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Abstract: The objective of this study was to apply the Sadegh, Ragno, and AghaKouchak (SRA)
approach to the field of quantitative finance by analyzing, for the first time, the relationship between
price and trading volume of the securities using four stock market indices: DJIA, FOOTSIE100,
NIKKEI225, and IBEX35. This procedure is a completely new methodology in finance that consists of
the application of a Bayesian framework and the development of a hybrid evolution algorithm of
the Markov Chain Monte Carlo (MCMC) method to analyze a large number (26) of parametric
copulas. With respect to the DJIA, the Joe’s copula is the one that most efficiently models its
succinct dependence structures. One of the copulas included in the SRA approach, the Tawn’s
copula, is jointly adjusted to the FOOTSIE100, NIKKEI225, and IBEX 35 indices to analyze the
asymmetric relationship between price and trading volume. This adjustment can be considered
almost perfect for the NIKKEI225, and a relatively different characterization for the IBEX35 seems to
indicate the existence of endogenous patterns in the price and volume.

Keywords: copulas; Markov Chain Monte Carlo simulation; local optima vs. local minima; financial
markets; SRA approach
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1. Introduction

Current trends in quantitative finance reveal that econophysics has become an economic
analysis discipline characterized not by its multidisciplinary but by its transdisciplinary
nature [1], contributing to the formation of a common framework in the research of financial
phenomena [2]. Traditionally, the link has been strong between the stochastic analysis of hydrological
phenomena and the study of time series, especially in the field of quantitative finance. The best-known
example is likely represented by the Hurst exponent, a procedure inspired by the floods of the Nile
River [3], which is of unquestionable efficiency when estimating the long-term memory of time
series. Hydrological phenomena are completely different to financial ones but, in general, they present
certain common patterns of analysis. Thus, several works have transferred the applicability of the
theory of copulas from the field of hydrology to finance [4–7]. Recently, Sadegh et al. [8] developed
a specific methodology based on the joint use of 26 multivariate copulas applied in hydrology
(hereinafter, SRA), which, in our opinion, offers huge potential for the analysis of the price–volume
relationship. Therefore, our aim was to introduce this methodological approach within quantitative
finance, summarizing its fundamental aspects as a step prior to its practical implementation.
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The analysis of the joint dependence between economic and financial variables has found
important support in the Sklar’s theorem, through which it has been possible to specify, define,
and contrast the latent or redundant dependence structures present in the bivariate and multivariate
time series. Notably, Sklar’s theorem, the starting point from which this theory departs, has been
subject to continuous extensions that have improved the analysis of the structures of dependence
between random variables or, in other words, of their succinct relationships when these are schematized
in their minimal mathematical expression.

The emergent interest in copulas, detailed by [9], which increased in the field of finance after
the paper by [10], does not correspond in reality to the use of several of the numerous types of
pre-existing copulas, but to the systematic implementation of certain copulas types, either in economics
and quantitative finance or in any other field. According to the compendium of copulas by [11],
nonparametric and semiparametric models represent a minority that is largely surpassed by parametric
models, amongst which almost 100 different types could be distinguished. Some of them have not
been yet fully spread by the literature or, at least, they are not sufficiently well known, since most
empirical studies opt for the application of a narrow number of copulas that could be classified as
classic copulas.

Conversely, the analysis of the price–volume relationship (hereinafter, PVR) continues being
a specific area of the financial literature that has not yet received a conclusive solution. In our opinion,
the relationship between prices and trading volume can be derived by dissecting the dependence
structure of both variables through the Sklar’s theorem, that is, through the implementation of copulas.
To accomplish this task, we followed the suggestion of [11] when implementing as many parametric
copulas as possible to jointly analyze the same relationship, prices vs. trading or transaction volume,
from different points of view (or dependence structures). Therefore, through this empirical work,
we aimed to provide a new approach to the application of copulas in the context of PVR, implementing
a large number of copulas that, to the best of our knowledge, have not been previously applied in
the area of quantitative finance with the aim that these types of transdisciplinary approaches will
transcend from the study of PVR to other areas of financial research in the future. This study was mainly
based on [8], whose 26 parametric copulas, estimated according to a Bayesian uncertainty framework,
were replicated in the price–volume variables of the DJIA, FTSE100, NIKKEI225, and IBEX35 indices.

The SRA was implemented in accordance with two different guidelines focused on two respective
scenarios: first, this procedure was applied per se to price–volume data of the DJIA index over
the period 1928–2009. Second, one of the 26 copulas included in this methodology, the Tawn’s
copula [12], was used to jointly compare the dependence structures derived from the PVR in the
FTSE100, NIKKEI225, and IBEX35 indices using the period 2000–2018 as the time horizon (also in per
se values). This copula was expressly used as it can be considered one of the new-generation copulas
whose knowledge is not yet broadly applied in the literature and whose contribution to the analysis of
the PVR may be crucial given its exhaustiveness in the estimation of parameters.

The rest of this article is organized as follows: first, Section 2 describes the current state of this
research by outlining a literature review concerning the theory of copulas and the analysis of the
PVR, detailing the works that expressly employed copulas in the determination of the relationship
between prices and trading volume. In our opinion, with few exceptions such as [13,14], most of
the works usually offer an excessively summarized and, in some cases, incomplete literature review
of the PVR. For this reason, an extensive review of the literature was conducted by listing the four
explanatory hypotheses that were mostly addressed in its study. Similarly, this section summarizes the
plausible shortcomings derived from the utilization of copulas, pointing out a series of sociological
weaknesses. In Section 3, the different databases used as well as a brief review of the theoretical bases
presented in the SRA are described: its Bayesian perspective, later developed in Appendix A, and the
Markov Chain Monte Carlo simulation used by this methodology. In Section 4, the results obtained
are contextualized, finishing this investigation with Section 5, which is dedicated to the discussion
of the results. The paper finishes with Section 6, which reflect our conclusions, supplemented with
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a proposal for future lines of investigation, congruent with the methodological scheme implemented
in this manuscript, emphasizing the practical usefulness of the PVR analysis, both for investors and
practitioners, from the perspective of the scheme proposed by Karpoff [13]. To ensure the maximum
possible exhaustiveness, Appendix B provides an introductory summary of the main basis of the
theory of copulas.

2. State of the Art

2.1. Related to the Theory of Copulas

From Sklar [15] until now, the theory of copulas has not stopped being an area under continuous
development, to the point that copulas, as a concept, as well as their proven ability to determine
parametric and nonparametric dependence measures, have been discovered and rediscovered during
the last 50 years [16]. In this sense, Genest et al. [9] applied bibliometric methods to fix the end of the
1990s as the starting point of a growing interest, practically exponential, which, according to [17–19],
was due to the seminal repercussion of several works of singular importance for its popularization.
This would mean the rediscovery of Sklar’s works. In the opinion of [20], this would include its
involvement in quantitative finance areas and the opening of new lines of research in this field,
which would serve as a trigger for its gradual generalization toward numerous multidisciplinary areas
such as the insurance sector, actuarial science, meteorology, hydrology, and many other disciplines [5].

