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Abstract: A correlation analysis of pollutant variables provides comprehensive information on
dependency behaviour and is thus useful in relating the risk and consequences of pollution events.
However, common correlation measurements fail to capture the various properties of air pollution data,
such as their non-normal distribution, heavy tails, and dynamic changes over time. Hence, they cannot
generate highly accurate information. To overcome this issue, this study proposes a combination of the
Generalized Autoregressive Conditional Heteroskedasticity model, Generalized Pareto distribution,
and stochastic copulas as a tool to investigate the dependence structure between the PM10 variable
and other pollutant variables, including CO, NO2, O3, and SO2. Results indicate that the dynamic
dependence structure between PM10 and other pollutant variables can be described with a ranking of
PM10–CO > PM10–SO2 > PM10–NO2 > PM10–O3 for the overall time paths (δ) and the upper tail (τU)
or lower tail (τL) dependency measures. This study reveals an evident correlation among pollutant
variables that changes over time; such correlation reflects dynamic dependency.

Keywords: copula model; dynamic dependence; multiple correlation measurement; pollution risk
assessment

1. Introduction

The air pollution problem has long been the centre of discussions all over the world. This issue is
particularly alarming for the urban areas of developed and developing countries [1–3]. In Malaysia,
air pollution is generally determined from five major types of pollutants, namely, carbon monoxide
(CO), suspended particulate matter (PM10), sulphur dioxide (SO2), ozone (O3), and nitrogen dioxide
(NO2) [4,5]. These five pollutant variables are observed simultaneously and monitored constantly
to provide relevant information about air quality [6]. As these pollutants are simultaneously being
observed and monitored, the investigation into the relationship and correlation among these five
pollutant variables is expected to contribute to a comprehensive understanding of the behaviour of
air pollution events at any particular area. For example, Marković et al. [7] have investigated the
behaviour of CO, O3, NO2, SO2, and PM10 in the Belgrade urban area during the autumnal period
of 2005. They reported the existence of a positive correlation between the PM10 SO2, NO2, and CO.
On the contrary, the O3 variable was found to indicate a negative correlation with SO2, NO2, PM10 and
CO. With the basis of the correlation measured, they contended that SO2, NO2, CO, and PM10 could
originate from similar sources. Rich et al. [8] found a high association between myocardial infarction
disease and particulate matter concentration in the presence of other pollutants, such as O3, CO, SO2,
and NO2. The analysis by Xie et al. [9] for 31 Chinese cities showed the following: the correlation
between particulate matter and NO2 and SO2 is either high or moderate, the correlation between
particulate matter and CO is diverse, and the correlation between particulate matter and O3 is either
weak or uncorrelated. These results varied spatio-temporally across all the cities.
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Generally, the dependency between two or more pollutant variables is measured by the Pearson,
Spearman, or Kendall correlation methods. These common methods are widely popular because
of their computational simplicity and easily interpretable results. However, despite their simplicity,
the Pearson correlation method can only measure the strength of the linear dependence between
the underlying random variables. In fact, the Pearson correlation method fails to provide an
accurate measurement if any of the variables involved do not follow a normal distribution [10,11].
Unfortunately, the distribution of air pollutant data rarely follows a normal distribution. Instead,
they often follow fat tailed distributions, such as the extreme value distribution, especially during
periods of extreme pollution events [12–14]. However, the empirical measure of the Spearman or
Kendall correlation method provides rank correlation measures which do not consider the properties
of marginal distributions and time-varying properties among the random variables.

