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1. Introduction

We consider the system of fractional differential equations

{ Dy (gr, (DpLu(1)) + f(t,u(t), 0(t)) =0, t€ (0,1), n
D32 (¢, (DR 0(1))) + g(t,u(t), 0(t)) =0, te (0,1),
with the nonlocal boundary conditions
, P
u(0) =0, j=0,...,n—2 DPu(0)=0, DPu(1) = 2/0 DY u(t) dH(t),
i=1
@)

. q 1
00)(0) =0, j=0,...,m—2; DE2o(0) =0, DY,o(1) = Z/ DY, o(t) dK;(1),
i—1 70

where ay, ay € (0,1], 81 € (n—1,n|,fo € (m—1,m|,n,m € N,n,m > 3,p,g € N, v; € R for all
i=0,...,p0< M <M< <Y< <p1—1Lv%>146€Rforalli =0,...,9,0 <5 <
O < -0 < 5{4 <9 < Ba—1,80 > 1,1, 12 > 1, @ri(T) = ‘T|ri72T, Qr:l = Qs 0i = /%l, i=1,2,
the functions f and g are nonnegative and they may be singularatt = 0 and/or t = 1, the irlltegrals from
the boundary conditions (2) are Riemann-Stieltjes integrals with H;,i =1,...,pand K;,j=1,--- ,q
functions of bounded variation, and Dg 7 denotes the Riemann-Liouville fractional derivative of

order 6 of function u (for 6 = waq, B1, a2, B2, vifori =0,...,p, 5j forj = 0,...,9). The fractional
derivative DY, u is defined by Df, u(t) = ﬁ (%)r fot(t —5) 9= 1y(s)ds, t > 0, wherer = |0] +1,
|6 | stands for the largest integer not greater than 6, and I'({) = fooo t5=le=tdt, ¢ > 0, is the gamma
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function (the Euler function of second type). This work is motivated by the application of p-Laplacian
operator in several fields such as nonlinear elasticity, fluid flow through porous media, glaciology,
nonlinear electrorheological fluids, etc., for details, see [1] and the references cited therein.

Under some assumptions on the functions f and g, we present existence and multiplicity results
for the positive solutions of problem (1) and (2). By a positive solution of problem (1) and (2) we mean
a pair of functions (u,v) € (C([0,1], Ry ))?, satisfying the system (1) and the boundary conditions (2),
with u(t) > 0forallt € (0,1], orv(t) > 0 forall t € (0,1], (R4 = [0,00)). In the proof of our main
theorems we use the Guo-Krasnosel’skii fixed point theorem (see [2]). The existence and nonexistence
of positive solutions for the system (1) with two positive parameters A and y, and nonsingular and
nonnegative nonlinearities, supplemented with the multi-point boundary conditions

u(0)
01 (0)
where P1, P2, 91, 92 € IR/ P1 S [1,7’1 - 2]/ p2 S [1,77’1 - 2]/ q1 S {0/ Pl]/ q2 S [O/ PZ]/ gi/ a; € R for
ali =1,..., N(Ne€ N,0 < ¢ < - <¢ny <1, %4q,b; € Rforalli =1,..., M(M € N),
0 <m < -+ < ym <1, was investigated in [3], by applying the Guo—Krasnosel’skii theorem.

In the paper [4], the authors studied the system (1) with positive parameters, and nonsingular and
nonnegative nonlinearities, subject to the nonlocal coupled boundary conditions

0,...,n—2 DPu(0) =0, DMu(l) = N, a;DI u(g;),

0,
0, j=0,...,m—2; D0(0)=0, DI?o(1) = xM, b:DL v(yy),

. P 1
ui(0) =0, j=0,...,n—2; DELu(0) =0, DY u(l) = 2/ DY o(t) dH;(t),
i=170

. 5 q 1 5
o)(0) =0, j=0,...,m—2; Df?0(0) =0, DY o(1) = Z/ D% u(t) dK;(t),
~ Jo

where p,g €N, 7; € Rforalli=0,1,...,p,0< 11 <12 < <7p <6 <P2—1,80>146 €Rfor
alli=0,1,...,9,0<61 <o < - <§Hp<r<pf1—Lry=1

In [5], by applying the fixed point theorem for mixed monotone operators, the authors proved the
existence of positive solutions for the multi-point boundary value problem for nonlinear Riemann-—
Liouville fractional differential equations

DS, ¢p(DE, u(t)) = f(Lu(t)), 0<t<T1,
u(0) =0, DJ u(1) = Y"*&D], u(y;), D§,u(0) =0,
op(Diu(1)) = X% Cigp (DG u(ni),

where o, € (1,2], v € (0,1, &;, 15, i € (0,1),i =1,...,m —2,and f is a nonnegative function which
may be singular at x = 0. In [6], the authors investigated the existence and uniqueness of positive
solutions for the fractional boundary value problem

“Dg, @p (Df, u(t) + @y (5, h(t, I u(t), DY, (1))
+f(t, 152 u(t), DY u(t)) =0, t € (0,1),

u(0) = DY, u(0) = - -- = Dy ~u(0) = D, u(0) =0,

DI u(1) = A1 fy bi(T)DEL u(t)dAL(T) + Ay [£ (1) DR u(t)d Ay (7)
+A3 K524 D u (i),

wherea € (0,1], 8 € (n—1,n],n > 3,°D§ , u denotes the Caputo fractional derivative of order & of function

u defined by °Dfj u(t) = ﬁ fg(t —s)""u'(s)ds, t > 0, fora € (0,1), and °Df_ u(t) = u'(t), t >0,
for « = 1, and the nonlinear terms f and k may be singular on the time variable and space variables.
The authors used in [6] the theory of mixed monotone operators, and they also discussed there the

dependence of solutions upon a parameter.
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Systems with fractional differential equations without p-Laplacian operators, with parameters or
without parameters, subject to various multi-point or Riemann-Stieltjes integral boundary conditions
were studied in the last years in [7-27]. For various applications of the fractional differential equations in
many scientific and engineering domains we refer the reader to the books [28-34], and their references.

