (11) the solution operator ψ∆t defined by

ψ∆t(un, vn) = (un+1, vn+1).

The remaining part of the system (9), namely the system of ordinary differential equations

du/dt = C(u) +D(u)u−Au, (12)

is discretized by a linearly implicit IMEX-RK method. Full technical details of this procedure are
provided in [1], and are similar to treatments of related convection–diffusion problems [25–28].
To explain the main idea, let us recall that in principle Runge–Kutta (RK) ODE solvers could be
applied to solve (9) numerically. For instance, strong stability preserving (SSP) explicit RK schemes
are a popular class of time integrators associated with a favorable stability constraint on the time
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step ∆t [25–29,33–35]. Alternatively, once could employ implicit–explicit Runge–Kutta (IMEX-RK)
methods (see [33–35]), for which only the diffusion term is treated implicitly. In this case the stability
condition on ∆t is less restrictive than for explicit discretizations, but a large system of nonlinear
algebraic equations must be solved in each time step. This shortcoming of IMEX-RK methods is
avoided by the methodology proposed in [25,26] that is based on linearly implicit–explicit RK schemes,
and which is applied here to the discretization of (1). The idea is to distinguish the terms arising in (9)
between stiff and non-stiff dependence on the solution vectors u and v. One then chooses the time
discretization by an implicit and an explicit RK scheme for the terms involving stiff and non-stiff
dependence, respectively. In the product D(u)u, the dependence on u within D(u) is considered
non-stiff, while that of the factor u is considered stiff. On the other hand, in the product vζ(u), the term
ζ(u) is considered non-stiff, while the term v is considered stiff. Based on this distinction, the resulting
linearly implicit IMEX-RK method for (12) is defined by a pair of RK schemes, namely an explicit
one (ERK scheme) and a diagonally implicit one (DIRK scheme) that handle the non-stiff and stiff
dependencies, respectively, and one alternates between evaluations of the stages of the ERK scheme and
solving linear systems to to evaluate those of DIRK scheme. The details of this procedure are outlined
in [1], and we employ here the same coefficients, namely the IMEX-RK scheme H-LDIRK3(2,2,2)
defined by a pair of particular two-stage ERK and DIRK schemes [25,27]. The resulting discretization
of (12) over a time step of length ∆t can be written as

ϕ∆t(un, vn) = (un+1, vn),

where un+1 is the approximation of (12) by the IMEX-RK method. Then the complete Strang splitting
method (cf. [39,42,43]) to solve (9) is formulated as

(un+1, vn+1) = ψ∆t/2 ◦ ϕ∆t ◦ ψ∆t/2(u
n, vn).

Once again we refer to [1] for details on the numerical method.

4. Numerical Results

4.1. Preliminaries

The values of parameters used in all examples are the universal gas constant R =

1.987207 cal/(K mol), an ambient temperature of U∞ = 303 K, an activation energy EA =

20 kcal/mol = 83.68 kJ/mol which yields ε = 0.02980905 ≈ 0.03, and A = 109 s−1 [15]. The mean
magnitudes of other constants, for the numerical examples in [2], and which we adopt for our numerical
experiments in [1] as well as herein, are

ρ = 100 kg m−3, C = 1 kJ kg−1 K−1, k = 1 W m−1 K−1. (13)

Furthermore, Asensio and Ferragut [2] chose the heat of combustion H in such a way that one
can assume qreact = 1. Utilizing the parameters (13), we then get

t0 =
0.03

109 s−1 exp(1/0.03) = 8986.8 s, l0 = (0.089868 m2)1/2 = 0.2998 m

(see the formulas in Section 2). In the numerical examples we keep h constant and small, such that
α = 10−3. The inverse of the conductivity coefficient is chosen as κ = 0.1, and we choose
non-dimensional wind velocities in a different way in each example.

At the moment we do not have access to the specific value of Upc. However, we may estimate the
maximal temperature umax that is attainable. To this end, we examine the ODE system (10), meaning

du/dt = −(qreact/ε)dv/dt.
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On the other hand, the second equation in (10) implies that dv/dt ≤ 0, while v(t) ≥ 0 if v(0) ≥ 0.
Thus we conclude that

u(t) = −(qreact/ε)v(t) + (qreact/ε)v(0) + u(0) ≤ (qreact/ε)v(0) + u(0) =: umax.

