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Abstract: In this work, we solve the problem of the coexistence of periodic orbits in homogeneous
Boolean graph dynamical systems that are induced by a maxterm or a minterm (Boolean)
function, with a direct underlying dependency graph. Specifically, we show that periodic
orbits of any period can coexist in both kinds of update schedules, parallel and sequential.
This result contrasts with the properties of their counterparts over undirected graphs with the
same evolution operators, where fixed points cannot coexist with periodic orbits of other different
periods. These results complete the study of the periodic structure of homogeneous Boolean
graph dynamical systems on maxterm and minterm functions.

Keywords: Boolean networks; combinatorial dynamics; types of periodic orbits; Boolean algebra;
Boolean functions

1. Introduction

Boolean network models, either deterministic or probabilistic, have demonstrated to be a very
useful tool to formalize several phenomena coming not only from computer sciences [1,2], but also
from other sciences such as biology [3–10], chemistry [11,12], physics [13–16], mathematics [17,18]
or social sciences [19]. Hence, the study of the dynamical behavior of such models is of great
interest, since it could help to understand the corresponding real phenomena.

From the theoretical point of view, deterministic Boolean networks can be seen as discrete
dynamical systems of the form

F : Bn −→ Bn,

where F = ( f1, . . . , fn) is defined on the state space given by a cartesian product of n copies of a
Boolean algebra B. For this reason, in the literature, they are also known as Boolean dynamical
systems [20] or, more properly, as Boolean finite dynamical systems [21,22] to emphasize that they
are considered on a finite set of elements, although without mentioning the term network.

Nevertheless, when modeling a real phenomenon, its elements are usually represented by
nodes in a network in such a way that if an element i is influenced by another one j, then there
exists an arc from j to i. These influences are then formalized by means of a (local) component
function fi. Frequently, the states of the elements can be only activated or deactivated (on–off) and
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the Boolean algebra B = {0, 1} becomes appropriate to model such a framework. In this sense, it is
natural to consider such an underlying graph, usually called a dependency graph, and call these
kinds of systems (Boolean) graph dynamical systems (see [23]). In particular, in this paper, we deal
with Boolean graph dynamical systems whose dependency graph is a directed one D = (V, A).

We will follow the notation given in some previous papers [24–28], which we will revise next
for the sake of completeness. Given a directed graph D = (V, A) and a vertex i ∈ V,

ID (i) = {j ∈ V : (j, i) ∈ A} ∪ {i},

is the set of vertices in V that influence i, and i itself. Analogously, given U ⊆ V, we define

ID (U) =
⋃

i∈U
ID (i).

The formal definition of a (Boolean) discrete dynamical system on a directed graph in which
all the vertices update their states in a synchronous or parallel way is as follows.

Definition 1. Let D = (V, A) be a directed graph on V = {1, . . . , n} and

F : {0, 1}n → {0, 1}n, F (x1, . . . , xi, . . . , xn) = (y1, . . . , yi, . . . , yn) ,

a map where yi is the updated state value of the entity i by applying a local function fi over the state values
of the vertices in ID (i). They constitute a discrete dynamical system called a parallel (Boolean) directed
(graph) dynamical system over D, which will be denoted by [D, F]− PDDS or F− PDDS when specifying
the dependency digraph is not necessary.

Specifically, in this work, we focus on homogeneous systems defined on the Boolean
algebra {0, 1}n, which are those induced by a (global) function f : {0, 1}n −→ {0, 1}. That
is, any component function fi of F is the restriction of the function f to ID (i). As an evolution
operator, we deal with maxterms and minterms. Recall that a maxterm (resp. minterm) of n
variables is a Boolean function

f (x1, . . . , xn) = z1 ∨ · · · ∨ zn (resp. f (x1, . . . , xn) = z1 ∧ · · · ∧ zn),

where zi = xi or zi = x′i , being x′i the negation of xi. Thus, the simplest maxterms OR and NAND
are given by

OR(x1, . . . , xn) = x1 ∨ · · · ∨ xn, NAND(x1, . . . , xn) = x′1 ∨ · · · ∨ x′n.

respectively, the simplest minterms AND and NOR are given by

AND(x1, . . . , xn) = x1 ∧ · · · ∧ xn, NOR(x1, . . . , xn) = x′1 ∧ · · · ∧ x′n.