The paper is organized as follows. In Section 2, we study two nonlocal boundary value problems
for fractional differential equations with p-Laplacian operators, and we present some properties of the
associated Green functions. Section 3 contains the main existence theorems for the positive solutions
for our problem (1) and (2), and in Section 4, we give two examples which illustrate our results.

2. Auxiliary Results

We consider firstly the nonlinear fractional differential equation
Do (¢r, (DLu(t))) +h(t) =0, t€ (0,1), )
with the boundary conditions
u(f)( ) 0,j=0,...,n—2 D§u(0)=0,

P . 4
D u /D Hi(1), W

wherea; € (0,1], 1 € (n—1,n,neN,n>3,peN,y; € Rforalli=0,...,p,0< 1 <7<+ <
Yp <70 <Pp1—1,7%=>1H; i=1,...,pare bounded variation functions, and & € C(0,1) N L'(0,1).

We denote by p 1
_ () T(B1) .
M= e T Sy T AHG)

Lemma 1. If Ay # 0, then the unique solution u € C[0,1] of problem (3) and (4) is given by

1
:Agww%mmmmwtemm )

where the Green function Gy is given by

tﬁl 1P
G5 = 05) + 5 ) [[sawo)ai), tse o, ©)
i=1
with
: 1 tﬁl—l(l — g)ﬁl—”m—l —(t— C)ﬁrl, 0<g<t<1,
SO =FEy | i1-gpn, 0<i<g<1,
1 Tl (1 - )P0 — (7 g)fn @)
SZi(ng):m 0<<t<],
1= h1—vi—1 (1— g)ﬁﬁ*%*l, 0<t<(<1,
i=1,...,p

Proof. We denote by ¢,, (Dgiu(t)) = x(t). Then problem (3) and (4) is equivalent to the following
two boundary value problems

Dol x(t) +h(t) =0, 0 <t <1; x(0) =0, (8)
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and o
Dy u(t) = @o (x(t)), 0<t<1;
. 9
u(0)=0,j=0,...,n—2; DJ%u Z/ Dy u(t) dH;(t). ©)
For the first problem (8), the function

x(t) = —Igth(t) = r(il) ./(;t(t —s)Mn(s)ds, t€[0,1], (10)

is the unique solution x € C[0, 1] of (8). For the second problem (9), if A1 # 0, then by [7] (Lemma 2.2),
we deduce that the function

=~ [ 91590 (x(s)) ds, 1< 0,1, ay

where G is given by (6), is the unique solution u € CJ0, 1] of problem (9). Now, by using relations (10)
and (11), we find formula (5) for the unique solution u € C[0, 1] of problem (3) and (4). O

Next we consider the nonlinear fractional differential equation
Dg? (@r, (DLo(1)) + k(1) =0, £ € (0,1), (12)
with the boundary conditions

o (0) =0, j=0,...,m—2; D(0)=0,

9 1

di
=Y | Do),

i=170

whereay € (0,1], o € (m—1,m|,me N,m >3, N,é; € Rforalli=0,...,4,0<6 <dH < - <

05 << P2—1,00>1,K; i=1,...,qare bounded variation functions, and k € C(0,1) N L'(0,1).
We denote by

(13)

T L TR st
b= i ey T R ey O KG)

In a similar manner as above we obtain the following result.

Lemma 2. If Ay # 0, then the unique solution v € C|[0, 1] of problem (12) and (13) is given by

1
= | Galt,5)pes (15K ds, £ € 0,1), (14)
where the Green function Gy is given by
-1 14

Z%(/ 2ai(T,8) dK; (T )), bse0,1], (15)

1

gz(t,s) = gg,(t,S) +

with
S thl(1 -1 _(t )P 0< 7 <t <1,
83(t,0) = T(By) | thl(1—()Pr %1 0<t<7<1,
. TR (1= 0t — (TP, (16)
84i(7,0) 0<{<t<],

FB2=00) | epmaiiq — g1, << g <1,
i=1,...,q
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By using the properties of the functions g1, g2i, i =1,...,p, 93, 84i,i = 1,...,q given by (7) and
(16) (see [7,17]), we obtain the following properties of the Green functions G; and G, that we will use
in the next section.

Lemma 3. Assume that H; : [0,1] - R, i=1,...,p, and K; : 0,1 = R, j =1,...,q are nondecreasing
functions and Ay > 0, Ay > 0. Then the Green functions Gy and G, given by (6) and (15) have the properties:

(@) Gi1, G2:1[0,1] x [0,1] — [0, 00) are continuous functions;
(b) Gi(t,s) < Ji(s) forallt, s € [0,1], where

Ji(s) = hi(s) + & X1y fy 82i(t,s) dHi(T), with

hy(s) = F(/S [(1—5).31 Y0—1 -1 _S)ﬁlq],s € [0,1];
(c) Gi(t,s) > thPr17(s) forallt, s € [0,1];

1t
(d) Ga(t,s) < TJa(s)forallt, s € [0,1], where
Ja(s) = ha(s) + z; L 1 Jy gai(T,5) dKi(T), with
ha(s) = g5 [(1—s)P2%71 — (1 —5)P271], s € [0,1];
(e) Go(t,s) > th2=1 7,(s) forallt, s € [0,1].