Apart from the common methods, several studies have considered a long-memory approach to
investigate the temporal relationship and dependency behaviour of air pollutant data [15]. For example,
Lee [16] showed the existence of scale-invariant behaviour in the air pollution concentration time series
based on the concept of multifractal characteristics and long-term memory. Weng et al. [17] found
that the time series of the ozone in Southern Taiwan indicates a long and persistent memory process
involving nonlinearity and fractal time series based on R/S analyses. In a similar vein, Liu et al. [18]
have shown the existence of persistence in the time-scaling behaviour for three pollution indices (SO2,
PM10, NO2) in Shanghai, China, using the method of detrended fluctuation analysis (DFA) and the
multifractal approach. However, these methods are bound by some limitations. Particularly, they fail
to integrate the behaviour of asymmetric co-movements and contagion effects that exist in the dynamic
behaviour among variables. The existence of this behaviour could affect the results of the analysis [19].
Thus, to overcome this problem, the method of dynamic conditional correlation (DCC) proposed by
Engle [20] and Engle and Colacito [21] seems to be a good alternative. However, the data indicate
the existence of extreme values and long tail properties; hence, an asymmetrical measure of a tail
correlation may lead to biased estimates in DCC models [22,23].

As the probabilistic behaviour of extreme events can be effectively described using extreme value
models, such as the generalized Pareto distribution (GPD), this study proposes a combination of
a GPD model with copulas to establish a model that is able to describe the dependence structure
between the PM10 variable and a set of four major pollutant variables, namely, CO, NO2, SO2, and O3.
This study adopts the copula approach because it is flexible to use with various types of marginal
distributions without being constrained by normality limitations. A copula model can easily provide
accurate information on the joint distribution of several pollution variables. The Gaussian copula
was used in this study to describe the behaviour of the dependence structure among the pollutant
variables. To investigate the tail dependence among the pollutant variables, this work employed the
symmetrized Joe–Clayton (SJC) copulas. The generalized autoregressive conditional heteroskedasticity
(GARCH) model was also combined with the GPD model to improve the distribution modelling.
This combination method integrates all the properties of fat tail behaviour, asymmetric co-movements,
stochastic volatility, as well as the contagion effects that exist on the dynamic behaviour among variables.

2. Study Area and Data

Klang is a large city in Malaysia located at a latitude of 101◦26′44.023′′ E latitude and 3◦2′41.701′′N
longitude. Klang is characterized by a dense population and an area of approximately 573 km2. It is
the centre of the import and export activities in Malaysia. Various important industrial, commercial,
and economic activities are carried out in Klang. Moreover, Klang has been recognized as the 16th
busiest container port and the 13th busiest trans-shipment port in the world [24]. However, its rapid
urbanization has increased its risk of atmospheric pollution. Thus, given the importance of Klang,
the behaviour of the air pollutants in the region should be evaluated and analysed. Figure 1 shows the
location of Klang in peninsular Malaysia.
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Figure 1. (a) Map of peninsular Malaysia (the location of Klang is marked by the red dotted point);
and (b) map of Klang.

This study used the daily data of five main pollutant variables, namely, SO2, NO2, CO, PM10,
and O3 for the period 1 January 2002–31 December 2016. A small percentage of missing values with a
random pattern were found in the data. Thus, the single imputation method based on the average
of the last known and next known observations was used to estimate the missing data. In addition
to its easy implementation, the method provides satisfactory results for missing data with a random
mechanism [25].

3. Generalized Pareto Distribution (GPD) Model

Extreme events are generally rare events that occur in the upper or lower tails of the distribution
of data. Meanwhile, the extreme pollution data refer to an environment with a large air pollution
index (API) at particular periods. Y1, Y2, . . . , Yn represent the independent and identically distributed
random variables of the hourly pollutants. The distribution of Yi is governed by an unknown density
function F. High value pollutant variables that exceed the unhealthy level (≥100) indicate a pollution
event. Mathematically, this phenomenon could represent a conditional event that is larger than some
threshold u, and its conditional exceedance distribution function F[u] can be written as follows:

F[u](y) = Pr(Y ≤ y
∣∣∣Y > u)

= Pr{Y≤x,Y>u}
Pr{Y>u}

=
F(y)−F(u)

1−F(u) ; y ≥ u
(1)

The extreme value approach is also known as the peaks-over-threshold method and is used for
events with a threshold of u [26]. In this study, the observed excesses over the threshold are fitted to
the GPD given by the following equation:

Gξ,α(y) =

 1−
(
1 + ξy

α

)− 1
ξ , i f ξ , 0,

1− exp
(
−y
α

)
, i f ξ = 0,

(2)

where y ≥ 0, 1+ ξy
α > 0. The parameters ξ andα refer to the shape and scale parameter, respectively [27].
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4. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model

The GJR–GARCH model was used as a marginal distribution for each pollutant variable. Let yt

represent the time series data for the pollutant variables, and let h2
t denote the conditional variance for

the period of t. Then, the GJR–GARCH model can be written as

yt = µ+ υyt−1 + εt , (3)

h2
t = c + γh2

t−1 + η1ε
2
t−1 + η2st−1ε

2
t−1 , (4)

where st−1 = 1 when εt−1 is negative and 0 otherwise. Then, df denotes the degree of freedom, and Ωt−1

represents the previous time data by t−1. Then, the standardize residual of the series zt can be described
as a t-distribution given as

zt|Ωt−1 =

√
d f

σ2
t (d f − 2)

εtzt ∼ td f (5)

The GDP model is used to model the tail behaviour in the distribution of each pollutant variable.
In sum, our approach is a combination of the GJR–GARCH and GPD models. The GJR–GARCH model
is used to describe the interior part of the marginal distribution for each pollutant variable while the
GPD model is used to describe the tail behaviour of each pollutant variable. In this study, we used the
10th percentile as the lower threshold uL to indicate a healthy air environment and the 90th percentile
as the upper threshold uL to indicate an unhealthy air environment. Thus, the combination of the
GJR–GARCH and GPD models can be represented as the following cumulative function:

F(z) =


kL

n

(
1 + ξuL

−z
α

)− 1
ξ , f or z < uL,

f (zt), f or uL < z < uU,

1− kU

n

(
1 + ξ z−uU

α

)− 1
ξ , f or z > uU,

(6)

where n is the sample size of the data, kL represents the volume of data below the threshold uL and
kU represents the volume of data above the threshold uU, f (zt) represents the distribution function
determined from the GJR–GARCH model, and kL

(
kU

)
is the number of observations below (exceeding)

the threshold uL
(
uU

)
.

5. Copula Model

A copula model can be used to provide accurate information about the joint distribution of
several pollution variables because it is not tied to the assumption of normality for the datasets
involved. Moreover, the ability of the copula model to extract information regarding the dependence
structure from the joint probability distribution function makes it a useful method for air pollution
modelling. Mathematically, for a couple of random variables X1 and X2, a bivariate copula model can
be determined as

F(X1, X2) = C(F1(X1), F2(X2)), (7)

where C is the copula function; and F1 and F2, are the marginal distributions of the random variables X1

and X2, respectively [10]. In this study, a Gaussian model was used to describe the overall dependence
structure between the pollutant variables. The SJC copula is used to describe the behaviour of the
dependence structure for the upper and lower tails of each pollutant variable.

6. Interrelationship Behaviour among Pollutant Variables

To evaluate the interrelationship behaviour among the pollutant variables, we use a time-varying
model for the Gaussian and SJC copulas.
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6.1. Gaussian Copula

The Gaussian copula is a well known copula that has been used in applied research. It is associated
with a multivariate normal distribution. For a bivariate distribution, which involves random variables
u and v, its dependence structure based on the Gaussian copula can be determined as

C(u, v) =

Φ−1(u)∫
−∞

Φ−1(v)∫
−∞

1

2π
√

1− δ2
exp

(
−

x2
− 2δxy + y2

2(1− δ2)

)
dxdy, (8)

with:
C = Φδ

[
Φ−1(u), Φ−1(v)

]
, (9)

where δ is the linear correlation coefficient and Φ is the standard normal cumulative density function.
To include the time-varying properties, Patton [28] proposed a modification on the Gaussian dependence
parameter by assuming that it evolves over time; the modified parameter is given as

δt = λ

ω+ βδt−1 +
α
10

10∑
j=1

Φ−1
(
ut− j

)
Φ−1

(
vt− j

), (10)

where λ = (1− e−x)/(1 + e−x) is the modified logistic transformation that ensures δt in the interval
of (−1, 1). The parameter of βδt−1 plays a roles to capture the persistence effect while the mean of
the model for the 10 observations of the transformed variables Φ−1

(
ut− j

)
and Φ−1

(
vt− j

)
represents the

variation effect of the dependence series.