According to the definition above, generic PDDS induced by a maxterm MAX
(resp. minterm MIN) as evolution operator will be denoted by MAX− PDDS (resp. MIN− PDDS).

On the other hand, in the case of sequential update, the definition is as follows.
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Definition 2. Let D = (V, A) be a directed graph on V = {1, . . . , n}, π = π1| . . . |πn a permutation on
V and

[F, π] = Fπn ◦ · · · ◦ Fπ1 : {0, 1}n → {0, 1}n,

[F, π] (x1, . . . , xi, . . . , xn) = (y1, . . . , yi, . . . , yn) ,

a map where Fπi : {0, 1}n → {0, 1}n updates the state value of the vertex πi ∈ V from xπi to yπi

considering the state values of the vertices belonging to ID (πi) and keeping the other states unaltered,
i.e., Fπi = (id1, . . . , fπi , . . . , idn), being idj the identity function over the vertex j and fπi : {0, 1}n →
{0, 1} the local function which performs the update for the vertex πi. They constitute a discrete dynamical
system called sequential (Boolean) directed (graph) dynamical system over D, which will be denoted by
[D, F, π]− SDDS or F− SDDS when specifying the dependency graph is not necessary and the updating
order is implicit in this context of sequential evolution.

As in the case of PDDS, generic SDDS with a maxterm MAX (resp. minterm MIN) as evolution
operator will be denoted by MAX− SDDS (resp. MIN− SDDS).

The main purpose of this paper is to solve the problems of coexistence of periodic orbits in
MAX− PDDS, MIN− PDDS, MAX− SDDS and MIN− SDDS. To determine the coexistence of
periodic orbits is a classical problem in the study of dynamical systems. In fact, Sharkovsky’s
Theorem [29,30] on the coexistence of periodic orbits in discrete dynamical systems associated with
a continuous function defined on a compact interval is considered to be one of the most relevant
theorems of the twentieth century.

In previous works [31–36], a complete study of the periodic structure of homogeneous parallel
and sequential systems induced by maxterm and minterm Boolean functions over undirected
dependency graphs were performed. More specifically, in [36], the periodic structure of the
simplest parallel systems, i.e., those induced by the maxterm OR (resp. minterm AND) and
NAND (resp. NOR) was analyzed. In particular, it was shown that any parallel system inferred
by OR (resp. AND) has only fixed points, while anyone induced by NAND (resp. NOR) only
presents periodic orbits of period two. These results were generalized in [31,35], where it was
demonstrated that any parallel (homogeneous) system induced by any maxterm (resp. minterm)
can only present fixed points or two-periodic orbits, while fixed points and two-periodic orbits
cannot coexist. Concerning the sequential case, in [32], it was proved that, in contrast with the
parallel case, sequential (homogeneous) systems induced by any maxterm (resp. minterm) can
present periodic points of whichever period. Nevertheless, as in the parallel case, the existence of
fixed points results incompatible with the existence of other periodic orbits. On the other hand,
in [33,34], a study on the maximum number of coexisting periodic orbits of the same period is
carried out for parallel and sequential systems, respectively.

For homogenous MAX-PDDS and MIN-PDDS over directed graphs, we can find some partial
results in [26–28]. In particular, in [26], it was demonstrated that homogeneous MAX-PDDS and
MIN-PDDS can present periodic orbits of any period and, in [28], the periodic structures of such
systems over special digraph classes were analyzed. In [27], a matrix method was provided
to calculate the (periodic) orbit of any initial state of a given system, allowing us to study the
coexistent periods of such a system.