For instance, assume that at some point in the spatial domain we impose the initial temperature
such that u(0) = 30, which corresponds to U = (1 + 30ε)U∞ = 1.9U∞ = 570 K. This assumption
implies that umax = (1/ε) + 30 = 63.3̄, or equivalently, a maximum temperature (in absolute value)
of Umax = (1 + εumax)U∞ = 870 K. In light of this calculation we will choose either upc = 0 or
0 < upc ≤ u(0) < umax, where u(0) is the dimensionless temperature at the point where the fire starts.

In all numerical examples (with the exception of the accuracy test, Scenario 2.0) we employed
the method introduced as S-LIMEX in [1] and assume a spatial domain Ω = [0, L]2 with L = 200.
The uniform spatial discretization is chosen as ∆x = 1, so that the computational domain Ω is
subdivided into 200× 200 cells.

4.2. Scenarios 1.1 to 1.4: Numerical Experiments with Various Diffusion Coefficients

In this group of scenarios, we explore the influence of the dynamics of the combustion model.
To this end we fix the initial distribution of temperature and that of fuel, and assume that the terrain is
flat and homogeneous, but vary the diffusion function K(u) to illustrate the effect of different model
assumptions. We assume that the initial distribution of fuel is constant, as well as that the topography
is flat. Specifically, the initial datum for temperature corresponds to an initial focus on a small square
subdomain, i.e., we set

u0 =

{
21 for (x, y) ∈ [34, 46]2,

0 elsewhere

along with

v0(x, y) = 0.9 for all (x, y) ∈ Ω.

With these initial data we simulate a base case and three variants of it. The base case, Scenario 1.1,
is based on using the same remaining parameters and model functions as in [1], namely K(u) defined
by (5) with κ = 0.1 and ε = 0.035, f (u, v, x) given by (6) with c(u) defined through (7) with upc = 20
and α ≡ 10−3, and g(u, v) given by (8) with qreact = 1.

We are interested in comparing results with those obtained for alternative definitions of the
diffusion coefficient K(u). To this end, we repeat the simulation in Scenario 1.2 with the same
parameters with the exception that κ is five times larger, i.e., κ = 0.5. Next, to motivate two alternative
choices of the function u 7→ K(u), we recall first that the maximum temperature umax can be estimated
from the ODE version of (1), (5)–(8), that is (10).

The result is that when we solve (10) for t > 0 starting from u(0) and v(0), then u(t) ≤
umax := (qreact/ε)v(0) + u(0). If we assume that in our case the relevant values are v(0) = 1
and u(0) = 40, then umax = 1/0.035 + 40 ≈ 68.57 =: u∗max. Thus, K(u) assumes values between
K(0) = 1.1 and K(u∗max) = 4.9304. If we wish to compare results with those obtained for a constant
diffusivity (as stipulated in [10]) D∆u instead of∇ · (K(u)∇u), then a reasonable value of the diffusion
coefficient D for comparison should be

D =
1

u∗max

∫ umax∗

0
K(s)ds = 1 +

κ

4εu∗max

(
(1 + εu∗max)

4 − 1
)
≈ 2.3816.

Finally, we introduce the possibility of a degenerating diffusion coefficient, that is we allow
that K(u) = 0 for isolated values of u or even a u-interval of positive length. For instance, we may
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assume that the mechanisms of heat transfer are active only wherever u exceeds a critical value ucrit.
Applying this idea to the diffusion function K(u) of Scenario 1.1, that is (5), we obtain

K(u) =

{
κ(1 + εu)3 + 1 for u > ucrit,

0 for u ≤ ucrit.
(14)