6.2. SJC Copula

The SJC copula is determined from the modification of the Joe–Clayton copula. The Joe–Clayton
copula is given as

CJC
(
u, v

∣∣∣τU, τL
)
= 1−

1− {(
1− (1− u)k

)−γ
+

(
1− (1− v)k

)−γ
− 1

}− 1
γ


1
k

, (11)

where
k =

1
log2(2− τU)

, (12)

γ = −
1

log2(τ
L)

(13)

The terms τU
∈ (0, 1) and τL

∈ (0, 1) represent the upper tail dependence and lower tail
dependence, respectively. However, the Joe–Clayton copula cannot be used to evaluate the behaviour
of the upper and lower tail dependence simultaneously. Thus, the SJC copula is used herein to
overcome the weakness of the Joe–Clayton copula. The SJC copula is given as

CSJC
(
u, v

∣∣∣τU, τL
)
= 0.5

[
CJC

(
u, v

∣∣∣τU, τL
)
+ CJC

(
1− u, 1− v

∣∣∣τU, τL
)
+ u + v− 1

]
, (14)

where CJC represents the Joe–Clayton copula in Equation (11). To include the time-varying properties,
Patton [28] proposed the use of the evolution parameters in the SJC copula; the formula is written
as follows:

τU/L = λ̃

ωU/L + βU/LτU/L
t−1 + αU/L

10∑
i=1

∣∣∣u1,t−i − u2,t−i
∣∣∣

10

, (15)



Mathematics 2020, 8, 1910 6 of 15

where λ̃ is the logistic transformation obtained as λ̃(x) = (1 + e−x)−1; it ensures that the
dependence parameter τU/L is in the range of (0, 1). Equation (15) specifies that τU/L follows
the Autoregressive-Moving Average (ARMA) type process with the order of (1,10), in which βU/LτU/L

t−1

represents the autoregression, αU/L is the forcing variable and

10∑
i=1
|u1,t−i−u2,t−i|

10 represents the persistence
effect and variation in dependence.

The parameters for each model are estimated by a two-step estimation procedure. First, the parameters
of the GARCH model corresponding to the GPD model for the upper and lower tails are estimated,
and the standardized residuals ẑ1, ẑ2, . . . ẑk are determined. Second, a transformation is performed using
the distribution functions to create pseudo-uniform variables. On the basis of these pseudo-uniform
variables, a copula model is estimated by maximizing the log-likelihood function given by

L(ξ; ẑ1, ẑ2, . . . ẑk) =
T∑

i=m

log
[
c
(
F1(ẑ1,i), F2(ẑ2,i), . . . , Fk

(
ẑk,i

)
, ξ

)]
, (16)

where ξ represents the parameter vector for each copula model, m = max
(
pi,k, qi,k

)
for i = 1,2, and k = 1,3,

. . . , K [29,30].

7. Results and Discussion

A preliminary statistical analysis was carried out prior to the detailed discussion of the analysis
results. Figure 2 shows that the volatility of PM10 is higher than those of the other pollutant variables.
Table 1 presents the descriptive statistics of all pollutant variables. The mean and median for PM10

were found to be higher than those of the other pollutant variables. Hence, this pollutant exerts
the greatest influence on the status of air quality. In addition, the standard deviation of PM10 is the
highest among all variables, thus implying that PM10 presents more volatile behaviour than the other
pollutant variables. NO2 shows the lowest standard deviation and thus exhibits the most stable
dynamic behaviour. The PM10 pollutant also shows the highest of kurtosis value, which indicates that it
appears most frequently in unhealthy pollution events. All the pollutant variables were found to have
a positive skewness. A high positive skewness means that the pollutants exhibit long tailed behaviour
to the right of the distribution data. The Jarque–Bera test results confirm that all the pollutant variables
are not normally distributed. In particular, high Jarque–Bera test statistics are found for PM10 and SO2.
The results in Table 1 indicate that all the pollutant variables exhibit a nonlinear phenomenon and
extreme behaviour. Thus, a model that functions under the normality assumption is not appropriate to
use in representing these types of data.