Likewise, some studies on the periodic or limit cycle structure of other kinds of Boolean
graph dynamical systems, which are usually non-homogeneous, can be found in the literature.
For instance, in [37], the authors proved that, for the sequential case of Boolean graph dynamical
systems whose evolution operators are given by threshold component functions, the only ω-limit
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sets are fixed points, in contrast with the results for homogeneous sequential systems induced
by maxterms and minterms shown in [32]. After that, Mortveit [38] studied the possible
periodic structures and generalized these results for the case of standard threshold systems with
block-sequential update schedules also known as mixed systems [39]. Later, in [40], the authors
analyzed how the shape of the dependency graph influences the limit cycle structure of such
block-sequential systems, deriving sufficient conditions on this shape which provides only fixed
points as limit cycles. Finally, the limit cycle structure for systems whose evolution operator is
composed by bi-threshold and multi-threshold functions were considered in [41,42] respectively.

More similar to our homogeneous systems, we can find some results on the periodic structure
of non-homogeneous systems whose evolution operator is constituted by components which
are maxterm or minterm Boolean functions [43,44]. In [44], the authors determined the periodic
structure of systems whose evolution operator consists of component functions which are the
simplest maxterms OR, NAND and/or the simplest minterms AND, NOR. In [43], these results
were extended to more general Boolean functions, which induce systems with only fixed points as
periodic orbits. These results, together with the ones in the present paper, could help to find the
structure of periodic orbits for general non-homogeneous systems.

The main contribution of this paper is to show that periodic orbits of any period can exist and
coexist together in MAX− PDDS, MIN− PDDS, MAX− SDDS and MIN− SDDS, which means
a breaking of the pattern found in the case of their counterparts with undirected dependency
graphs. These results complete the study of the periodic structure of homogeneous (Boolean)
graph dynamical systems on maxterm and minterm Boolean functions.

The paper is organized as follows. In Section 2, we demonstrate that a PDDS on a general
maxterm or minterm Boolean function can present coexisting periodic orbits of any period,
so breaking the pattern shown in the case over undirected graphs. Section 3 is devoted to
proving this same results in the case of SDDS. We finish the paper by showing the most important
conclusions and future research directions which can be derived from these results.

2. Coexistence of Periodic Orbits in PDDS

In this section, we deal with the problem of the coexistence of periodic orbits in PDDS. In our
previous work [26], the existence of periodic orbits of different periods in MAX− PDDS and
MIN− PDDS was studied and compared with their counterparts over undirected graphs.

In the simplest cases when MAX=OR and MIN=AND, recall that all OR−PDDS and AND−
PDDS are fixed-point systems (see Theorems 1 and 2 in [26]). Anyway, it is worth to point out
that the number of fixed points for these PDDS systems increases with respect to the case of their
counterparts over undirected graphs, usually denoted as OR− PDS and AND− PDS, where I
(fixed point with all the vertices activated) and O (fixed point with all the vertices deactivated) are
the only fixed points (see Remark 1 in [26]), if the dependency graph of the system is connected.

Periodic orbits of any period and no fixed points can appear in a NAND-PDDS and a
NOR-PDDS. This contrasts with the counterparts over undirected graphs, denoted NAND-PDS and
NOR-PDS, where only two-periodic orbits can appear (see Theorems 3 and 4 in [26]). To see that,
given a natural number n, n ≥ 2, a constructive method is detailed to obtain a [D, NAND]− PDDS
with a periodic orbit of period n (the construction of a [D, NOR]− PDDS with a periodic orbit of
period n is analogous). Next, we briefly revise how to construct such a PDDS, since we will use it
later to prove our result on the coexistence of periodic orbits.

For n = 2, the NAND− PDDS defined over the digraph displayed in Figure 1. It has two
two-periodic orbits, namely: {(0, 1, 1) , (1, 0, 1)} and {(1, 1, 1), (0, 0, 0)}.