Daníelsson [21] highlighted three stylized findings commonly detected when implementing
copulas: the volatility clustering, the phenomenon of fat tails [22], and the analysis of a nonlinear
dependence between a given dataset of variables [23–26]. More generically, the application of
copulas in economic-financial fields can be structured around a series of predominant research lines
such as the valuation of collateralized debt obligations (CDOs) [10], the analysis of financial time
series [27–29] (reinforced by the time-varying copulas approach [30,31]), the interpretation of the
implicit asymmetries in the exchange rates [32], the successive contributions to the context of the
portfolio management either from the construction of a simplified portfolio based on the theory of
copulas [33] or from the application of the value-at-risk (VaR) methodology [30,34], or to the study of
contingent claims, especially the valuation of financial options in turbulent environments, characterized
by risk [35–37]. In addition to these research lines, the theory of copulas has been employed to address
all kinds of specific aspects like the methodology proposed by [38] to obtain new copulas based on
a given one or the creation of a new class of semiparametric copula-based multivariate dynamic models
(SCOMDY), introduced by [39]. Analogously, García et al. [40] focused on building copulas in the
contexts of marked uncertainty; the elaborated goodness-of-fit testing procedure for copulas suggested
by [41] are also remarkable, as well as the development promoted by the vine-copulas to model
dependence structures [42–44] in which the copulas are directly linked with the decision processes.

Limitations of the Copulæ Approach

Strictly, a complete literature review of the theory of copulas would not be objective enough if
some of its perceptible limitations are not highlighted, often given by an erroneous conception and
misuse of its theoretical basis and, to a lesser extent, by sociological factors. Embrechts et al. [45]
listed three conceptual fallacies linked to the relative understanding and abuse when implementing
copulas. However, although these have gradually been solved, the main limitation of copulas is the
breach of the continuity condition [46], which a priori establishes a univocal relationship between any
continuous multivariate distribution and a single resulting copula C [45]. So, in any case, Equation (A7)
(see Appendix A) must be satisfied if all distribution functions F1(x1), F2(x2), . . . , Fn(xn) are continuous.
Schweizer and Sklar [47] showed that if there is at least one discrete Fi, the joint distribution function
can continue being expressed as a function, as shown in Equation (A7); however, this would not
be defining a copula per se, but a possible (or feasible) copula C. Several works have furthered the
mitigation of this inconvenience; for example, Genest and Nešlehová [48] related copulas with discrete
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distribution functions, demonstrating how such links can invalidate some basic precepts of the theory
of copulas (evidently, in the continuous case) or Mayor et al. [49], who performed a discrete extension
of the Sklar’s theorem in function of some operators similar to copulas, defined as a finite chain that
they denominates “discrete copulas”.

Similarly, others [50,51] emphasized that the justification of modeling the relationship of
dependence between variables via copulas does not always have to be obvious or completely necessary
as, in many cases, it may be more convenient to directly adjust the variables to a given multivariate
distribution function (i.e., Gaussian or lognormal) to delimit the predictable stylized findings relative
to their dependence structures. Another impediment, according to [52], is that copulas do not entirely
correspond with the pre-existing stochastic framework because they are static models and, therefore,
they are not completely adequate for modeling dependence structures over time.

The misuse of the Gaussian copula as a general indicator of credit risk should also be considered
during the most recent period of economic boom, called “irrational exuberance” by Shiller [53],
in whose case the procedure introduced by [10] practically became a standardized measure of the risk
level of certain assets with high levels of volatility, being one of the indirect triggers in the expansion
of the subprime mortgage crisis. Donnelly and Embrechts [54] metaphorically stated that “the devil
is in the tails” when describing the main limitation of the models based on Gaussian copulas to
fit extreme data values or outliers if compared with others like the Gumbel copula [55]. According
to [45,56,57], there were many voices that, long enough in advance, warned about these models’
inconsistencies that ignored the fact that the application of Gaussian copulas could be more or less
viable in relatively stable financial environments but would be completely inefficient in detecting joint
extreme events. This conclusion was personally confirmed by P. Embrechts to one of the coauthors of
this work (November 2017):

“[. . . ] I insisted from the beginning, back in 1998, that credit risk models based on Gaussian
copula are not capable of capturing joint credit defaults in a sufficiently realistic way.
The mathematical result underlying this statement of mine dates back to the late fifties [. . . ]”

Mikosch [52], Daníelsson [58], and Zimmer [59] also criticized the widespread application of
this procedure and even Salmon [60] deduced that the interests, aims, and objectives of the banking
industry overlapped with those of mathematics, pointing out a sociological limitation born from
considering the mathematical methodology implicit in the theory of copulas as a factotum in the
determination of the risk of financial assets. In this sense, Rogers [61] stated:

“The problem is not that mathematics was used by the banking industry, the problem was
that it was abused by the banking industry. Quants were instructed to build models which
fitted the market prices. Now if the market prices were way out of line, the calibrated models
would just faithfully reproduce those wacky values, and the bad prices get reinforced by
an overlay of scientific respectability”.

Daníelsson [21] considered that the a priori use of copulas can arbitrarily determine any structure
of dependence so that an “optimal” adjustment of a copula does not mean an obligatory a sine qua non
condition that leads to an optimal fit from the original distribution of the data. As no economic theory
is explicitly linked to copulas, it is difficult to specify in advance what type of copulas are the most
appropriate for each specific analysis given the total freedom in the choice of the underlying structures
of dependence, which, in no case, are subrogated in a preliminary way to any economic theory.

2.2. Related to the Analysis of the Price-Volume Relationship

Osborne [62] was the first to address the concurrent relationship between prices and trading
volume from a strictly quantitative perspective, estimating that the logarithm of the price of financial
assets follows a diffusion process with a trend whose variance depends on the trading volume.
Samuelson [63] was inspired by this research to infer that the prices of financial assets describe a
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specific random trajectory based on the Geometric Brownian motion. Thus, the primary roots of modern
quantitative finance are based in the preliminary studies of the analysis of the PVR. Others [62,64,65]
applied spectral analysis to determine that, in principle, there is no a significant relationship between
prices and volumes (or it is too meager to take it into consideration).

These initial works provided the background to justify and empirically test the reconsidered
theory of demand [66], a new conceptualization of the theory of supply and demand, openly contrary
to classical postulates, which would anticipate the empirical basis of the Granger causality
test [67]. Based on Godfrey et al. [65], Ying [68] presented a complete disagreement with the
theory of conventional demand, performing a series of statistical tests whose results defined
five empirical patterns that characterize the joint evolution of the price and volume variables.
Clark [69] used a mixture of probabilistic distributions to describe what would be considered
the first explanatory hypothesis of the PVR, the MDH (Mixture of Distribution Hypothesis),
proposing that the number of operations that occur per unit of time is a random variable and the
variation in prices per unit of time is the sum of the increments of the intraday price equilibrium.
Thus, the mixed variable is hypothesized according to the information rate periodically reached by
the markets, inferring that, in principle, price and volume must be positively correlated, varying in
a contemporary basis, just before the arrival of new information. Others [70–74] used the basis
of this approach, which were further expanded [75,76] by inputting the information rate into the
GARCH (Generalized Autoregressive Conditional Heteroskedasticity models) primary specification
of Bollerslev [77], hypothesizing that the daily trading volume behaves like a representative proxy
variable when explaining the evolution of prices growth depending on the GARCH effects, or on
the persistence of transitory volatility shocks. Practically as a counterpart to the MDH, the SAIH
(Sequential Information Arrival Hypothesis) [78,79] arose as a probabilistic model based on a binomial
distribution, according to which the information arrives the markets generating a noncontinuous or
fragmented flow. Per Darrat et al. [80], this hypothesis should be only contrastable in those periods in
which the information is public and whose empirical evidence is ascertained by all market participants.
Copeland [78] argued that, as more than an effective explanatory hypothesis of the PVR, it should be
reconsidered as “a new technique for the analysis of demand”.