For Scenario 1.4, we utilize (14) with ucrit = upc = 20.
Figure 1 shows a plot of the diffusion functions for Scenarios 1.1 to 1.4, and Figure 2 displays the

corresponding numerical results. Roughly speaking, Scenario 1.2 predicts a wildfire that has consumed
a larger portion of fuel, and has travelled a larger distance, than that of Scenario 1.1. Far from the
reaction front the maximum temperature in the combustion zone is slightly smaller. With a constant
diffusion coefficient (Scenario 1.3) we obtain a less wide shape of the burnt area (in comparison with
Scenario 1.1), and a smaller value of the burnt portion of fuel. Finally, as is to be expected with a
strongly degenerating diffusion coefficient, the lateral flanks of the temperature surface of Scenario 1.4
are steeper than for all other scenarios.
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Figure 1. Scenarios 1.1 to 1.4: diffusion coefficients K(u).
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Figure 2. Scenarios 1.1 to 1.4: three-dimensional plots of simulated temperature and two-dimensional
plots of simulated burnt fuel, at simulated time T = 12. The red and blue parts correspond to areas
with v0 = 0.9 and v0 = 0, respectively. The small white square indicates the location of the initial fire
focus. The percentages represent the portion of burnt fuel of the total fuel initially available in Ω.



Mathematics 2020, 8, 1674 9 of 20

4.3. Scenarios 2.0 to 2.4: Effect of the Variability of Topography

In Scenario 2.0 we provide a comparison with a reference solution to show the numerical
convergence of S-LIMEX scheme and in Scenarios 2.1 to 2.4 we study the net effect of terrain topography
on the dynamics of wildfire propagation. To this end, we fix the diffusion function K(u) as given by (5),
and choose all other parameters as in Scenario 1.1 as well with the exception of ε = 0.02, with constant
vector w0 = (2.5, 2.5) of velocity of the wind which blows in the north–east direction (that is, in the
direction of increasing x- and y-coordinates). However, we assume various cases for the topography
function T (x) = T (x, y). To this end, and following [10], we define a shape function

s(x, y; γ) := exp
(
−(x2 + y2)/γ

)
with a parameter γ > 0

that describes a peak of height 1, centered at the origin. We assume that there are two peaks in the
domain of variable height, as expressed by

T (x, y) = h1s(x− x1, y− y1, γ1) + h2s(x− x2, y− y2, γ2). (15)

For Scenario 2.0 we chose the parameters (h1, h2, x1, x2, y1, y2, γ1, γ2) = (60, 60, 55, 25, 25, 55,
400, 60) and three alternative choices of these parameters, in Scenarios 2.1 to 2.4, respectively, which are
specified in the caption of Figure 3 that illustrates the variants of topography functions.
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Figure 3. Topographies for T (x, y) given by (15) with h1 = h2 = 60 and (left) x1 = 0, y1 = 150,
γ1 = 10, 000, x2 = 150, y2 = 150, γ2 = 300 (topography T1 for Scenario 2.2), (middle) x1 = 150,
y1 = 50, γ1 = 1000, x2 = 50, y2 = 150, γ2 = 1000 (topography T2 for Scenario 2.3), (right) x1 = 150,
y1 = 75, γ1 = 3000, x2 = 50, y2 = 150, γ2 = 2000 (topography T3 for Scenario 2.4), shown in each case
as three-dimensional plots (top) and as contour maps (bottom).

In Table 1 we compute the approximate L1-errors eM(u) and eM(v) at three simulated time T = 0.2,
T = 0.3 and T = 0.4 with different discretizations by using M = 40, 80, 160 and 320, with respect to
reference solution computed with S-LIMEX scheme with M = 640. We observe that the approximate
L1-errors decrease as the grid is refined, which can be also observed in Figure 4 where we display
the numerical approximations for M = 160 and M = 640 at simulated times T = 0.2 and T = 0.4.
We observe that the approximation obtained with M = 160 is a already a good approximation of the
reference solution.
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Figure 4. Scenario 2.0: accuracy test. Numerical approximations at simulated time T = 0.2 and T = 0.4
obtained with the S-LIMEX scheme with ∆x = 80/M and M = 160 and M = 640 (which correspond to
the reference solution for computation of approximate errors in Table 1).