Mathematics 2020, 8, 1812 5 of 14

1 3 2

Figure 1. A digraph defining a NAND-PDDS that has two two-periodic orbits.

In general, given n ∈ N, n ≥ 3, consider the complete digraph Kn = (VKn , EKn), i.e., Kn has n
vertices and for any pair of vertices i, j ∈ VKn there is an arc form i to j and another one from j to i.
Then we construct the directed graph Dn = (V, A) as

• V = VKn = {1, . . . , n}.
• A = EKn \ ({(i, i + 1) : 1 ≤ i ≤ n− 1} ∪ {(n, 1)}).

and take [D, NAND]− PDDS.
Let us write xk

i to indicate the state value of the entity i after k iterations of the evolution
operator and take the initial values for the variables x0

1 = 0 and x0
i = 1 for all i ∈ V \ {1}. It is a

straightforward computation to check that the system evolves in the following way:

• After k iterations, 1 ≤ k ≤ n− 1: xk
k+1 = 0, xk

i = 1 for all i ∈ V \ {k + 1}.
• After n iterations, all the state values coincide with the initial ones, i.e., xn

i = x0
i for all i ∈ V.

Namely, the PDDS constructed in this way presents a periodic orbit of period n.
Figure 2 illustrates the designed digraphs for n = 3, n = 4, n = 5 and n = 6.

1

23

1 2

34

1

2

34

5

1 2

3

45

6

Figure 2. Digraphs corresponding to NAND-PDDS as constructed above for n = 3, n = 4, n = 5
and n = 6.

Thus, following the description above:

• For the case, n = 3, the set of states

{(0, 1, 1), (1, 0, 1), (1, 1, 0)}

constitutes a periodic orbit of period 3.
• For the case n = 4,

{(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)}

is a periodic orbit of period 4.
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• For the case n = 5,

{(0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 1), (1, 1, 1, 1, 0)}

is a periodic orbit of period 5.
• For the case n = 6,

{(0, 1, 1, 1, 1, 1), (1, 0, 1, 1, 1, 1), (1, 1, 0, 1, 1, 1), (1, 1, 1, 0, 1, 1), (1, 1, 1, 1, 0, 1), (1, 1, 1, 1, 1, 0)}

is a periodic orbit of period 6.

Recall that the periodic orbits of MAX − PDS and MIN − PDS are fixed points and
two-periodic orbits (see Theorems 3 and 4 in [35]). Moreover, in such PDS, fixed points and
two-periodic orbits cannot coexist (see Section 3 in [31]).

On the other hand, in light of the mentioned results regarding PDDS, we have that
MAX − PDDS and MIN − PDDS can have periodic orbits of whichever period (see Section 3
in [31]). The coexistence of the periodic orbits for these PDDS remains an open problem, which we
tackle next.

Theorem 1. (Coexistence of periods in MAX− PDDS) Given {n1, . . . , nr} ⊂ N, r ≥ 2, there exists a
MAX-PDDS which presents periodic orbits of periods n1, . . . , nr simultaneously.

Proof. Let us construct a MAX-PDDS with orbits of periods n1, . . . , nr.
Firstly, let us consider the case ni ≥ 2 for all i ∈ {1, . . . , r}.
For each ni, let us take the digraph Dni described above. To avoid duplication in the name of

the vertices of each PDDS, we denote by vi,j the vertex j in the digraph Dni . We also consider the
following relations between the vertices of these digraphs: vi,j is adjacent (reciprocal influence) to
vl,m for all j, m and i 6= l. In this way we obtain the dependency graph D.

As evolution operator, we take MAX = NAND.
As initial state values for the variables, we consider that the vertex vi,1 is deactivated and the

rest of vertices are activated.
This system evolves as follows:

• After k iterations, 1 ≤ k ≤ ni − 1, vi,k+1 is deactivated and the rest of vertices are activated.
• After ni iterations, all the state values coincide with the initial ones.