The DBH (Dispersion of Beliefs Hypothesis) and the NTH (Noise Trader Hypothesis) would
complete, together with the MDH and the SIAH, the four major explanatory hypotheses of the PVR,
being the common denominator of all information that reaches the markets, although analyzed from
opposite points of view and finally convergent [81]. The NTH [82] states that prices and volumes are
the result of positive and negative feedback strategies that degenerate into noise in the sense stated
by Black [83], on which passive, rational, and speculative investors react positively to a feedback
strategy. In other words, according to this hypothesis, all information of interest that arrives to the
markets, or relevant in any investment process, would be equivalent to the paradigmatic [83] noise.
In contrast, the DBH [84,85] defines an antagonistic theoretical scenario in which investors who interact
exclusively for speculative reasons and their degree of risk aversion is neutral, collectively receive
public information, which, in principle, is common and perceived in the form of market signals.
Consequently, the consecutive changes in prices exhibit a negative serial correlation and trading
volume is positively correlated [84].

Use of Copulas in the Price-Volume Research

Amongst the works that explicitly opted for the implementation of copulas in the study of the
PVR are those by Gurgul, who focused on the Polish and central European stock markets (Austria and
Germany). Gurgul and Syrek [86] implemented the family of Archimedean copulas to demonstrate
that the volatility of (daily) returns of the companies listed on the DAX was positively related to
the trading volume. Gurgul et al. [87] introduced a measure of dependences based on copulas to
quantify the relationship between performance and volume, volatility and volume, and yield and
performance of the benchmark Polish stock market (WIG) compared to three indices corresponding
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to other international financial markets (ATX, DAX, and DJIA). They concluded that each one of
the proposed relationships is significant except for the volume traded in the Polish market vs. the
volatility of DJIA returns. Gurgul et al. [88] used a Granger’s nonlinear causality model based on
the Bernstein’s copula by applying the nonparametric test of conditional independence between
two vector processes [89] in five selected ordinary shares of the ATX index, confirming the existence
of several well-defined causal guidelines between the performance of shares, the volatility, and the
trading volume (both expected and unexpected). This same copula, in conjunction with Hellinger’s
distance, was implemented [90] to study the high-frequency data of 10 central European companies
(Austria and Poland), detecting a high degree of unidirectional causality, both linear and nonlinear, of
the returns to the expected volume, which was not appreciable in the opposite direction. They also
observed the existence of a linear causality from the volatility realized to the expected trading volume
that, once again, was negligible in the opposite direction.

Gurgul and Syrek [91] studied the dependence structures of ordinary stock returns, volatility,
and transaction volumes of several companies listed in the CAC40 and FTSE100 indices to verify
the long-term memory of the MDH through the fractional cointegration of these series according to
the procedure previously described [92]. In most cases, there is no structure of common dependence
whereby the analyzed series would not be caused by a process of reaching a common information with
long-term memory. Gurgul et al. [93] investigated the high-frequency data of 13 German companies
included in the DAX index for a period of 33 days by selecting the copulas t and Gumbel to analyze
their different underlying dependence structures according to the inference function for margins
(IFM) method [94]. These scholars inferred that the contemporary relationship between the price
duration and its associated trading volume depends on the distribution tails as unusual high volume
accumulations tend to coincide with long durations and, conversely, dependence is minimal when any
of the variables are delayed.

The Asian Financial Crisis of 1997 provided a empirical scenario from which
Ning and Wirjanto [95] analyzed the structure of dependence between prices and volumes in
a context of extreme volatility by examining the evolution of the most representative stock indices of
the six countries in southern Asia, which were more seriously affected by the crisis. Gallant et al. [96]
implemented several mixtures of copulas (Clayton, survival Clayton, and Frank) expressly focused on
both tails. They obtained two conclusions: (1) In general terms, volume positively depends on the
return exclusively in the upper tail of the distribution but not in the lower, which can be interpreted as
volume is a key piece able to explain the periodical booms of the market, not its eventual collapses.
(2) A marked asymmetric dependence exists between return and volume in the extremes of the
distribution, evidenced by extremely high returns tending to be attached to extremely large volumes,
but extremely low returns tending not to be associated with disproportionate trading volumes,
whether high or low.

Naeem et al. [97] focused on the study of the PVR from the analysis of the asymmetric relationship
between returns and trading volumes based on four stock indices also in Asia, developing an alternative
measure of dependence by combining several copulas (Clayton, Survival Clayton, and Gumbel) with
the univariate GARCH and FIGARCH (Fractionally Integrated GARCH models) in which the marginal
distributions of the respective series of returns and volumes are adjusted, proving that the FIGARCH
specification substantially improves the estimation of the parameters of each of the proposed copulas.
As in [95], we remark that extraordinarily high trading volumes are often related to significant returns,
which is due to sudden and sharp declines in the value of financial assets and, more specifically,
within financial crisis environments.

3. Materials and Methods

Our objective was to present a multi-perspective design of Larkin’s research [98] that enables
the analysis of the PVR from different standpoints, depending on the use of different datasets,
time horizons, and analytical tools (copulas). The SRA was applied to two different scenarios to provide



Mathematics 2020, 8, 1864 7 of 28

a generic and a specific image of this methodology. Instead of using a representative hydrological
or meteorological index as an empirical basis (i.e., the standardized precipitation index (SPI) [99]),
per se values of four stock market indices commonly employed by the literature in the study of the
PVR were selected: DJIA, FTSE100, NIKKEI225, and IBEX35.

In the first case, or generic scenario, all available copulas (26) were applied to a single index (DJIA).
Later, in the specific scenario, a single copula was adjusted to three indices (FTSE100, NIKKEI225,
and IBEX35). The copula chosen in the second case was the Tawn copula, a family of new-generation
copulas derived from the Khoudraji’s device copula [100]. In this way, we contribute to the analysis
of the PVR with the inclusion of new copulas never or rarely implemented in this research, such as
some of those included in the SRA approach. In relation to the construction of the generic scenario,
we decided to use a wide database consisting of 20,219 stock trading sessions of the DJIA index,
covering the period from 10 January 1928 to 4 August 2009, which were consecutively subdivided into
quarterly periods until obtaining 490 observations representing the adjusted closing values of the DJIA
at the end of each corresponding session and the final volume of the shares traded at each date.

This temporal accrual as well as the use of data per se allowed us to adapt the original datasets to
the methodology proposed by [8]. The analysis of the specific scenario corresponding to the FTSE100,
NIKKEI225, and IBEX35 indices involved monthly data of per se price and volume collected during
the period from 31 October 2000 to 30 November 2018, which included 218 monthly observations
for each stock index. The most representative descriptive statistics of the generic scenario, shown in
Table 1, reveal a fundamental aspect: the huge level of variability of variables “price” and “trading
volume” when both are measured in per se terms (especially in the latter case).

Table 1. Descriptive statistics and dependence evaluation of DJIA price and volume per se (1928–2009).

(A) Descriptive Statistics

Variable T. Count Mean SEM T. Mean St. Dev. Variance CV

Price (DJIA) 241 2366 227 1973 3528 12,445,239 149.10

Volume (DJIA) 241 310,592,490 52,3001,976 1.61 × 108 8.1 × 108 6.57 × 1022 260.92

Variable Sum SS Min Q1 Median Q3 Max

Price (DJIA) 570,211 4,335,989,110 60 218 827 2448 13,502

Volume (DJIA) 7.49 × 1010 1.80865 × 1025 210,000 1,970,000 10,710,000 1.68 × 108 5,531,290,000

Variable Range IQR Mode Skewness Kurtosis MSSD

Price (DJIA) 13,441 2.3030 240,96 1.77 1.69 55,250
Volume (DJIA) * 5.53 × 109 166,350,000 770,000; 3.99 18.10 1.44 × 1021

880,000;
990,000;
1,440,000

(B). Dependence Evaluation

Correlation Price (DJIA)-Volume (DJIA)

Correlation type Correlation Coefficient p-value Significant at 5%?