Table 1. Scenario 2.0: Approximate L1 errors eM(u) and eM(v) for Strang LIMEX method with
∆x = 80/M. Reference solution computed with M = 640.

T = 0.2 T = 0.3 T = 0.4

M eM(u) eM(v) eM(u) eM(v) eM(u) eM(v)

40 2.2 3.7 ×10−2 3.2 4.5×10−2 4.9 6.4×10−2

80 1.2 1.6 ×10−2 2.0 2.3 ×10−2 3.3 3.7×10−2

160 0.7 1.0 ×10−2 1.2 1.5 ×10−2 2.0 2.4×10−2

320 0.4 5.7 ×10−3 0.6 8.9 ×10−3 1.1 1.4×10−2

For Scenarios 2.1 to 2.4, the initial conditions of temperature and fuel are

u0(x, y) = 21χ
[9,21]2(x, y), v0(x, y) = 0.6χΩ(x, y).

We display the numerical approximation obtained at simulated times T = 5, 10, 15, 20, and 25.
We display the evolutions of the temperature and fuel over a flat domain and topography T1 in Figure 5,
and show the analogous results for topographies T2 and T3 in Figure 6. In the cases T1, T2 and T3 the
topography acts as repulsion, which moves away the propagation fires (Figure 5 third and fourth row)
or centers the propagation on the diagonal of the domain (Figure 6 first and second row) respectively.
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Figure 5. Scenarios 2.1 and 2.2: simulation of the propagation of a forest fire on a flat domain (first and
second row) and on a domain with topography T1 (third and fourth row), at indicated simulated times.
Here and in Figure 6, the first and third row show temperature and the second and fourth row show
fuel, and small white square indicates the location of the initial wildfire.
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Figure 6. Scenarios 2.3 and 2.4: simulation of the propagation of a forest fire on domains with
topographies T2 (first and second row) and T3 (third and fourth row).

4.4. Scenarios 3.1 to 3.4: Risk Maps

An analysis that is interesting when studying the effects of topography on the source of fire in a
forest fire is the elaboration of the so-called risk maps, which we present in this section. To do this we
consider four cases here, the first corresponds to the absence of the variable T where we are in the
presence of a perfectly flat terrain and three other cases which correspond to each of the topographies
T1, T2 and T3 of the previous section. Each of the risk maps constructed corresponds to square initial
ignitions of length 12 placed on

Dij :=
{
(x, y) ∈ Ω | |x− (55 + 10i)| ≤ 6, |y− (55 + 10j)| ≤ 6

}
, i, j = 1, . . . , 5, (16)

which yields a total number of 25 initial foci.
The risk maps indicate the different values obtained for the time Trisk when the focus of the fire

takes to consume 5% of the total fuel available in the domain, so a short time corresponds to a high
risk and a long time corresponds to a low risk. In each of the four cases (of a flat domain and a domain
with one of the topographies T1, T2 and T3) the ignitions are located in the south-west of the original
domain. Specifically, to assign a value of Trisk to each of the patches of size 10× 10

D0
ij :=

{
(x, y) ∈ Ω | |x− (55 + 10i)| ≤ 5, |y− (55 + 10j)| ≤ 5

}
, i, j = 1, . . . , 5,

we simulate the wildfire model starting from the initial condition

u0(x, y) = 21χDij(x, y), v0(x, y) = 0.6,
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where Dij is specified (16) and the velocity is given by w = w0 in the flat case, w = w0 +∇Ti, i = 1, 2, 3
for the non-flat topographies, and w0 = (2.5, 2.5). The result is in each case a risk map for the domain
[60, 110]× [60, 110], with a (fairly coarse) resolution of 25 patches of size 10× 10.