By similar arguments used in the proof of [17] (Lemma 2.5), we deduce the next lemma.

Lemma 4. Assume that H; : [0,1] - R,i=1,...,pand K; : 0,1 = R, j=1,...,q are nondecreasing
functions, Ay > 0, Ay > 0, h € C(0,1)NLY(0,1), k € C(0,1)NLY(0,1), h(t) > 0 forall t € (0,1),
k(t) > 0 forallt € (0,1). Then the solutions u and v of problems (3), (4), (12) and (13), respectively, satisfy
the inequalities u(t) > 0, v(t) > 0 for all t € [0,1]. In addition, we have the inequalities u(t) > tF1=1u(t),
o(t) > th2~1o(7) forall t,T € [0,1].

3. Existence of Positive Solutions

In this section, we investigate the existence of positive solutions for problem (1) and (2) under
various assumptions on the functions f and ¢ which may be singular at t = 0 and/or t = 1. We present
the basic assumptions that we will use in the main theorems.

(I1) ay, a0 € (0,1],p1 € n—1,n],po € (m—1,ml,n,m e N,n,m > 3,p,q € N, v; € R for all
i=0,...,p0<M <M< <7p<rw<p1—1v%=>14¢cRforalli =0,...,q,
0<0 <o < <4<dh<pr—102=21, Hl,ifl K ]fl ., q are nondecreasing
functions, Ay > 0, Ay > 0,73 > 1, ¢y, (s) = [s]"172s, ¢, = @, Qz =1,i=1,2

(I2) The functions f, g € C((0,1) x Ry x Ry, R, ) and there exist the functlons gi € C((0,1),R4)
and x; € C([0,1] x Ry x R4, Ry), i =1,2, with Ay, Ay € (0,00) such that

ftxy) <t xy), gtxy) <otx(txy), Vi€ (0,1), x,yeRy,  (17)
where A = fol(l — s)ﬁl’W’lq)Q1 (Igigl (8))ds, Ay = fol(l — s)ﬁz’éo’lgogz(lgigz(s)) ds.

Remark 1. We present below two cases in which A1, Ay € (0,00); for other cases see the examples from
Section 4.

a)Iff, g€ C([0,1] x Ry xRy, Ry), thatis {;(s) = 1foralls € [0,1],i =1,2, x1 = f, x2 = g, then the
inequalities (17) are satisfied with equality. In addition, the conditions A1, Ay € (0, 00) are also satisfied,
because in this nonsingular case, we obtain
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A= /01(1 — 5)51770*1%1(1&@1 (s))ds = /01<1 _ s)ﬁlfvofl(lgjrél ()% ds
§ 01-1
e S A A VA N

= Tt A
1
1
= ——————B(x1(01 —1) + 1,81 — 70) € (0,00),

(T(ag +1))01

where B(61,6,) = fol t9-1(1 — )%271 dt is the beta function (the Euler function of first type), with 61,6, > 0.
In a similar manner we have Ay = WB(&Z(QZ —1)+1,B2—dp) € (0,00).
2

b)IfC1, {p € L?(0,1), 1 £ 0, {p # 0, and ay, ap € (1/2,1], then by using the Cauchy inequality we find

0<A1§(r(1))qll/01(1_3)ﬂ1%1 (/()S(S_T)z(m 1) dr) (/ 2(x d'r) na s

1= 1 2a
. g [ g g,
(I"(rxl))é’l 1 20611— 1 7
_ IZall3" ng(@m N@—4)+Lﬁ1_70<<w,
(T(ay))o—1(2a; — 1) 2

where ||{1|2 is the norm of {1 in the space L*(0,1). In a similar manner we obtain A, € (0, ).

By using Lemmas 1 and 2 (the relations (5) and (14)), (1, v) is a solution of problem (1) and (2) if
and only if (1, v) is a solution of the nonlinear system of integral equations

/ Gu(1,5)g0, (151 £ (5,u(s), o(s))) ds, < [0,1],
/ Go(t,s q)gz(lwg(s u(s),v(s)))ds, te|0,1].

We consider the Banach space X = C|0, 1] with supremum norm ||u|| = SUP;eo,1] |u(t)], and the
Banach space Y = X x X with the norm || (u,v)||y = ||u|| + ||v||. We define the cone Q C Y by

Q={(wv)eY, ult)>0, v(t) >0, Yt [0,1]}.

We also define the operators A;, Ay : Y — X and A: )Y — YV by
1
Av(,0)(t) = [ Gi(t5)gey (5L (5,u(s),0()) ds, t € [0,1],
1
Aa(1,0)(1) = [ Galt, ) (805,16, (5))) s, € [0,1],

and A(u,v) = (Aq1(u,v), A2(u,v)), (u,v) € Y. Then (u,v) is a solution of problem (1) and (2) if and
only if (u,v) is a fixed point of operator A.

Lemma 5. Assume that (I1) and (12) hold. Then A : Q — Q is a completely continuous operator (continuous,
and it maps bounded sets into relatively compact sets).
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Proof. We denote by M; = f01 Ji(8)@o; (I3, Ci(s)) ds, i = 1,2. Using (12) and Lemma 3, we deduce that
M; > 0,i =1,2. In addition, we find

p
M, = /01 [hl(s) +Ai1 Z;/Olgzi(frs) dHi(T)] o, (I G1(s)) ds

' (1—s)Pr=771(1—(1- $)70) o, (I} 21 (s)) ds

—_

1(1 = )P0 g, (Igh4a(s)) ds
( /01 %rﬁl—vﬂ(l —s)frm0l dHi(T)> 91 (Ip'81(s)) ds

=N\ (F(,181) + il f TG =77 /01 hr1—7i—1 dHi(r)> < oo,
M, = /01 [hz(s)ﬁzf (09 4K (0) | s (152 02(5) s
- w3 (e “q‘ S?f 2011 — (11— 5)0) gy (I8 (5)) ds
/ (z; | g4i<r,s>d1<i<r>) 9os (1§2.2(5)) ds
[a- s>ﬂ2*50*1¢g (12 2a()) ds
/ ( / I( /32 AL G dKz‘(T)) 9o, (1g7.02(s)) ds

Z

<

~—

(ﬁz

By Lemma 3 we conclude that A maps Q into Q.