Kendall rank 0.8279 0 Yes

Spearman’s rank-order 0.9559 0 Yes

Pearson product-moment 0.7365 0 Yes

Subtable (A): (*) The analyzed data contain at least five mode values. Only the smallest four have been
selected. T. Count: Total Count; SEM: Standard Error of the Mean; T. Mean: Trimmed Mean; CV: Coefficient of
Variation; SS: Sum of Squares; IQR: Interquartile Range; MSSD: Mean of the Squared Successive Differences.
Subtable (B): Source: Own elaboration.

In the same way, the values per se of the variables “price” and “trading volume” denote a relatively
high degree of correlation in terms of the Pearson, Kendall, and Spearman correlation coefficients
(0.7365, 0.8279, and 0.9559, respectively), which a priori could be considered significant measures
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of dependence. However, as underlined by Frey et al. [101], a high degree of correlation does not
necessarily imply real dependence between the involved variables.

Figure 1 shows the huge level of dispersion and variability of both variables. The first
two subfigures, elaborated according to Patton [29], exhibit a normalized time series plot of price
(DJIA)–volume (DJIA) as well as a scatter plot of log-increments, both series normalized in base
100, according to the equality 100× exp

{
∑n

i=1
ln Xi

ln Xi−1

}
. The third subfigure represents the Pearson

regression coefficient of per se prices and volumes of the DJIA over the analyzed time horizon, showing
a quasicyclical relationship between prices and transactional volume within this index, which a priori
do not appear to be connected with the evolution of the economic cycle. Several phases or trends can
be distinguished: relative decline (1934–1957, 1979–1984, and 2000 onwards), stabilization (1967–1977),
and increase (1929–1933, 1958–1966, and 1985–1999) in the relationship between the variables in terms
of Pearson’s linear correlation coefficient (ρ).
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Figure 1. Three different representations of DJIA price-volume evolution and variability during the
period 1928–2009. Source: Own elaboration.

Considering per se magnitudes, Figure 2 presents a three-dimensional scatter plot of the DJIA
index that links variables X (volume) and Y (price) to the Pearson linear correlation coefficient (Z = ρ).
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Simply, it can be observed that this chart mostly associates the highest correlation levels of P and V to
high per se values of P. Low trading volume per se usually fluctuates within a range from 5.00 × 109 to
15.00 × 109, although sometimes a relatively high degree of correlation between price and low trading
volume can be detected (close to 5.00 × 109).
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Figure 2. Scatter plot of ρ vs. Price (DJIA)-Volume (DJIA). Source: Own elaboration.

The aim of this paper is to highlight the key aspects of the SRA as an optimal methodological
approach for the analysis of the PVR from an empirical perspective that is completely different from the
rest of the predominant lines of research. In summary, this methodology can be characterized by: (1) the
use of a high number of bivariate copulas (26, see Table 2), especially recommended to simultaneously
represent different dependence structures and to conduct prospective inferences based on the chosen
variables (not necessarily related to hydrology), such as the variables price and trading volume of
a given financial asset or stock index. Notably, to the best of our knowledge, the large number of
copulas jointly implemented in the SRA was employed for the first time in the investigation of the PVR.
(2) This methodology is based on a unitary reference framework (Bayesian analysis, see Appendix A)
in which the hybrid evolution algorithm of the Monte Carlo Markov Chain simulation (MCMCS) was
introduced, focusing on the numerical estimation of the subsequent distribution of copula parameters
within a context of uncertainty that is relatively similar to the uncertainty observable in financial
markets, especially when the different volatility ranges can be conveniently delimited.



Mathematics 2020, 8, 1864 10 of 28

Table 2. Families of copulas used in this analysis, specifying their corresponding most common mathematical specifications.

Denomination Mathematical Representation A Parametric Range Reference

Gaussian
∫ φ−1(u)

−∞

∫ φ−1(v)

−∞

1

2π
√

1− θ2
exp

(
2θxy− x2 − y2

2(1− θ2)

)
dxdy B θ ∈ [−1, 1] [102]

t
∫ t−1

θ2
(u)

−∞

∫ t−1
θ2
(v)

−∞

Γ( θ2+2
2 )

Γ( θ2
2 )πθ2

√
1− θ2

1

(
1 +

x2 − 2θ1xy + γ2

θ2

)(
θ2+2

2 )

dxdy C θ1 ∈ [−1, 1] and θ2 ∈ (0, ∞) [102]

Clayton max(u−θ + y−θ − 1, 0)−
1
θ θ ∈ [−1, ∞)\0 [103]

Frank −1
θ

ln
[

1 +
(exp(−θu)− 1)(exp(−θv)− 1)

exp(−θ)− 1

]
θ ∈ R\0 [102]

Gumbel exp{−[(− ln(u))θ + (− ln(v))θ ]
1
θ } θ ∈ [1, ∞) [102]

Independence uv [104]

Ali-Mikhail-Haq (AMH)
uv

1− θ(1− u)(1− v) θ ∈ [−1, 1) [105]

Joe 1− [(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ ]
1
θ θ ∈ [1, ∞) [102]

Farlie-Gumbel-Morgenstern (FGM) uv + [θ(1− u)(1− v)] θ ∈ [−1, 1] [18]

Gumbel-Barnett u + v− 1 + (1− u)(1− v) exp[−θ ln(1− u) ln(1− v)] θ ∈ [0, 1] [55,106]

Plackett 1 + (θ − 1)(u + v)−
√
[1 + (θ − 1)(u + v)]2 − 4θ(θ − 1)uv

2(θ − 1)
θ ∈ (0, ∞) [107]

Cuadras-Auge [min(u, v)]θ(uv)(1−θ) θ ∈ [0, 1] [108]

Raftery


u− 1− θ

1 + θ
u

1
1−θ (v

−θ
1−θ − v

1
1−θ ) if u ≤ v

v− 1− θ

1 + θ
v

1
1−θ (u

−θ
1−θ − u

1
1−θ ) if v ≤ u

θ ∈ [0, 1) [18]

Shih-Louis



(1− θ)uv + θ min(u, v), if θ ∈ (θ, ∞)

(1 + θ)uv + θ(u + v−1)Ψ(u + v−1), if θ ∈ (−∞, θ]

Ψ(a) = 1, if a ≥ 0

Ψ(a) = 0, if a < 0

[109]
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Table 2. Cont.

Denomination Mathematical RepresentationA Parametric Range Reference

Linear-Spearman



([u + θ(1− u)]v, if v ≤ u and θ ∈ [0, 1]

[v + θ(1− v)]u, if u < v and θ ∈ [0, 1]

(1 + θ)uv, if (u + v) < 1 and θ ∈ [−1, 0]

(uv + θ(1− u)(1− v), if (u + v) ≥ 1 and θ ∈ [−1, 0]

θ ∈ [−1, 1] [110]

Cubic uv[1 + θ(u− 1)(v− 1)(2u− 1)(2v− 1)] θ ∈ [−1, 2] [111]

Burr u + v− 1 + [(1− u)−
1
θ + (1− v)−

1
θ − 1]−θ θ ∈ (0, ∞) [50]

Nelse n −1
θ

log
{

1 +
[exp(−θu)− 1][exp(−θv)− 1]

exp(−θ)− 1

}
θ ∈ (0, ∞) [18]

Galambos uv exp{(− ln(u))−θ + (− ln(v))−θ}− 1
θ θ ∈ (0, ∞) [12]

Marshall-Olkin min[u(1−θ1)v, uv(1−θ2)] θ1, θ2 ∈ (0, ∞) [12]