Namely, the [D, MAX]− PDDS constructed in this way presents a periodic orbit of period ni.
Thus, by considering the different r initial state values obtained by varying i in {1, . . . , r}, r

periodic orbits with periods n1, . . . , nr result.
Assume now that there exists i ∈ {1, . . . , r} such that ni = 1. Without loss of generality,

we can assume i = 1. Let [D, MAX]− PDDS, D = (V, A), be the PDDS constructed above in which
periodic orbits of period nj ≥ 2, j 6= 1, coexist. We take:

• D = (V ∪ {v1,1}, A ∪ {(v1,1, k) : k ∈ V}). Namely, D is obtained from D by adding a new
vertex v1,1 which influences the rest of vertices and is only influenced by itself.

• MAX = MAX∨ xv1,1 . Namely, we consider as evolution operator the disjuntion of MAX and
a direct variable xv1,1 corresponding to the vertex v1,1.
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Let us reason that
[
D, MAX

]
− PDDS has periodic orbits of periods n1 = 1, n2, . . . , nr.

Observe that, for such a PDDS, an initial state x0
v1,1

= 0 is preserved permanently and the
system evolves as [D, MAX]− PDDS, appearing all the periodic orbits of periods greater than 1.
On the other hand, an initial state x0

v1,1
= 1 reaches the fixed point I after, at most, 1 iteration.

Let us illustrate this result with the following example to clarify the notation.

Example 1. The PDDS proposed by Theorem 1 in which a fixed point, a 2-periodic orbit and a 3-periodic
orbit coexist, is defined by:

• D1 = {{v1,1}, ∅}, D2 = {{v2,1, v2,2, v2,3}, {(v2,1, v2,3) , (v2,2, v2,3)}},
D3 = {{v3,1, v3,2, v3,3}, {(v3,1, v3,3) , (v3,2, v3,1) , (v3,3, v3,2)}}, and D = (V, A) (see Figure 3),
with

– V = {v1,1, v2,1, v2,2, v2,3, v3,1, v3,2, v3,3}, and
– A = {(v2,1, v2,3) , (v2,2, v2,3)} ∪ {(v3,1, v3,3) , (v3,2, v3,1) , (v3,3, v3,2)}∪
{{v2,i, v3,j} : 1 ≤ i, j ≤ 3} ∪ {

(
v1,1, vi,j

)
: 2 ≤ i ≤ 3, 1 ≤ j ≤ 3}.

v1,1

v2,1

v2,2

v2,3

v3,1

v3,2

v3,3

Figure 3. Digraph as constructed in the proof of Theorem 1, leading to the coexistence of periodic
orbits of periods 1, 2 and 3.

• MAX = xv1,1 ∨ x′v2,1
∨ x′v2,2

∨ x′v2,3
∨ x′v3,1

∨ x′v3,2
∨ x′v3,3

.

According to the notation in Theorem 1:

• By fixing x0
v1,1

= 1, the system evolves to the fixed point I after, at most, 1 iteration.
• v2,1, v2,2, v2,3 are the vertices which generate the 2-periodic orbit (see Figure 4).

0011111

0101111

Figure 4. The two-periodic orbit of the system proposed by Theorem 1.
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• v3,1, v3,2, v3,3 are the vertices which generate the 3-periodic orbit (see Figure 5).

0111011

01111010111110

Figure 5. The three-periodic orbit of the system proposed by Theorem 1.

Dually we have:

Theorem 2. (Coexistence of periods in MIN− PDDS) Given {n1, . . . , nr} ⊂ N, r ≥ 2, there exists a
MIN-PDDS which presents periodic orbits of periods n1, . . . , nr simultaneously.

3. Coexistence of Periodic Orbits in SDDS

In Section 2, some results about the orbital structure of PDDS with general maxterm (resp.
minterm) functions as evolution operators have been shown, proving that periodic orbits of any
period can appear in such systems. In this section, we analyze the case of SDDS with general
maxterm (resp. minterm) functions as evolution operators, showing that this situation remains
when considering a sequential update schedule.