We will show that .4 maps bounded sets into relatively compact sets. Suppose S C Q is an arbitrary
bounded set. Then there exists L; > 0 such that ||(#,v)||y < L; for all (1,v) € S. By the continuity
of x1 and x> we deduce that there exists L, > 0 such that L, = max{supte[o,l],u,ve[O,Ll] x1(t,u,v),
SUP;¢[0,1], u,0¢(0,14] X2(t,u,v)}. By using Lemma 3, for any (u,v) € S and t € [0, 1], we obtain

A (u,0)(t) < / J1(8)@oy (Ig} f(s,u(s),0(s))) ds
1 °S
< _ 0(1—1
< [' 76w (rom [e= 0 autwuto,ow) i) as
o 1 s ~
<15 [ Ay (7 [ -0t as
=13 /0 T1(5) @y (1§1.21(5)) ds = My 1§,
1

Ao, 0)(1) < [ To()9en 153 8(5,u(s), 0(6))) ds

< [ )0 ( = / (s r)“z (Ol u(),o() ) ds
<157 [ ), ( — o)) de ) as

— 127 [ ) 152 @( >> MzLifl-
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Then || A; (1, 0)|| < MiLE ™", | Ax(1,0)|| < MaL® ™" for all (1,0) € S, and s0 A;(S), A(S) and

A(S) are bounded.

We will prove next that A(S) is equicontinuous. By using Lemma 1, for (1,v) € Sand t € [0,1]

we deduce

Bg1—1 P
Aq(u,0)(t) = /01 (gl(t,S) 4 tA Z%/Ol 22i(T,5) dHi(T)> Por (181 (s, u(s), v(s))) ds
o - 1=~ ) 1= o
:/0 1;(,31% (9110 = )10 — (6= )P o, (131 (5, u(s), 0(s)) ds
+/t T'(B1) 11 (1 —s)Prm107 g, (19 f(s,u(s), v(s))) ds

B1—-1 p
tAl /01 ; (/01 22i(T,s) dHi(T)) Po; (Igif(s,u(s),v(s))) ds.

_l’_

Hence for any t € (0,1) we find

(A0 ()= [ s [(Br =120 = 9Pt = (=1 5)1
<90, 15 f(s u(s), o <>>>ds
[ gy (B = D2 9P g (13 £ 6),09)) s

(ﬁl—All)f’“/ (/ 22i(1,5) dHi(T )) 9o 15 £(5, u(s), 0(s)) ) ds.

Then for any t € (0,1) we obtain

t

|(A; (1, ) tﬁl ,31 1014 (¢ _S)ﬁrZ]
,31_1 0
xm 0+<a1 xl<s u( ),0(5))) ds
T = 9P g (R @ s u(s), o(s)
(,31 —1 fﬁl

2 ( [ 8209 AH () ) g 131E 00 5065, w(5)) s
Therefore for any ¢ € (0,1) we deduce

(A (1, 0))" ()] < Lﬁll{r(ﬁll_ ) /Ot[tﬁl’z(l — )P0t (¢ — 5)P172) gy, (161 21 (5)) ds
T = e

(,3 —1)t/51 1P 1 N
lT/ Z; (/o gzi(T/S)dHi(T)> Po, (I} 21(s)) ds|.

We denote by

01(t) = (ﬁll_ 1) /t[tﬁ1—2(1 —s)Prml g (¢ — 5)Pr2] g, (15101 (5)) ds

‘31_1 / #h1—-2 /51 Y0— 1(PQ1( 1§1( ))
— 1)tk
02(t) = 0,(1) + %All)f/ (/ ¢2i(t,5) dHi(x )) Por (I51.01(5)) ds

(18)
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We compute the integral of function 61, by exchanging the order of integration, and we have

/ (B)di = (ﬁl)/(1_5)51_70_1(”(1—5)70)%1(1“161())

< i ) =9 (e s = FEL

For the integral of the function 6,, we obtain

/192(t)dt:/191(t)dt+</1Wdt)
JO 1 0 ) 0 10(1
x (/0 Y ([, satms)dmi(o) ¢g1<10+a<s>>ds>

1
r(fsn /0 (1=8)Pr=10" g, (15101 (5)) ds

1 1 P 1 1 o e N
+A71 (/ L </0 m’[ﬁl 1711 —5)Pr=Y 1dHl'(T)> ¢Ql(10+§1(s))ds>

_ 1"(,2&)/0 (1- S)ﬁr%il(l)el(lgigﬂs))ds

p
+Ai1 </1(1—S)’517°1¢e1(13i§1(s))d5> (; ([311 )/ T’glv"ldHi(T))

Then we deduce

/lQ(t)dt<A if /rﬁl "1 4H,(7) | < oo (19)
0’ = ( A = ,31 T(B1— i) '

< 00

<

We conclude that 6, € L'(0,1). Hence for any t1,t, € [0,1] with t; < t, and (u,v) € S, by (18)
and (19), we find

A, 0)(03) = Ar(,0) (1) = | [ a0 O] <187 [ st . 20)