Fischer-Hinzmann {θ1[min(u, v)]θ2 + (1− θ1)[uv]θ2}
1

θ2 θ1 ∈ [0, 1], θ2 ∈ R [112]

Roch-Alegre exp{1− [(((1− ln(u))θ1 − 1)θ2 + ((1− ln(v))θ1 − 1)θ2 )
1

θ2 + 1]
1

θ1 } θ1 ∈ (0, ∞), θ2 ∈ [1, ∞) [113]

Fischer-Kock uv[1 + θ2(1− u
1

θ1 )(1− v
1

θ2 )]θ1 θ1 ∈ [1, ∞), θ2 ∈ [−1, 1]

BB1 {1 + [(u−θ1 − 1)θ2 + (v−θ1 − 1)θ2 ]
1

θ2 }−
1

θ1 θ1 ∈ (0, ∞), θ2 ∈ (1, ∞) [4]

BB5
exp{−[(− ln(u))θ1 + (− ln(v))θ1 − ((− ln(u))−θ1θ2 +

(− ln(v))−θ1θ2 )
− 1

θ2 ]
1

θ1 }
θ1 ∈ [1, ∞), θ2 ∈ (0, ∞) [4]

Tawn exp{ln(u(1−θ1)) + ln(v(1−θ2))− [(−θ1 ln(u))θ3 + (−θ2 ln(v))θ3 ]
1

θ3 } θ1, θ2 ∈ [0,1], θ3 ∈[1,∞) [12]

A. The different formulations of this table do not necessarily have to be unique. B. φ represents the distribution Gaussian or standard normal. C. tθ2 denotes the t student distribution
with θ2 degrees of freedom. Source: Specifically readapted to this study from [8].
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As stated by Johannes and Polson [114], the key aspect of the MCMCS is its ability to easily
characterize the complete conditional distributions, p(θ|X, Y) and p(X|θ, Y), instead of analyzing
the higher-dimensional joint distribution p(θ, X|Y). The SRA belongs to the class of econometric
methods usually applied to the sampling of high-dimensional complex distributions, which implement
a hybrid-evolution MCMCS algorithm to infer posterior parameter regions within a Bayesian
context. This algorithm is considered a hybrid since it includes a combination of Gibbs steps and
Metropolis–Hastings steps [114].

The hybrid-evolution MCMCS algorithm starts with an intelligent starting point selection,
structured according to the use of adaptive metropolis (AM), differential evolution (DE), and snooker
update. Table 3 summarizes, in descending order, the working schema implemented in the algorithm
developed by Sadegh et al. [8]. For the sake of brevity, intermediate iterative conditions (i.e., end do,
end if, etc.) have been omitted from the table.

Table 3. Description of the basis scheme of the hybrid MCMCS algorithm implemented in
the SRA approach.

Intelligent prior sampling.

Draw LN(≥ N) samples from prior (p(θ)) using Latin Hypercube Sampling (LHS).

Randomly assign the LHS samples to N complexes.

Selecting the best sample in each complex as the starting point of a Markov chain (CH).

Snooker update (with a 10% of probability).

Drawing 3 samples, r1−3, from parameter space {1 : D}\{i}.

Finding the update direction Z = CH j − CHr1 .

Projecting CHr2 and CHr3 onto Z, to get Zp1 and Zp2 .

Creating a proposal CH∗ = CH j + γ1(Zp2 − Zp1 ).

Computing the Metropolis ratio (1) MR =
L(CH∗)||CH∗ − CHr1 ||D−1

L(CHi)||CHi − CHr1 ||D−1 .

Adaptive Metropolis and differential evolution updating (with a 90% of probability).

Randomly select d dimensions from D-dimensional parameter space to update (within Gibbs sampling).

Creating a proposal sample (1) CH∗(d) = CHi(d) + (1− β)N(0d, γ2
2Σd) + βN(0d, γ2

3 Id).

Creating a proposal sample (2) CH∗(d) = CHi(d) + γ4(CHr2 (d)− CHr1 (d)) + e.

Computing the Metropolis ratio (2) MR =
LCH∗

LCHi
.

Accepting proposal CH , with probability max(MR, 1), and update current chain, CHi .

Checking for Gelman-Rubin R̂ convergence diagnostic.

LN = number of samples drawn from the prior distribution [p(θ)], using Latin Hypercube Sampling (LHS)
and N = number of Markov chains (CH). D = the dimension of the entire parameter space, d = the dimension
of the subspace of the parameters randomly selected for update (Metropolis within Gibbs sampling), T = the
total number of iterations, and NAM = the number of chains selected for the Adaptive Metropolis algorithm.
γ1 − γ4 = “jump factors”, where γ1 is randomly selected, γ2 = 2.38/

√
d, γ3 = 0.1/

√
d and γ4 = 2.38/

√
2d.

Σd = adaptive covariance matrix, based on the last 50% samples of the Markov chains. Source: Specifically
readapted to this study from [8].

4. Results

Despite the SRA employing a good number of new generation copulas, with some of them
complex in mathematical terms (i.e., Plackett or Shih-Louis), Table 4 shows that two copulas with a not
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very analytically complex, Li et al. [102] and Frees and Valdez [50] best fit the price–volume time series
of the DJIA during the considered period (1928–2009), emphasizing that, in all cases, the specified
selection criteria coincide except for three copulas: Galambos, BB1, and BB5.

Complementarily, Table 5 provides estimations of the parameters of each copula (Par) by
fixing a range of 95% of uncertainty in their estimation (Unc-Range) through the application of
local optimization and MCMCS. The copulas with best performance (Rank) are defined in terms
of the root mean square error (RMSE) and the Nash–Sutcliff Efficiency (NSE) criteria. At this point,
the existing literature usually employs local optimization algorithms when estimating the parameters
of copulas with the consequent risk of being trapped in local optima, thus often obtaining unbiased
and nonsignificant results [8]. Conversely, the hybrid-evolution MCMCS algorithm used in the SRA
overcomes this initial limitation by determining an efficient estimator of the global optimum as well as
an accurate approximation of uncertainties in the content of a Bayesian conceptual framework in the
form of isolines, which is another of the improvements provided by this methodology to PVR analysis.

Table 4. Selection of copulas fitted to the DJIA index (1928–2009) based on three different criteria.
Performance-criterion ranking amongst the implemented copulas.

Rank Max-Likelihood AIC BIC Criteria Coincidence

1 Joe Joe Joe YES
2 Burr Burr Burr YES
3 Fischer-Hinzmann Fischer-Hinzmann Fischer-Hinzmann YES
4 Roch-Alegre Roch-Alegre Roch-Alegre YES
5 Tawn Tawn Tawn YES
6 Gumbel Gumbel Gumbel YES
7 BB5 Galambos Galambos NO
8 BB1 BB5 BB5 NO
9 Galambos BB1 BB1 NO

10 Marshal-Olkin Marshal-Olkin Marshal-Olkin YES
11 Cuadras-Auge Cuadras-Auge Cuadras-Auge YES
12 Nelsen Nelsen Nelsen YES
13 Frank Frank Frank YES
14 Linear-Spearman Linear-Spearman Linear-Spearman YES
15 Shih-Louis Shih-Louis Shih-Louis YES
16 t t t YES
17 Gaussian Gaussian Gaussian YES
18 Raftery Raftery Raftery YES
19 Clayton Clayton Clayton YES
20 Plackett Plackett Plackett YES
21 AMH AMH AMH YES
22 FGM FGM FGM YES
23 Fischer-Kock Fischer-Kock Fischer-Kock YES
24 Cubic Cubic Cubic YES
25 Independence Independence Independence YES
26 Gumbel-Barnet Gumbel-Barnet Gumbel-Barnet YES

Souce: Own elaboration.