Table 2 shows the results of the correlation among all the pollutant variables. The linear correlation
values for the PM10 pollutant in relation to the other pollutants range from −0.077 to 0.684. The PM10

pollutant-related pairs are strongly correlated with CO, followed by O3, NO2, and SO2. The NO2

pollutant is found to have a moderate correlation with the CO pollutant. For the other pairs of pollutant
variables, they present a positive low correlation. However, the measurement of linear correlation
may generate misleading results because it assumes that the pairs of data share linearity properties.
Moreover, linear correlation measures generally work well for pairs of data that satisfy a normality
assumption. For most air pollutant data, the existence of skewness cannot be neglected, as presented
in the results in Table 1. A linear correlation measure also indicates a constant correlation behaviour
over time for each pollutant variable. However, one of the most important characteristics of air
pollution data is that they always fluctuate with volatility behaviour over time. Particularly during
unhealthy air pollution events, some of the pollution variables can increase significantly and thereby
correspond to extreme values. These behaviours are clearly depicted in Figure 2. Thus, we believe that
a linear correlation measure may not be a reliable tool for describing the relationship among pollutant
variables. As mentioned previously, we address these issues by proposing a time-varying copula with
a combination of the GPD and GARCH models.
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Figure 2. Time series plot for the relative daily fluctuation of each pollutant variable.

Table 1. Descriptive statistics for datasets 1, 2, 3 and 4.

Statistic PM10 CO NO2 O3 SO2

Mean 57.46 11.67 12.77 17.62 13.09
Median 55.13 10.84 12.53 16.52 11.50

Standard Deviation 20.14 5.29 3.90 7.07 7.37
Kurtosis 99.39 12.23 0.26 1.65 21.64

Skewness 6.35 2.13 0.29 0.94 3.19
Min 6.04 0.02 0.37 0.42 0.00
Max 494.88 70.33 31.86 56.32 100.29

Jarque–Bera Stat 37,598.00 91.37 1401.90 2,249,500 114,110
Count 5387 5387 5387 5387 5387

Table 2. Correlation among the pollutant variables.

PM10 CO NO2 O3 SO2

PM10 1
CO 0.684 1

NO2 0.200 0.445 1
O3 0.261 0.143 0.151 1

SO2 0.088 0.199 0.247 −0.077 1

In the analysis, the parameters for the tails of each pollutant variable are estimated on the basis
of the GPD model. Table 3 shows the estimated parameters describing the upper and lower tail
behaviour of the data of each pollutant variable. The sign of the shape parameter shows how fast the
tail decreases. A negative value indicates that the tail is finite, whereas a positive value indicates that
the tail decreases as a polynomial. The higher the absolute value of the shape parameter is, the heavier
the tail distribution will be. As shown in Table 3, for the lower tails, all pollutant variables are found to
have a negative estimate of parameter ξ. This result indicates that all pollution variables exhibit finite
short tail behaviour, with the PM10 pollutant exhibiting the lowest value of ξ (−0.0626). For the upper
tails, the CO, NO2, and SO2 pollutants exhibit short tail behaviour. The PM10 pollutant is found to
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have the highest positive value ξ = 0.1142, followed by the SO2 pollutant with ξ = 0.0179. These values
indicate that the PM10 and SO2 pollutants demonstrate heavy upper tail behaviour. These results
indicate that all pollutant variables present the same pattern for a low API at a particular time. In the
case of extreme pollution events, the PM10 variable is most likely to have the highest API value among
all pollution variables at a particular time. Hence, the PM10 pollutant is highly volatile, particularly at
the upside of its distribution.