By (19), (20) and the absolute continuity of the integral function, we deduce that A;(S) is
equicontinuous. By a similar approach, we obtain that .4 (S) is also equicontinuous, and so A(S) is
equicontinuous. Using the Ascoli-Arzela theorem, we conclude that A;(S) and A, (S) are relatively
compact sets, and so A(S) is also relatively compact. Besides, we can prove that A;, A, and A are
continuous on Q (see [16] (Lemma 1.4.1)). Then A is a completely continuous operator on Q. [

We define now the cone

- i B1—1 > b1 )
Qo ={(u,v) €Q, t%f}]u() P u|, th)rhv( ) = 727 o[}

Under the assumptions (1) and (I2), by using Lemma 4, we obtain .A(Q) C Qp, and so Alg, :
Qp — Qo (denoted again by .A) is also a completely continuous operator. For r > 0 we denote by B,
the open ball centered at zero of radius r, and by B, and 9B, its closure and its boundary, respectively.

Theorem 1. Assume that (I1) and (12) hold. In addition, the functions x1, x2, f and g satisfy the conditions

(I3) There exist iy > 1 and pp > 1 such that

— Y

xi(txy) xa(t x,y)
= 111’1’1 su —_— = 0 and = 111’1’1 su —_—
M0 ZE) o (G ) T e iy on( (1 9))

x/O
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(I4) There exists [a1,a2] C [0,1],0 < a3 < ap < 1 such that

gt x,y)

=00 or go, = lim inf "2 =co.

fiz tim nf LY
xty-otelay,ap] Pry (x + ]/)
x,y>0

s el o] ¢ (x+y)

Then problem (1) and (2) has at least one positive solution (u(t),v(t)), t € [0,1].

Proof. We consider the above cone Qy. By (I3) we deduce that for €] =
there exists Ry € (0,1) such that

1 —
— and e =

1
(2My) (2Mp)2 1

xi(t,x,y) <ei(x —b—y)”"(”fl), Vte[0,1], x+y <Ry, i=1,2, (21)

where M;, i = 1,2 are defined in the proof of Lemma 5. Then by (21) and Lemma 3, for any (u,v) €
0Br, N Qp and t € [0,1], we obtain

b

00 S [ )00 05 @05, u(s), 0(9)) s
/ )90 3 G S)ei(uls) +0(5)) 1)) ds

0
1
0i—1 (r—
/0 $)Po; (I3 Gi(s) ([lull + [[o] )1t =1)) ds
~1 ,
G015 /0 ﬂ(s)gogi(lg;a(s))ds
i—1 i i—1 ;
= Mief I, )]y < Mie? ™ (w,0)lly = 3l (w,0)lly, i=12
So we deduce that

[ AGu, 0) [y = [[Ar(, )| + A2, 0) || < [[(w,0)[|y, ¥ (u,0) € 9Bg, N Qo. (22)

By (I4), we suppose that fi, = co (in a similar manner we can study the case g’, = ). Then for

p1-1
3 = 2(Amin{af" !, "}) 111, where A = (r(ﬁw Jo2 T1(s) (s —ar)*1@ 1) ds, there exists C; > 0
such that
f(t,x,y) > es3(x +y)’1_1 —Cy, Yteag,a], x,y>0. (23)

Then by (23), for any (u,v) € Qg and t € [ay, a2], we find

= § 01—1
A o)1)= [Gi(1,s) (r(il)/al(S_T)M1f(T,M(T),U(T))dT> N
Y Y10 ’ oy — 1 — a-l
= /al (r(tlel)()jll(/al(s—f) Hes(u(t) + (1)) 1—C1)dr) ds »
[ 11 ’ ay— B1-1 B2—1 =1 _ B s
o /s/“ll(F(al))Ql‘l (/ul(s_ﬂ Healay" lull +ay ol Cl)(dT)l) d
:G&W alzﬁ(s) [es(af? ™ u] +af oy C}Qll(s—f;lﬁglds

-1 r1 Qlfl
> bt [es (mintaf )" o1 - i)
(s —ap)™(a=1)
S—

— ds
ay Défl

oo B1—1 pa—1y\"17 ri—1 L @t
= [Aelleg, (min{al1 ,ay° }) [ (w,0) 115 A@11C1]

-1
=2l -0)" T, G=anla,
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Hence we deduce
1A (#,0) | > (2] (w,0) |5 = C) 7Y, ¥ (u,0) € Q.
We can choose Ry > max {1, Cglfl} and then we conclude

[A(w, 0)ly = [| A1 (w, 0) || = [|(w, 0) |||y, V¥ (u,0) € dBr, N Qo. (24)

By using Lemma 5, the relations (22), (24), and the Guo-Krasnosel’skii fixed point theorem,
we deduce that A has a fixed point (u,v) € (Bg, \ Bg,) N Qo, that is Ry < |[(u,0)]|y < Ro,

and u(t) > tP1=1||u|| and v(t) > tF271||v|| for all t € [0,1]. Then ||u|| > 0 or ||v|| > 0, thatis u(t) > 0 for
allt € (0,1] orv(t) > Oforall t € (0,1]. Hence (u(t),v(t)), t € [0,1] is a positive solution of problem (1)
and (2). O

Remark 2. Theorem 1 remains valid if the functions x1, xo and f satisfy the inequalities (21) and (23),
instead of (I3) and (14).