The analysis of the SRA applied to the NIKKEI225, FTSE100, and IBEX35 indices using the Tawn’s
copula is summarized in Table 6, similarly to Table 5. The price–volume dependence structure of the
per se NIKKEI225 index is optimal in accordance with the NSE criterion, as it is very close to unity
(0.9914), indicating an almost perfect model fitting. The per se IBEX35 adjustment is relatively optimal
(0.9737), being lower for the FTSE100 (0.8235). The range of uncertainty of the parameters defining the
Tawn’s copula (θ1, θ2, and θ3, Table 2) is considerably lower in the Nippon index than in the other two
stock market indices.

Figure 3 shows that each stock exchange index corresponds to a certain typology of its probability
isolines. Rows 1 to 3 refer to the analyzed indices, whereas columns correspond to the following
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specifications: (A) fitted empirical copulas probabilities, (B) fitted empirical copulas, and (C) return
period copulas, calculated according to [115] by considering the joint return

(
1

1−C(u,v)

)
as a measure

of the dependence structure between the observed price peaks and trading volumes.

7

          

7

1.8

7 7

1

Figure 3. Probability isolines of Tawn’s copula for FOOTSIE100, NIKKEI225, and IBEX35 indices.
Source: Own elaboration.

The isolines derived from the application of Tawn’s copula are ostensibly biased toward the upper
left corner, which seems to indicate a low probability of occurrence of the price (U1) synchronously
linked to a high probability of occurrence of the trading volume (U2) (both measured in magnitudes
per se). Likewise, given the joint representation of the probability isolines and the empirical estimates
of the joint probability distributions, the trends of the FOOTSIE100 and NIKKEI225 indices are fairly
similar, although in the former index, high prices use to be related to trading volumes lower than
those shown in the Japanese stock market. The P—V relationship in the IBEX35, although following
a similar pattern, differs to some extent from the analysis of the other two indices, as low prices seem
to be more related to high trading volumes quotas. This type of asymmetric and skewed dependence
structure can be considered a common pattern of the three indices analyzed, equally extrapolated to
the analysis of the fitted empirical copulas and return period copulas.
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Table 5. Copula parameters estimation: DJIA (1928–2009).

Copula Name Rank RMSE A NSE B Par#1-Local Par#2-Local Par#3-Local Par#1-MCMC 95%-Par#1-Unc-Range Par#2-MCMC 95%-Par#2-Unc-Range Par#3-MCMC 95%-Par#3-Unc-Range

AMH 21 1.4462 0.9051 1,0000 NaN NaN 1.0000 [0.9793;0.9998] NaN [NaN;NaN] NaN [NaN;NaN]

BB1 8 0.1864 0.9984 0.0001 6.8711 NaN 0.0012 [0.0007;0.0890] 6.8738 [6.3355;7.4168] NaN [NaN;NaN]

BB5 7 0.1864 0.9984 1.0075 6.1177 NaN 6.8666 [1.0085;7.2476] 0.0434 [0.0260;6.3875] NaN [NaN;NaN]

Burr 2 0.1564 0.9989 0.0884 NaN NaN 0.0884 [0.0832;0.0948] NaN [NaN;NaN] NaN [NaN;NaN]

Clayton 19 0.2617 0.9969 2.6215 NaN NaN 27.7501 [22.3225;34.3061] NaN [NaN;NaN] NaN [NaN;NaN]

Cuadras-Auge 11 0.1919 0.9983 0.9401 NaN NaN 0.9401 [0.9327;0.9474] NaN [NaN;NaN] NaN [NaN;NaN]

Cubic 24 2.1634 0.7877 2.0000 NaN NaN 1.9998 [1.3902;1.9954] NaN [NaN;NaN] NaN [NaN;NaN]

FGM 22 1.6844 0.8713 1.0000 NaN NaN 1.0000 [0.9550;0.9999] NaN [NaN;NaN] NaN [NaN;NaN]

Fischer-Hinzmann 3 0.1653 0.9988 0.9745 −1.7302 NaN 0.9738 [0.9622;0.9814] −1.7073 [−2.0944;−1.2435] NaN [NaN;NaN]

Fischer-Kock 23 1.6846 0.8713 1.0000 1.0000 NaN 1.0005 [1.0015;1.1530] 0.9996 [0.9498;0.9996] NaN [NaN;NaN]

Frank 13 0.2041 0.9981 20.1073 NaN NaN 25.7416 [23.5320;28.7390] NaN [NaN;NaN] NaN [NaN;NaN]

Galambos 9 0.1865 0.9984 6.1687 NaN NaN 6.1688 [5.6654;6.7940] NaN [NaN;NaN] NaN [NaN;NaN]

Gaussian 17 0.2131 0.9979 0.9140 NaN NaN 0.9785 [0.9735;0.9827] NaN [NaN;NaN] NaN [NaN;NaN]

Gumbel 6 0.1864 0.9984 4.3567 NaN NaN 6.8717 [6.3810;7.5823] NaN [NaN;NaN] NaN [NaN;NaN]

Gumbel-Barnet 26 2.2788 0.7645 0.0000 NaN NaN 0.0000 [0.0003;0.0321] NaN [NaN;NaN] NaN [NaN;NaN]

Independence 25 2.2788 0.7645 NaN NaN NaN NaN [NaN;NaN] NaN [NaN;NaN] NaN [NaN;NaN]

Joe 1 0.1563 0.9989 12.0596 NaN NaN 12.0583 [11.3142;12.9402] NaN [NaN;NaN] NaN [NaN;NaN]

Linear-Spearman 14 0.2079 0.9980 0.9238 NaN NaN 0.9238 [0.9113;0.9340] NaN [NaN;NaN] NaN [NaN;NaN]

Marshal-Olkin 10 0.1893 0.9984 8.6736 0.1012 NaN 0.9484 [0.9382;0.9714] 0.9298 [0.9019;0.9410] NaN [NaN;NaN]

Nelsen 12 0.2041 0.9981 24.0724 NaN NaN 25.7465 [23.6645;28.8592] NaN [NaN;NaN] NaN [NaN;NaN]

Plackett 20 0.4651 0.9902 35.0000 NaN NaN 34.9994 [34.0284;34.9944] NaN [NaN;NaN] NaN [NaN;NaN]

Raftery 18 0.2602 0.9969 0.9522 NaN NaN 0.9522 [0.6394;0.9791] NaN [NaN;NaN] NaN [NaN;NaN]

Roch-Alegre 4 0.1707 0.9987 0.0001 9.0334 NaN 0.0007 [0.0029;0.1435] 9.0521 [8.3601;9.7642] NaN [NaN;NaN]

Shih-Louis 15 0.2079 0.9980 0.9238 NaN NaN 0.9237 [0.9128;0.9348] NaN [NaN;NaN] NaN [NaN;NaN]

t 16 0.2085 0.9980 0.9363 3.9764 NaN 0.9809 [0.9745;0.9849] 0.5611 [0.2827;30.9390] NaN [NaN;NaN]

Tawn 5 0.1793 0.9985 0.9787 0.9466 11.5247 0.9786 [0.9580;0.9957] 0.9457 [0.9233;0.9662] 11.6332 [8.4142;23.0476]

A. Root Mean Square Error. B. Nash-Sutcliff Efficiency. Source: Own elaboration.
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Table 6. Tawn copula parameters estimation: NIKKEI225, IBEX35, and FTSE100 (2000–2018).