In the case of flat terrain the propagation of fire and burnt fuel always have the same
spatio-temporal evolution but shifted according to the location of the initial focus (Figure 7) and
5% of the total available fuel is consumed, the time in the 25 foci is identical and it corresponds to
Trisk = 6.45 and the risk map obtained which can be seen in the top left plots of Figure 8 corresponds
to a high-risk scenario (but the risk is the same for each 10× 10 patch).
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Figure 7. Scenario 3.1: principle of construction of a risk map for a flat domain. Here and in Scenarios
3.2 to 3.4, the propagation of a wildfire is simulated starting from an array of 5× 5 = 25 initial fire foci,
marked by small white squares. For each initial position the simulation is stopped when 5% of the
initially available fuel is burnt. The corresponding times Trisk are mapped in Figure 8. (For the present
flat case, the shapes of the temperature and fuel distributions are the always the same in relation to the
initial fire; instead of displaying 2× 25 identical results, we only show the ‘corner’ cases of the 5× 5
initial positions).
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Figure 8. Scenarios 3.1 to 3.4: risk maps for the subdomain [60, 110]× [60, 110] under the assumption of
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top right, bottom left, and bottom right), visualizing for each patch of size 10× 10 the final time Trisk.
A low value of Trisk implies a high risk.
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For the topography T1, all the values obtained for the time in which 5% of fuel consumed is
reached are in less time than Trisk = 6.45 being the minimum value Trisk = 4.92 that is reached on
[100, 110]2 and the maximum value Trisk = 5.98 that is reached on [60, 70]× [100, 110]. The evolution
of temperature and fuel can be seen in Figures 9 and 10 and the risk map obtained, which is displayed
on the top right of Figure 8, corresponds to a slightly higher risk to the case of flat a terrain.
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Figure 9. Scenario 3.2: simulation of temperature of a wildfire from 5× 5 = 25 initial fire foci, marked by
small white squares, on a domain with topography T1. Here and in Figures 10 to 14, for each initial
position where the simulation is stopped, and the numerical solutions for u and v are portrayed,
when 5% of the initially available fuel is burnt. The corresponding simulated time determines Trisk for
each initial position.

In the case of topography T2, the minimum value Trisk = 6.04 is reached on [60, 70]× [100, 110]
and the maximum value Trisk = 6.77 that is reached on [80, 90]2. The evolution of temperature and
fuel can be seen in Figures 11 and 12 and the risk map obtained which can be seen in the bottom left
part of Figure 8 corresponds to similar risk to the flat a terrain.

For topography T3, the majority of values are higher than Trisk = 6.45 being the minimum value
Trisk = 5.85 that is attained on [90, 100]× [60, 70] and the maximum value Trisk = 7.90 that is reached on
[80, 90]× [100, 110]. The evolution of temperature and fuel can be seen in Figures 13 and 14 and the risk
map obtained which can be seen in the bottom right part of Figure 8 corresponds to a low-risk scenario.
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Figure 10. Scenario 3.2: simulation of fuel of a wildfire from 5× 5 = 25 initial fire foci, marked by
small white squares, on a domain with topography T1.
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Figure 11. Scenario 3.3: simulation of temperature of a wildfire from 5 × 5 = 25 initial fire foci,
marked by small white squares, on a domain with topography T2.
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Figure 12. Scenario 3.3: simulation of fuel of a wildfire from 5× 5 = 25 initial fire foci, marked by
small white squares, on a domain with topography T2.
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Figure 13. Scenario 3.4: simulation of temperature of a wildfire from 5 × 5 = 25 initial fire foci,
marked by small white squares, on a domain with topography T3.
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Figure 14. Scenario 3.4: simulation of fuel of a wildfire from 5× 5 = 25 initial fire foci, marked by
small white squares, on a domain with topography T3.

5. Conclusions

In the present work we analyzed the wildland fire model in [5] to simulate the propagation of a
wildfire in various spatially heterogeneous environments. In particular, we focus on variable, nonlinear
diffusion functions to explore the dynamics of the combustion model and a variable topography
function to analyze the effects of the spatial heterogeneity. This model was solved numerically in an
efficient way by the numerical method proposed in [1].