Theorem 2. Assume that (11) and (12) hold. In addition the functions x1, x2, f and g satisfy the conditions
(I5)

X1 = lim su M =0 and xpo = lim su xalbxy) _

s relon P (x+y) g o) P (x+y)

(I6) There exist [a1,a3] C [0,1],0 < ay < ax < 1,11 € (0,1] and v, € (0,1] such that
8(t,x,y)

ft,xy)
= lim inf ———%— =0 or = lim inf —:oo.
fO ‘+yy—’8 t€lar,a2) Pry ((x +y)¥1) go ;fy"/—’g telar,a0) Pry ((x +y)¥2)

Then problem (1) and (2) has at least one positive solution (u(t),v(t)), t € [0,1].

Proof. We consider again the cone Q. By (I5) we deduce that for 0 < €4 < min { W, ZM}ﬁ },
1 1

0 < €5 < min { }, there exist C3 > 0, C4 > 0 such that

1 1
(@2Mp)2~ 1 pp27
xi(txy) <es(x +y)T 1+ G, xolt,x,y) <es(x+y)?2 L+ Cy, VEE[0,1], x,y > 0. (25)

By using (12) and (25), for any (u,v) € Qp, we obtain

Ax(,0)(0) < [ T1(5) e, (52 (G1(5)x1 (5, u(5), ) s

< [ 16190 052 (G1(5) ealls) +0(5))71 " +Co) s

g/olﬂs)(r(lw(qn(u oy )" ([e-mmin@aen) e

= M; (e4|\(u o) |5~ 1+c3) , Vte 0,1,

Ao (1, 0) (1) < /0 T2(5) Py (12 (L2(5)xa(5,u(s), 0(s))) ) ds

< [ 26190152 (©2(5)es(uls) +0(5))2 " +Ca) ds 1
.

S/Oljz(s)(r(l))@_l( 5| (u, v)||r2 1—i—C4 </0 (s —1)2 175 ( )dT> ds
= My (es| (w05 1+c4) , Ve [0,1].
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Then we find 1
01—
AL (e, 0)| < My (eall(w o)yt +Cs) ™

01
[ A2(,0)| < Mz (esll(w, o)1+ Ca) ™

and so .
01— 02—
A 2)lly < M (eall e o)l +C) ™+ My (eslw o)l +¢0) ",

for all (u,v) € Qp. We choose

011 o1 —2~01-1 —2002-1
o Lt
1€ €5 1 4 2 5 (26)
My My 22! My20-2c " a2t
- (Mle§1’1+M22@2*26§2’1) "1 <M1291*25§1’1+Mze§2’1) ’
and then we deduce
A, 0)|ly < [[(w,0)|ly, V(u,v) € dBry N Qp. (27)

The choosing of Rz above is based on the inequalities (a + b)? < 2P~1(aP + bP) for p > 1 and
a,b > 0,and (a+b)? < aP +bF forp € (0,1] and a,b > 0. Here p = 01 — 1 or ¢ — 1. We explain
the above inequality (27) in one case, namely ¢; > 2 and ¢ > 2. In this situation, by using (26),
and the relations M12Q17262171 < %, M2292’2€§271 < % (from the definition of ¢4 and €5), we have
the inequalities

Ml (€4Rglil + C3)Q171 + M2 (65R§2_1 + C4)Q271
< M2072(e8 T Ry 4+ CI ) 4+ M2 2(e2 TRy + C2 )
= (M227 2§17 4 Mp202 227 Ry + M2 7205 4 Mp22271C T < R

In a similar manner we treat the cases: 01 € (1,2] and 02 € (1,2]; 01 > 2and 07 € (1,2]; 01 € (1,2]
and ¢y > 2.

By (I6), we suppose that g} = oo (in a similar manner we can study the case f} = o). We deduce
~ ~ Pa-1
that for e = (min{al" ", a> " y20-r2) 112 where A = — 1= [%2(5 — )@~ 7 (s) ds

(F(ap+1))27" Jm
there exists Ry € (0, 1] such that

g(t,x,y) > eg(x + y)VZ(’rl), Vtelay,a), x,y >0, x+y <Ry (28)

Then by using (28), for any (u,v) € dBg, N Qp and t € [a1, 3], we find

02-1
Aol )0 > [ G s>( i e s, o ae) s

a

021

>l [ ) g (6~ 0 (o) o) V) as

ay

02-1

> 7 [ e wzl) ([ o eaf ™l o ol )

ay

(] a

> P12 1(mm{aﬁl Ly ) L;‘H”aéz 1/2(5_611)@(@271)52(5)115

= [(w,0)[I5 = [I(w,0)[ly-

Therefore || Az (u,v)|| > ||(u,v)||y for all (u,v) € dBg, N Qp, and then

[A(u, 0) [y = [[A2(w,0)[| = [[(u,0) |y, V¥ (u,0) € IBr, N Qo. (29)
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By Lemma 5, the relations (27), (29), and the Guo-Krasnosl’skii fixed point theorem, we conclude
that A has at least one fixed point (1,v) € (Bg, \ Bg,) N Qo, thatis Ry < ||(1,v)||y < R3, whichis a
positive solution of problem (1) and (2). O

Remark 3. Theorem 2 remains valid if the functions x1, x2 and g satisfy the inequalities (25) and (28),
instead of (I5) and (I6).