In the case of sequential dynamical systems over undirected graphs, in Theorems 4 and 5
of [32], it was shown that there exist MAX-SDS (resp. MIN-SDS) with periodic orbits of any period.
As a direct consequence, since SDS are particular cases of SDDS, we can state that MAX− SDDS
(resp. MIN− SDDS) can present periodic orbits of any period.

It is worth analyzing the particular relevant cases when the evolution operator of a discrete
dynamical system is the maxterm OR or NAND (resp. minterm AND or NOR).

Recall that OR− SDS (resp. AND− SDS) are fixed points systems. More precisely, I and O
are the only fixed points of such systems. Indeed, there are no differences between the orbital
structures in OR− PDS and OR− SDS (resp. AND− PDS and AND− SDS). It happens because
the fixed points of a [G, F]− PDS and those of the sequential counterpart [G, F, π]− PDS coincide
(see Lemma 1 in [32]), result that can be extended to the directed framework as follows:

Lemma 1. Any homogeneous sequential directed dynamical system induced by a maxterm or minterm F,
[D, F, π]− SDDS, and its parallel counterpart, [D, F]− PDDS, have the same fixed points.

Proof. Let x̂ = (x̂1, . . . , x̂n) be a fixed point of the [D, F]− PDDS, where x̂i represents the (fixed)
state value of the vertex i ∈ V. Since the updating of the state value of each i only depends on the
state values of the vertices in ID (i) and the restriction of F to that set, it is straightforward to check
that, independently of the election of π, x̂ is also a fixed point of [D, F, π]− SDDS.

Conversely, let x̂ be a fixed point for [D, F, π]− SDDS for a certain updating permutation π.
Since the state values of all the vertices remain equal in the successive updating steps determined
by π, it becomes clear that x̂ is also a fixed point of [D, F]− PDDS.

As a consequence of Lemma 1, the fixed points of [D, OR, π]− SDDS and [D, OR]− PDDS
(resp. [D, AND, π] − SDDS and [D, AND] − PDDS) coincide. In the next two corollaries, we
remark that, actually, [D, OR, π]− SDDS and [D, AND, π]− SDDS are fixed-point systems.
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Corollary 1. Any OR− SDDS is a fixed-point system. In fact, I and O are always fixed points of the
system but, even if D is a (weakly) connected digraph, other fixed points can appear, in contrast with the
property of OR− SDS with connected dependency graphs.

Proof. It is enough to show that there cannot be periodic orbits of a period greater that 1. In fact,
we have only one of the following two possibilities for each i ∈ V:

• ∀t ≥ 0, xt
i = 0, i.e., the state value 0 is permanent for this entity from the initial configuration.

• ∃T ≥ 0 such that xT
i = 1, being that the iteration T the first time that the variable xi takes the

value 1. In this situation, the state value 1 is permanent from this iteration on.

Thus, after a certain number of iterations, all the vertices reach a fixed value that they
preserve onwards.

Dually, we have:

Corollary 2. Any AND− SDDS is a fixed-point system. In fact, O and I are always fixed points of the
system but, even if D is a (weakly) connected digraph, other fixed points can appear, in contrast with the
property of AND− SDS with connected dependency graphs.

In Theorems 6 and 7 of [32], it was proved that SDS over undirected dependency graphs with
NAND (resp. NOR) as evolution operators can present periodic orbits of any period, except fixed
points. For NAND-SDDS and NOR-SDS, we have:

Corollary 3. A NAND− SDDS can present periodic orbits of any period, except fixed points.

Proof. First, notice that such a SDDS cannot present fixed points. In fact, we know that PDDS
with NAND as an evolution operator cannot present fixed points. Then, this first assertion follows
from Lemma 1.

Furthermore, from Theorem 6 of [32] and taking into account that SDS are particular cases of
SDDS, this system can present periodic orbits of any period greater than 1.

Dually, we have:

Corollary 4. A NOR− SDDS can present periodic orbits of any period, except fixed points.