Table 3. Correlation among pollutant variables.

PM10 CO NO2 O3 SO2

Lower tail
ξ −0.0626 −0.1768 −0.1291 −0.0766 −0.0894

Std. Error 0.0302 0.0313 0.0374 0.0424 0.0444
α 0.5213 0.3819 0.4629 0.4574 0.408

Std. Error 0.0274 0.0201 0.0263 0.0276 0.0252

Upper tail
ξ 0.1142 −0.0182 −0.0758 −0.0768 0.0179

Std. Error 0.0465 0.0436 0.0395 0.0328 0.045
α 0.5714 0.7471 0.6111 0.6973 0.7576

Std. Error 0.0361 0.0458 0.0357 0.0377 0.0472

Figure 3 shows a comparison of the empirical and GPD plots for the cumulative distribution
function (CDF) of the exceedance of the residuals in the upper tail of each pollutant variable. The fitted
GPD closely follows the exceedance of the residuals, although only 10% of the standardized residuals
were employed. Thus, the GPD model is a suitable choice for the upper tail data of each pollutant.
This result is also valid for the lower tails. On the basis of the GPD model, the overall CDF of the
semi-parametric models is obtained (Figure 4). In particular, the lower and upper tails are determined
by the fitted GPD model while the interior part is estimated by the GARCH model.

The results shown in Table 3 and Figures 3 and 4 demonstrate that our approach can adequately
model the marginal distributions of the time series data of the air pollutant variables in Malaysia.
However, the estimated marginal distribution alone is not able to describe the dependence structure that
exists among the pollutant variables. Thus, a copula needs to be adopted in the model. As mentioned
previously, the Gaussian and SJC copulas are employed in this study. Given the available properties
on each copula model, the Gaussian copula is useful in assessing the overall dependence structure of
pollutant variables, as described in Equation (10). For the SJC copula model, it is useful in exploring
the dependence behaviour of the lower and upper tails, as described in Equations (14) and (15).

Table 4 shows the results of the parameter estimates for the Gaussian and SJC copulas. The most
important parameters for the constant copula are determined by δ for the Gaussian copula and by
the τU and τL parameters for the SJC copula. For the time-varying copulas, the important parameters
for the Gaussian copula are ω, α, and β; and those for the SJC copula are ωU, ωL, αU, αL, βU and βL.
As shown in Table 3, the PM10 variable is likely to have the highest API value among all pollution
variables at a particular time. Thus, investigating the dynamic dependency of PM10 on other pollutant
variables could yield informative results. In this regard, the parameters of ω, ωU, and ωL are useful in
describing the magnitude of dependence between PM10 and other pollutant variables. The adjustment
in the dependence measure is captured by the parameters of α, αU and αL. Moreover, the parameters β,
βU and βL are useful to represent the degree of the persistence of the dependence.