Theorem 3. Assume that (11), (12), (I4) and (16) hold. In addition, the functions x1 and x, satisfy the condition
(17) D& "My < &, DZ "My < L, where

Dy = max{ max xi(tx,y), max xa2(t,x,y)}.
t,x,y€l0,1] t,x,y€l0,1]

Then problem (1) and (2) has at least two positive solutions (u1(t),v1(t)), (ua(t),v2(t)), t € [0,1].
Proof. We consider the operators A;, Ay, A, and the cone Q defined in this section. If (I1), (12) and
(I4) hold, then by the proof of Theorem 1, we deduce that there exists R, > 1 (we can consider R > 1)

such that
A, 0)|ly = [[(w,0)|ly, ¥ (u,v) € IBg, N Qp. (30)

If (I1), (12) and (I6) hold, then by the proof of Theorem 2 we find that there exists Ry < 1 (we
can consider Ry < 1) such that

| ACu, 0) [y = [[(w, )|y, ¥ (#,0) € 9Bg, N Qo. (31)

We consider now the set By = {(u,v) € Y, ||(u,v)|y < 1}. By (17), for any (u,v) € 0B; N Qp
and t € [0, 1], we obtain

A <[ L r -1 d gi_ld
o)) = 156 (o [ =0 o, o) b ) ds
<pg! /1 Ji(s) ( ! s(s — )% 1gi(1) dT) Qiilds
= 0 Ol 1 r(lxl) 0 1
_ o _ 1.
=g [ )90 (15,0050 ds = DY My < 5, i =12,
So || A;(u,v)|| < %, for all (u,v) € dB1 N Qp, i =1,2. Then
[A@u,0)lly = | A1 (1w, 0)[| + [| A2 (u, 0) || <1 = [[(w,0) ]|y, V(u,0) € BN Q. (32)

Therefore, by (30), (32) and the Guo-Krasnosel’skii fixed point theorem, we conclude that problem
(1), (2) has one positive solution (u1,7v1) € Qo with 1 < |[(u1,v1)|ly < Rp. By (31), (32) and the
Guo—Krasnosel’skii fixed point theorem, we deduce that problem (1), (2) has another positive solution
(1,v2) € Qo with Ry < |[(up,v2)|ly < 1. Then problem (1) and (2) has at least two positive solutions

(u1(t),01(t)), (ua(t),v2(t)), t€[0,1]. O

Remark 4. Theorem 3 remains valid if the functions f and g satisfy the inequalities (23) and (28), instead of
(I4) and (I6).

4. Examples

Letay =1/3, a0 =1/2,81 =5/2,(n =3), 2 =13/4,(m =4),r1 =4,01 =4/3,12 =5,00 =5/4,
p=20=17 =4/3, 71 = 1/4, 72 = 6/5,6 = 11/5,6, = 7/6, Hi(t) = t/3 for all ¢ € [0,1],
Ha(t) = {1/6, t € [0,2/3); 2/3, t € [2/3,1]}, Ki () = {1/4, t € [0,1/3); 9/4, t € [1/3,1]}.
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We consider the system of fractional differential equations

DY, (9a(Dy2u(t))) + f(t,u(t),v(t)) =0, t € (0,1), 33
Dé/z((p (D“/4 () +g(t,u(t ),v(t)) =0, te(01),

with the nonlocal boundary conditions

u(0) = u'(0) =0, D3/%u(0) =0, DE/>u(1 /D1/4 b dt+ - D6/5 (g) N
34

(s
—~
(e
=
|
G\
—~
(@]
=
Il

1
_ 13/4 _ 11/5 — »7/6
0"(0) =0, Dyy*v(0) =0, Dy, v(1) =2Dgy, v (3) .

We obtain here A1 =~ 0.60331103 > 0 and A, ~ 1.12479609 > 0. We also find

1 t3/2 Sl/6 3/2 0<s<t<1,
- S 0

I(5/2) | #21—-s)V6, 0<t<s<1,
1 P/A1—s)/6 —(t—5)5%, 0<s<t <1,
$21(6:3) = T2y | BA1—s)/6, 0<t<s <1,
1 { B/10(1 —5)1/6 — (1 —5)3/10, 0 <s <t <1,
r(13/10) | #1901 —-s)1/6, 0 <t <s<1,
1 t9/4(1 _ S)1/20 —(t— 5)9/4, 0<s<t<1,
83(:S) = Tz ay | 94—V, 0<t<s <1,
1 H3/12(1 _g)1/20 _ (4 _g)13/12 g <5<t <1,
gai(t,s) = T(25/12) | #3/12(1— )2 g<t<s<1,

Gi(t,s) = g1(t,s) +3/2[ / 921(7,9) d7+2g22 (2 )}, t,s €10,1],
Ga(t,s) = gs(t, S)+7841 <3,s> t,s €[0,1],
() = 710 - G5 (-5, s 1,

() = Frgazg7 -9V~ (1-9"4, s e 01)

gn(t,s) =

In addition we deduce

_\/e 4 (1 _6\9/4 L 1
(1-s)! 27T (974) (1=s)""+ 2T(13/10)
1/6 3/10 2

°—(G-9) ]} 0<s<3,

4 9/4 1
~ 27T(9/4) (1—5)*+ 2T(13/10)
(1 —s)l/é} ,2/3<s<1,

13/12 13/12
) (1—s)1/20 — %—s) ],0§s<§,
1

1

+ :
Ja(s) = 3/12
+ ) a

— 5/,
Example 1. We consider the functions

(x +y)* (x +y)*

f(t x y) t;h (1 )7]2/ g(t x y) t173(1 _ t)y]4 e (0/1)’ x’y Z O/ (35)
wherea > 1, b > 1, 1,2 € (0,1/4), 3,14 € (0,1/3). Here f(t,x,y) = G1(H)x1(t,xy), gt x,y) =
Ga(txa(t,xy), () = grpym C2(t) = g forall t € (0,1), xa(tx,y) = (x +y)¥, xa(t,x,y) =
(x +y)* forall t € [0,1], x,y > 0. By using the Holder inequality, we obtain
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1/3