Once the existence of periodic orbits in SDDS was studied, we continued analyzing the
possible coexistence of them in these kinds of systems. In Theorem 1 (resp. Theorem 2),
the coexistence of periods in MAX− PDDS (resp. MIN− PDDS) is analyzed, proving that the
coexistence of periodic orbits with different periods are possible, even with fixed points.

In line with the results for PDDS, in the context of SDDS with general maxterm (resp. minterm)
functions as evolution operators, we will show that periodic orbits with different periods can
coexist in an SDDS, even fixed points and periodic orbits of period greater than 1, in contrast with
their counterparts over undirected dependency graphs.

Theorem 3. (Coexistence of periods in MAX− SDDS) Given {n1, . . . , nr} ⊂ N, r ≥ 2, there exists a
MAX-SDDS which presents periodic orbits of periods n1, . . . , nr simultaneously.
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Proof. If ni ≥ 2 for all i ∈ {1, . . . , r}, the result is a direct consequence of Theorem 8 in [32], since
an SDS is a particular case of SDDS.

On the other hand, if there exists i ∈ {1, . . . , r} with ni = 1, without loss of generality, we can
assume i = 1. Let [G, MAX, π]− SDS be the SDS constructed in Theorem 8 in [32] (or in Theorem 6
in [32] in the case r = 2) in which the other periodic orbits nj ≥ 2, j 6= 1, coexist, being G = (V, E).
To make the comprehension of the following reasoning easier, and for the sake of completeness
and clarity, next we reproduce the structure of these systems:

In the case r = 2, G= (V, E) is the complete graph Kn2−1, with n2 6= 1 (note that Kn2−1 denotes
a non-directed complete graph, because an SDS is considered). As permutation on V, we take
π = id, the identity permutation. Finally, as the evolution operator, we take MAX = NAND.

If r > 2, the [G, MAX, π]− SDS proposed in Theorem 8 in [32] is as follows:
Firstly, we construct G = (V, E): for each nj 6= 1, let us take two complete graphs Knj−1 and

Knj−1 of nj − 1 vertices. We will denote by {vj,1, . . . , vj,nj−1} and {vj,1, . . . , vj,nj−1} the vertices of
Knj−1 and Knj−1, respectively, for every j≥ 2. All these vertices constitute the vertex set V.

Now, the adjacency set E is constructed from the internal adjacencies in each complete graph
Knj−1 and Knj−1, considering additionally the following adjacency structure among the vertices:

• vj,k is adjacent to vl,m for all k, m and j 6= l. In other words, the vertices in Knj−1 are adjacent
to all the vertices in Knl−1 for j 6= l.

• vj,k is adjacent to vl,m for all k, m and j 6= l. In other words, the vertices in Knj−1 are adjacent
to all the vertices in Knl−1 for j 6= l.

• vj,k is adjacent to vl,m for all k, m and j 6= l. In other words, the vertices in Knj−1 are adjacent
to all the vertices in Knl−1 for j 6= l (but they are not adjacent to the vertices in Knj−1).

As permutation on the set of vertices, we will consider:

π = v2,1| · · · |v2,n2−1|v2,1| · · · |v2,n2−1| · · · |vr,1| · · · |vr,nr−1|vr,1| · · · |vr,nr−1.

Namely, first, the state values of the vertices in Kn2−1 are updated, then the ones in Kn2−1, next
to the vertices in Kn3−1 followed by the ones in Kn3−1, and so on until all the vertices are updated.

Finally, as evolution operator, we take MAX = NAND.
Based on this SDS, let us consider the SDDS defined from these elements:

• D = (V ∪ {v1,1}, E ∪ {(v1,1, k) : k ∈ V}), the dependency digraph of the SDDS.
• MAX = MAX∨ v1,1, the maxterm Boolean function of the SDDS.
• π = v1,1|π, the order permutation of the SDDS.