Several diffusion functions are explored (Scenarios 1.1 to 1.4) to arrive at the conclusion that these
functions are strongly related to the shape of the burnt area. The main result is that increasing diffusivity
(with respect to a given base case) significantly enlarges the portion of fuel burnt within a given time
while choosing an equivalent constant diffusivity or a degenerate one produces comparable results
for that quantity. Considering three different topographies, we were able to show how the terrain
affects the spread of the forest fire, acting as an element that manages to increase fuel consumption
(Scenarios 2.2 and 2.4) but also as an element that manages to vary the direction of fire spread acting
as a repulsion (Scenario 2.3) which pushes it toward areas far from its initial trajectory (Scenario 2.2).
On the other hand, due to the shapes of the landscape, in two of these cases it is possible to capture
how the elevation of the ground manages to accelerate the spread of fire (see Appendix B in [44]).

Considering that a determining factor in the spread of fire is the value of the slope associated with
the terrain, in the sense that the higher the slope, said spread occurs more quickly, it is essential to
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obtain the times in which a certain constant portion of the fuel has been consumed through the risk
maps (see Figure 8). Finally, the possibility to solve the base model efficiently may be used as a tool to
elaborate wildfire risk maps.

The verification and calibration of the model taking into account data from real wildfires in four
of the authors’ geographic environment (Chile) is still an open issue, while scenarios related to other
geographic regions are successfully simulated in [4] (Germany) and [8,9] (varios regions of Spain).
Clearly, realistic scenarios can be considered if geographical information and meteorological data
are integrated, which can be achieved through a Geographical Information System (GIS). We refer
to [8] for details and mention that we are currently making the effort to access similar information for
Chile. On the other hand, and as we mentioned in [1], another omission is the neglect of moisture and
pyrolysis effects that can be handled via a multivalued enthalpy function [5,6].
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Abbreviations

The following symbols and abbreviations are used in this manuscript:

List of symbols:
Latin symbols:
A pre-exponential factor [s−1]
C specific heat [kJ/(kg K)]
c(u) phase change function [-]
C(u) discretization of convective term [-]
D(u) discretization of diffusive term [-]
EA reaction energy [ kcal/mol]
f̂i+ 1

2 el
numerical flux in the l-coordinate [-]

f (u, v, x) reactive term for u [-]
g(u, v) reactive term for v [-]
i = (i, j) index vector [-]
k conductivity coefficient [W/(mK)]
Ki approximate value K(ui) [-]
K(u) diffusion coefficient function [-]
L length of domain x or y coordinate [-]
l0 length scale [m]
M number points x or y coordinate [-]
qreact reaction heat [-]
r Arrhenius expression [-]
R Universal gas constant [cal/(K mol)]
T topography term [-]
t time variable[-]
tn time discretization [-]
t0 time scale [s]
u average temperature [-]
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upc phase change temperature [-]
umax maximum temperature [-]
U absolute temperature [K]
Uref ambient temperature [K]
un vector of components un

i
un

i approximate value u(xi, tn) [-]
v mass fraction of solid fuel [-]
vn, vector of components vn

i [-]
vn

i approximate value v(xi, tn) [-]
w vector field [-]
w0 wind speed [-]
x = (x, y) spatial variables [-]
xi = (xi, yj) nodes in the Cartesian grid [-]
Greek symbols:
α natural convection coefficient [-]
δ length of optical path for radiation [-]
∆x, ∆t space and time discretizations [-]
ε inverse of the activation energy [-]
κ inverse of conductivity coefficient [-]
ρ density of the fuel [kg/m3]
σ Stefan-Boltzmann constant
ϕ∆t(u, v) solution operator of (12) [-]
ψ∆t(u, v) solution operator defined in (11) [-]
Ω× (0, ∞) domain [-]
Abbreviations:
CFL Courant–Friedrichs–Lewy
CPU central processing unit
DIRK diagonally implicit Runge–Kutta
ERK explicit Runge–Kutta
H-LDIRK3(2,2,2) acronym of particular IMEX-RK scheme
IMEX implicit–explicit
IMEX-RK implicit–explicit Runge–Kutta
LI-IMEX linearly implicit–explicit
NI-IMEX nonlinearly implicit–explicit
ODE ordinary differential equation
PDE partial differential equation
RK Runge–Kutta
S-LIMEX Strang-type splitting scheme
SSP strong stability-preserving
WENO weighted essentially non-oscillatory
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