Index RMSE NSE Par#1-Local Par#2-Local Par#3-Local Par#1-MCMC 95%-Par#1-Unc-Range Par#2-MCMC 95%-Par#2-Unc-Range Par#3-MCMC 95%-Par#3-Unc-Range

NIKKEI 225 0.2621 0.9914 0.0744 0.2153 34.9816 0.0738 [0.0551–0.1248] 0.219 [0.0977–0.4725] 25.9197 [2.2342–34.4984]

IBEX 35 0.3901 0.9737 0.005 0.8691 11.1339 0.0049 [0.0000–0.9876] 0.9969 [0.0000-0.9969] 22.6851 [1.0000–34.4965]

FTSE 100 0.9005 0.8235 0.3857 0 13.1732 0.0097 [0.0000–0.9896] 0.5024 [0.0000–0.9881] 1 [1.0000–35.0000]

Source: Own elaboration.
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Figure 4 shows the degree of uncertainty associated with the three parameters defining the Tawn’s
copula. Figure 4 exhibits the specification of the copula parameters generated by the MCMCS through
a Bayesian framework. Blue bins represent the MCMC-obtained parameters, blue crosses (bottom of
each plot) denote the maximum likelihood estimation parameters, and red asterisks (top of each plot)
indicate the copula parameter value obtained by local optimization.

Figure 4. Posterior distribution of fitted Tawn’s copula on FOOTSIE100, NIKKEI225, and IBEX35
indices obtained by the MCMCS. Source: Own elaboration.

In a context characterized by minimal uncertainty when specifying the parameters of the copula
in each market, the parameters obtained by the local optimization algorithm should coincide with
the mode of the distribution calculated through the MCMCS. However, this was only observed in
the NIKKEI225 (parameters 1 and 2) and IBEX35 (parameter 1) and was not contrastable for any of
the three parameters obtained from the Tawn’s copula to the FOOTSIE100 index. These results are
consistent with the previously calculated uncertainty ranges and with the delimitation of the degree of
goodness of the adjustment performed by the NSE criteria (Table 6), according to which the NIKKEI225
index represented a quasiperfect fitting to this copula, followed by the IBEX35, and, to a lesser extent,
the FOOTSIE100. This can be justified by the different range of variation of the parameters obtained
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for each index, where the FOOTSIE100 index is associated with a higher level of uncertainty compared
with NIKKEI225 and IBEX35.

5. Discussion

The application of the SRA provides an alternative and innovative approach to PVR based on the
simultaneous application of 26 copulas, which facilitated the analysis of their dependence structures
and implicit morphology according with their probability isolines. Many of these copulas are dissimilar
in form, although quite similar in performance. This also allowed us to model the relationship between
prices and trading volumes from different points of view, quantifying the uncertainty underlying to the
specification of the parameters defining each copula. The PVR, usually characterized by a markedly
asymmetric relationship [13], is reinforced by the application of the SRA, since several of the copulas
used in this methodology (e.g., Galambos, Bernstein, Tawn, etheory of copulas.) are especially effective
in the study of phenomena with underlaying asymmetric skewed dependence structures.

From an empirical point of view, the joint implementation of the 26 copulas in the DJIA
(generic scenario) confirmed that Joe’s copula is able to more efficiently model the dependence
structures of this index. Framing our findings with the existing literature, the use of Tawn’s copula
in the FOOTSIE100, NIKKEI225, and IBEX35 indices (specific scenario) confirms Ying [68]’s findings
in their seminal analysis of the S&P 500 index. Similarly, our results confirm the analysis of the
NIKKEI225 completed by Bremer and Kato [116], according to which an asymmetric relationship could
be observed (negative correlation between past prices and current trading volume). This relationship
was explained in the FOOTSIE100 by Huang and Masulis [117] based on the existence of a minority of
informed-trading investors who simply sought immediate liquidity. The asymmetric PVR detected in
the IBEX35 aligns with that already reported in the literature (see, for example, [118]). Its differentiated
nature with respect to the other two indices is probably due to, according to [119] in the Spanish
financial markets (Mercado Continuo), a strong linear causal relationship from returns to trading
volume. Specifically, periods with high returns are usually followed by periods with particularly
high trading volume. Such guidelines are comparable to those detected in other works [95,97],
which explicitly used copulas in the study of PVR in the Asian financial markets, repeatedly verifying
the existence of an inverse relationship between prices and volumes traded, in both cases foreseeably
increased by the effects of the 1997 Asian financial crisis.

One of the improvements associated with the application of the SAR approach to the PVR is
facilitating the analysis of both variables from a large number of copulas by defining the relationship
based on ranges of uncertainty applying the RMSE and NSE criteria (see Tables 5 and 6), independent
of the degree or sign of the linear correlation exhibited by the Pearson correlation coefficient (ρ),
which, to the best of our knowledge, is an entirely new application in the field of quantitative finance
of future utility for researchers and investors.

6. Conclusions

The main contribution of this research is the analysis of the existing relationship between prices
and trading volume from multiple copulas, which allowed us to comparatively abstract the underlying
dependency structures of both variables to establish possible analogies or differences. One of the most
important limitations related to the empirical application of copulas is solved, which is employing
a limited number of standard copulas when, in reality, there are multiple copulas not yet well
extended in the literature [11]. Through the empirical methodology introduced in this article, the
versatility of copulas increases when they are simultaneously combined with the polyvalence of the
Bayesian analysis and with the hybrid-evolution MCMCS algorithm proposed by Sadegh et al. [8].
We are the first to implement the SRA, not just in PVR analysis, but in the ambit of quantitative
finance. More specifically, for practical purposes, PVR analysis is decisive for both academics and
practitioners, since, following the scheme constructed by Karpoff [13], it has the following implications:
(1) it generates additional information regarding the structure of financial markets; (2) from an
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empirical point of view, it is fundamental in the generation of case studies that jointly use prices
and trading volume, facilitating the implementation of analyses and inferences; (3) it is a crucial
element in the study of the empirical distribution of speculative prices; and (4) its research would be
particularly indicated in the futures markets where, a priori, the variability of prices used to affect the
trading volume.

Additionally, we tried to answer and reconcile three questions linked to the theory of copulas:
which copula is the “right one” [120], which copula should be used [20], and why copulas have been
successful in many practical applications [44]? Versatility is the key term that best defines a copula;
therefore, the most appropriate copula for analyzing a particular issue is the one that best summarizes
its implicit dependence structures. Hence, copulas have been so successful in different fields of study.

A first conclusion to be drawn from this work is that the potential of the theory of copulas could
be significantly reduced if certain copulas-type are systematically used in the analysis of bivariate time
series. Precisely, this was the factor that caused a certain reluctance toward the use of copulas when
the Gaussian copula [10] was employed massively in almost any scientific field, without considering
either the intrinsic nature of the phenomena analyzed or that the use of a large number of copulas can
substantially improve the knowledge of the different relations of dependence observable in a given
dataset [50]. Thus, the SRA is not simply limited to the task of choosing and fitting the copula [121],
but following the transdisciplinary perspective of econophysics, it supposes a new framework in the
analysis of the PVR, extrapolated from the field of hydrology, which is directly applicable to many
other areas such as quantitative finance.

Since Karpoff [13], the PVR has been practically subsumed to the generalization of the significance
of Pearson’s linear correlation coefficient of the price and trading volume variables. However,
an alternative is provided in this methodology since the classical optimization methods applied
to copulas often get trapped in local minima. The SRA is able to conveniently overcome this
limitation by accurately describing the dependence structure of variables P and V and, importantly,
by allowing the analysis of uncertainties given a determined time horizon (or length of record, see [8]).
Another contribution of this work that may be important for future lines of research is the incorporation
in the methodology of copula probability isolines in the analysis of PVR, which approximates this
research to the multifractal models of Mandelbrot [22].