In this case, an initial state x0
v1,1

= 0 will be preserved permanently (since no other
vertex influences v1,1 and it appears in MAX in its direct form), and the system will evolve
as [G, MAX, π]− SDS, where all the periodic orbits of period greater than 1 appear; while an initial
state x0

v1,1
= 1 reaches the fixed point with all the vertices activated after, at most, one iteration due

to the influence of the state of this vertex on the others.

As in the case of PDDS, let us illustrate Theorem 3 with the following example.

Example 2. The SDDS proposed by Theorem 3 in which a fixed point, a two-periodic orbit and a
three-periodic orbit coexist, is defined by:
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• K1 = {{v2,1}, ∅}, K1 = {{v2,1}, ∅}, K2 = {{v3,1, v3,2}, {{v3,1, v3,2}}},
K2 = {{v3,1, v3,2}, {{v3,1, v3,2}}}, and D = (V, A) (see Figure 6), with

– V = {v1,1, v2,1, v2,1, v3,1, v3,2, v3,1, v3,2}, and
– A = {{v3,1, v3,2}, {v3,1, v3,2}} ∪ {{v2,1, v3,1}, {v2,1, v3,2}} ∪ {{v2,1, v3,1}, {v2,1, v3,2}} ∪
{{v2,1, v3,1}, {v2,1, v3,2}} ∪ {{v2,1, v3,1}, {v2,1, v3,2}} ∪ {(v1,1, k) : k ∈ V \ {v1,1}}.

v1,1 v2,1
v2,1 v3,1

v3,2
v3,1
v3,2

Figure 6. Digraph as constructed in the proof of Theorem 3.

• MAX = xv1,1 ∨ x′v2,1
∨ x′v2,1

∨ x′v3,1
∨ x′v3,2

∨ x′v3,1
∨ x′v3,2

.
• π = id = v1,1|v2,1|v2,1|v3,1|v3,2|v3,1|v3,2.

According to the notation in Theorem 3:

• By fixing x0
v1,1

= 1, the system evolves to the fixed point I after, at most, one iteration.
• v2,1, v2,1 are the vertices which generate the two-periodic orbit (see Figure 7).

0011111

0101111

Figure 7. The two-periodic orbit of the system proposed by Theorem 3.

• v3,1, v3,2, v3,1, v3,2 are the vertices which generate the three-periodic orbit (see Figure 8).

0110111

01110010111110

Figure 8. The three-periodic orbit of the system proposed by Theorem 3.
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Dually to Theorem 3, we have the following result.

Theorem 4. (Coexistence of periods in MIN− SDDS) Given {n1, . . . , nr} ⊂ N, r ≥ 2, there exists a
MIN− SDDS which presents periodic orbits of periods n1, . . . , nr simultaneously.

4. Conclusions and Future Research Directions

This work completes the study of the periodic structure of homogeneous Boolean graph
dynamical systems induced by maxterm and minterm Boolean functions. Specifically, the results
in this paper show that the existence and coexistence of periodic orbits in parallel and sequential
Boolean dynamical systems, strongly depend on the character, undirected or directed, of the
underlying dependency graph. In particular, for the directed case, fixed points can coexist with
periodic points of any period, which supposes a drastic change in relation to the case of systems
over undirected graphs. This difference could be relevant, especially when thinking in applications,
since, in Boolean networks representing real phenomena, the relations between any two elements
are usually unidirectional.

We think that these results could be useful to study the existence and coexistence of periodic
orbits in non-homogeneous Boolean dynamical systems, mainly in the case of evolution operators
consisting of independent component functions given by maxterms and minterms, also known as
AND-OR-NOT systems.

Another future research line arising from this work could be to study conditions that guarantee
the existence of a unique fixed point, which automatically becomes a global attractor of the system.
In other words, to determine when fixed points are the only periodic orbits in the system and when
there is only one. It would be also interesting to provide uniqueness results of periodic orbits of
any period, or to count (or at least bound) the number of such periodic orbits.
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