0< A= /01(1 — )P0 gy, (I 81 (s)) ds = /01(1 )18 (184351(5))) i
1 ! § _ 1 1/3

= gm0 (e g ) /

1/3

1 1 ) S 34 [ . L\ 1/4
S(F(1/3))”3/o(1_5)/6[</0(S—T)_8/9df> (/0 (7’71(1—"[)’72> dr) ] ds

= (1"(1/13))1/3 /01(1 =)0 {(951/9)3/4(3(1 — 4, 1— 4;72))1/4} 3

31/2 37 7
= T/ (B(1 — 411,1 — 412))/1?B <36 6) < oo,
1 N 1 1/4
o<m=[grwwﬁr%ama@»k=4u—#“%%%mo ds

1 s 1 174
= TR / (1—s)1/2 </ (s—1)" 1/2T’73(1 —% dr> ds
(4

1 1/20
< Ty -9

1
< (1—-(1/2))1/4/( )1/20

A 12y (25 21
= T2y B~ 31 =3m4)) 7B (24 20)

2/3 ; s 1/371/4
3/4dT) (/ T3 (1 - T)_3’74dT> ] ds
0

1/4)2/3( (1 o 3173’1 o 3774))1/3]1/4 ds

Hence assumptions (1) and (I2) are satisfied.

In addition, in (I3), for p1 = pp = 1, we obtain x19 = x20 = 0, and in (I4) for [a1,a3] C (0,1) we
have f},o = oo (and géo = 0). Then by Theorem 1, we conclude that problem (33) and (34) with the
nonlinearities (35) has at least one positive solution (u(t),v(t)), t € [0,1].

Example 2. We consider the functions

éﬂfggﬂu+yw+wx+w@LtewJL%yZQ

d0(2+sint)
bxy) = ——— =
$ltxy) (t+3)4V/1—t

where cg > 0,dy > 0,01 > 3,05 € (0,3), 03 > 0, 04 > 0. Here we have {1(t) = ==, t € (0,1],

a3
rbxy) = SELx+ )7 + (x+y)2), € [0,1], 1y 2 0,5() = g, t € 0,1), xalt,x,y) =
do(2+sint)
(t+3)4

fltxy) =
(36)
(x3 4+y™), t€0,1), x,y >0,

(x% +y%), t €[0,1], x,y > 0. By using a computer program, we obtain

A= /ol(l —5)P1 10 gy, (I} 1 (s)) ds = /01(1 — 5)1/6(1343@(5))1/3 s
5 1/3
:(1_'(1/13»1/3/01(15)1/6 (/0 T_l/S(ST)_Z/?’dT) s
1/3
== (r(1/13,))1/3 /01(1 —s)l/® </01(Sx)1/5(s _ sx)"2/3s dx> s
1/3
= (1*(1/13))1/3 (/01 s2/45(1—5)1/0 ds> (/01 51— x)2/3dx>

1 47 7 4 1\\3
- B(ZI)(B(Z= ~ 0.877777
<ra/mﬂBB<4wé>( (W3>) 0877777,
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Ap = /01<1—s>ﬁ2*"'° 190, (1§30a(s)) ds = /010—s>1/2°<léf€z<s>>“4ds

1/4

N (r(l/lz))l/4 fa—se (/0 (s—7) 121~ T)1/4d1') s

T=sx 1 1 1 - ) 1/4
= W/O (1 —s)l/zo (/o (s —sx) 1/2(1 — sx) 1/4de> ds
! 1 1/4
e (I_‘(1/12-))1/4/(; (1—5)1/20 (Sl/Z/O (1—x)1/2(1_sx)1/4dx> ds
1 1/4
= @0/12))1/4/0 (1- s)l/zo (51/2ﬁ2F1 [il is]) ds ~ 0.901313,

1
where yFy[a, b, c,z] = m / s — )01 (1 — s2) 7 ds is the reqularized hypergeometric function.
0
So A; € (0,00), i =1,2, and then assumptions (I11) and (12) are satisfied.

For [a1,a2) C (0,1), we find fi, = oo, and if we consider 0 < v; < 1, 3v; > 0, we obtain f = oo,
and then assumptions (I4) and (16) are satisfied. After some computations we deduce

M = / )90 (510 ds = [ Fi(S)as <Iof’ 72

2/3 -1/5
((1/3 1/3/ Ails (0 =7 dr)  ds
1/3
( (1/3 1/3/ Jils (Sz/lSB( )) ds ~ 0.78160052,

M= [ o(6)gus (§2.0205)) 85 = [ Ta5)as al1370(5)) s

1/4

_/ Tals ( 1/2)/( s—1) V21— )1/4dr> ds
_ W /O (s) (slxz\/;Zpl E,L;SDM ds ~ 0.65997289.

‘e . 2 4d, .
In addition, we find Dy = max {%(2‘71 +2%), 8—10} If ¢ < mln{16M3(25”1 ey 32M4(2?,1 +2,,2)} and

dy < min{ 3281\1/13, 6fM4} then the inequalities Dl/ 3M1 < % and Dl/ 4M2 < % are satisfied (that is,

assumption (I7) is satisfied). For example, if o = 4 and 0, = 2, and ¢y < 0.032 and dy < 5.301,
then the above inequalities are satisfied. By Theorem 3, we conclude that problem (33) and (34) with
the nonlinearities (36) has at least two positive solutions (u1(t),v1(t)), (u2(t),v2(t)), t € [0,1].

5. Conclusions

In this paper, we have discussed the existence and multiplicity of positive solutions for a system
of Riemann-Liouville fractional differential equations with singular nonnegative nonlinearities and
p-Laplacian operators, complemented with nonlocal boundary conditions involving fractional derivatives
and Riemann-Stieltjes integrals. Some properties of the associated Green functions are also presented.
Two examples are constructed for the illustration of the obtained results.
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