In our opinion, other future lines of research related to this work include, for example, the analysis
of the role played by floating capital (outstanding shares vs. restricted shares) in the context of PVR,
an aspect which has been often overlooked in the literature, or the rigorous enunciation and detailed
compilation of those empirical stylized facts defining the price–volume time series, as well as the
definitive consolidation of the works that have analyzed PVR from the perspective of the market
microstructure of Garman [122]. This research could be gradually applied to the area of behavioral
finance following the path of works such as Gomes [123], in which the analysis of PVR is directly
connected to the prospective theory of Kahneman and Tversky [124].
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Abbreviations

The following abbreviations are used in this manuscript:

PVR price–volume relationship.
SRA SRA approach.
MCMS Markov Chain Monte Carlo simulation.
MDH Mixture of Distribution Hypothesis.
SIAH Sequential Information Arrival Hypothesis.
DBH Dispersion of Beliefs Hypothesis.
NTH Noise Trader Hypothesis.

Appendix A. The Bayesian Perspective of the SRA Approach

The Bayesian methodology constitutes one of the most recurrent approaches in economic and
financial research, considered as an alternative third way to traditional perspectives. In previous
studies [125,126], we can find an extensive introduction to Bayesian methods applied to finance,
which created an important field of implementation in those contexts characterized by a high
uncertainty, such as stress testing study cases [121,127] and the risk management optimization or the
estimation of GARCH models in environments of extreme volatility [128,129]. Shemyakin [130] is
essential for studying the Bayesian estimate of copulas based on the simplicity of Bayes’ theorem (A1),
that is, univocally assigning the corresponding uncertainties representatives of each parameter to the
model and estimating its posterior distribution, the starting point of the SRA:

p(θ|Ỹ) = p(θ)p(Ỹ|θ)
p(Ỹ)

, (A1)

where p(θ), p(θ|Ỹ), p(Ỹ|θ) ∼= L(θ|Ỹ), and p(Ỹ) =
∫

θ p(Ỹ|θ)dθ denote prior and posterior distribution
(of parameters), likelihood function and coined (or real) evidence, respectively. Under the hypothesis
that error residuals are Gaussian-distributed with mean zero, uncorrelated, and homoscedastic,
the likelihood function can be reformulated as:

L(θ|Ỹ) =
n

∏
i=1

1√
2πσ̃2

exp
{
−1

2
σ̃−2[ỹi − yi(θ)]

2
}

, (A2)

and logarithmically transformed into the formula [8]:

`(θ|Ỹ) = −n
2

ln(2π)− n
2

ln σ̃2 − 1
2

σ̃−2
n

∑
i=1

[ỹi − yi(θ)]
2, (A3)

where σ̃ is an estimate of the standard deviation of the measurement error given by:

σ̃2 =

n
∑

i=1
[ỹi − yi(θ)]

2

n
, (A4)

which allows us to simplify (A2) into:

`(θ|Ỹ) = −n
2

ln(2π)− n
2
− n

2
ln

n
∑

i=1
[ỹi − yi(θ)]

2

n
(A5)

Finally, eliminating the constant terms of (A5), we would obtain a simplified equivalent
log-likelihood function as:

`(θ|Ỹ) ≈ −n
2

ln

n
∑

i=1
[ỹi − yi(θ)]

2

n
. (A6)
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Once the data have been modeled according to any of the available copulas (Table 2), the SRA
evaluates the goodness of fit using three different criteria: max-likelihood [131], Akaike information
criterion (AIC) [132,133], and Bayesian information criterion (BIC) [134], taking the primary error
residuals function as a reference under the assumption that, given a set of parameters, its maximum
likelihood level completely minimizes the residuals between the model simulations and their linked
observations. Notably, these assumptions are explicitly referred to the distribution of residual error
that is applied to construct the likelihood function that summarizes the distance between the given
observations and the prospective model simulations.

Appendix B. Brief Insight into the Theory of Copulas

The background of the theory of copulas can be traced to the works of Fréchet, Hoeffding,
Menger, Féron, Gumbel, and Dell’Aglio, most of them analyzing the relationships between bivariate
and trivariate distributions with their corresponding univariate marginal distributions. According to
Sempi [135], the basis of the theory of copulas was established by Fréchet [136] and can be synthesized
schematically according to the dimensions of Fréchet [136] and Hoeffding [137].

An n-dimensional copula C is a multivariate distribution function on the n-dimensional hypercube
[0, 1]n with uniformly distributed marginals.

The Sklar’s theorem [15] is the starting point for the construction, development, and modeling of
a new class of functions (or dependence functions, according to Galambos [138]), which have been
generically denominated copulas since Sklar [15], who nominalized them using the Latin term copulæ
(“couples”) [4].

In short, this theorem [139] states that given a n-dimensional random vector X = (X1, X2, . . . , Xn)

with joint distribution function F and marginal distribution functions F1, F2, . . . , Fn, there exists
an n-dimensional copula C, such that for every (x1, x2, . . . , xn) ∈ Rn, Equation (A7) is satisfied.
For absolutely continuous distributions, the copula C is unique.

Conversely, if C is the n-dimensional copula corresponding to a multivariate distribution function
F with marginal distribution functions F1, F2, . . . , Fn, then C can be expressed as:

C(u1, . . . , un) = F(F−1
1 (u1), . . . , F−1

n (un)) (A7)

and its copula density or probability function is given by:

c(u1, . . . , un) =
f (F−1

1 (u1), . . . , F−1
n (un))

f1(F−1
1 (u1)) · · · fn(F−1

n (un))
. (A8)

If the joint distribution function is n times differentiable, the partial derivatives of order n can be
calculated in (A7), by obtaining:

f (x) ≡ ∂n

∂x1∂x2 · · · ∂xn
F(x) =

n

∏
i=1

fi(xi)×
∂n

∂u1∂u2 · · · ∂un
C(F1(x1), F2(x2), . . . , Fn(xn))

≡
n

∏
i=1

fi(xi)× c(F1(x1), F2(x2), . . . , Fn(xn)), (A9)

from where:

log f (x) =
n

∑
i=1

log fi(xi) + log c(F1(x1), F2(x2), . . . , Fn(xn)). (A10)
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That is, the joint density function is equal to the product of the marginal densities and the density
of the copula (represented by c [27]), from which it follows that the joint logarithmic probability is equal
to the sum of the univariate logarithmic likelihoods and the copula logarithmic likelihood, which is
a feature of extreme utility for the parametric estimation of multivariate model. Therefore, according to
the Sklar’s theorem (A7) and considering the equivalence relation (A9), given any couple of variables X
and Y with respective marginal distributions u = F(xt) and v = G(yt) and joint distribution function
J(xt, yt), there is a copula C for all (xt, yt) in R2, which relates them according to the equation:

J(xt, yt) = C(F(xt), G(yt)). (A11)

Again, calculating the partial derivatives in both terms of Equation (A11), we obtain:

∂2 J(xt, yt)

∂xt∂yt
=

∂2C(F(xt), G(yt))

∂F∂G
f (xt)g(yt)), (A12)

which allows us to model the marginal distributions and the dependence structure between the
variables separately from a certain copula [95].

Thus, the Sklar’s theorem implies that the dependence relation between different variables
can be completely subsumed to the construction of a copula, a process that can be summarized in
two consecutive steps [51,139]: (1) identification of associated marginal distributions, and (2) election
of a certain copula that appropriately represents the interrelations between the variables, so that the
dependence between n random variables X1, X2, . . . , Xn is theoretically explained in its entirety from
its joint distribution function F(x1, . . . , xn) = P[X1 ≤ x1, . . . , Xn ≤ xn] [56].
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