The best fitting copula model is determined by goodness-of-fit measures, namely, Akaike’s information
criterion (AIC) and Bayesian information criterion (BIC). The lowest value determined by the AIC or
BIC indicates a well fitted model (Table 4). Two important points can be derived from the information
provided in Table 4 and Figures 5–8. First, the overall dependence (δ) between PM10 and the other
pollutants can be ranked in decreasing order as PM10–CO > PM10–SO2 > PM10–NO2 > PM10–O3.
Second, the rank in decreasing order for the upper tail (τU) and lower tail (τL) dependence between
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PM10 and the other pollutants is found to be same as that of the overall dependence, that is, PM10–CO
> PM10–SO2 > PM10–NO2 > PM10–O3. This ranking implies that the dynamic fluctuations between
PM10 and CO over time have the strongest overall dependency and tail dependency; they are followed
by the relationship of PM10 with SO2 and by PM10 with NO2. The weakest overall dependency and
tail dependency are those between PM10 and O3. Thus, we can conclude that CO has the greatest
influence on the behaviour of PM10 among all the pollutants in a normal air quality, good air quality
(lower tail), or bad air quality (upper tail). The results in Table 4 also show that the value of τU is larger
than that of τL for all possible pairs. Hence, the upper tail dependency between PM10 and the other
pollutants is stronger than the lower tail dependency.
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To further investigate the dynamic dependence structure among the pollutant variables, we present
in Figures 5–8 the time paths for the overall, lower, and upper tail dependencies based on the Gaussian
and SJC time-varying copulas. In each figure, the red dashed line denotes the dependence parameter
for the constant copula while the solid blue line denotes the dynamic parameter values under the
time-varying copula. As mentioned previously, the time variations of the dependency measures
between the pollutant variables are described by the parameters of α, αU,αL, β, βU and βL. Then,
as shown in Table 4, the results of the time-varying Gaussian copula model reveal that most of the time
paths are close to a white noise series as the values of the variation coefficient α are relatively higher
than those of the persistence coefficient β, except for the PM10–NO2 relationship. For the time-varying
SJC copula, all the persistence coefficients β are larger than the coefficients α for all pairs. This result
gives some insights into the changes of the dependence structure for the upper and lower tails over a
time period.Mathematics 2020, 8, x FOR PEER REVIEW 10 of 17 
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Table 4. Parameter estimates for constant and time-varying copulas.

PM10 –CO PM10 –NO2 PM10 –O3 PM10 –SO2

Gaussian Copula
δ 0.586 0.307 0.111 0.352

AIC −2272.546 −535.598 −67.044 −716.037
BIC −2272.545 −535.597 −67.043 −716.036

SJC Copula
τU 0.419 0.1268 0.0186 0.1838
τL 0.319 0.1237 0.0004 0.1550

AIC −2125.325 −492.516 −59.392 −677.540
BIC −2112.142 −479.332 −46.208 −664.357

Dynamic Gaussian Copula
ω 1.162 0.025 0.409 1.400
α 0.237 0.055 0.164 0.485
β 0.125 1.949 −1.765 −2.222

AIC −2289.200 −561.787 −68.637 −743.441
BIC −2289.196 −561.783 −68.633 −743.437

Dynamic SJC Copula
ωU 0.735 −0.790 −2.358 0.777
αU −1.954 −8.302 −0.057 −10.000
βU −0.463 −0.878 0.330 −0.430
ωL 0.600 0.499 −0.794 1.067
αL −4.672 −8.699 2.741 −9.999
βL −0.193 −0.130 1.039 −0.094

AIC −2125.447 −512.480 −62.110 −727.503
BIC −2085.896 −472.929 −22.559 −687.953
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For the PM10–CO pair (Figure 5), the parameters realized for the overall time-varying (δt)
dependence are found to be in the mean of 0.6 and range of 0.5–0.7. For a lower tail dependence,
the time-varying parameters (τL) fluctuate around the mean of 0.35 and range from 0.2 to 0.4. For an
upper tail dependence, the time-varying parameters (τU) fluctuate around the mean of 0.42 and range
from 0.39 to 0.42. The volatility properties of the time-varying parameters of the upper tail dependence
are more stable than those of the overall and lower tail dependencies. They fluctuate around the
mean of 0.6 and range from 0.5 to 0.7. Thus, the overall time-varying dependence for PM10–CO is
quite high. For the lower tail and upper tail, their time-varying dependencies are relatively moderate.
The dependence path of the time-varying copula for PM10–NO2 is shown in Figure 6. The overall
time-varying properties of the dependence parameters (δt) are found to be in the range of 0 to 0.5 with
a mean of 0.35. Meanwhile, the time-varying lower dependence (τL) fluctuates between 0 and 0.3 with
a mean of 0.13. The time-varying upper dependence (τU) fluctuates between 0.02 and 0.25 with a mean
of 0.12. The fluctuations of the lower and upper dependency behaviour are more volatile than those of
the overall time-varying dependence parameters (δt). Thus, we can conclude that the time-varying
overall, lower tail, and upper tail dependencies for PM10–NO2 are low.

As mentioned previously, Figure 7 shows the dependence path of the time-varying copula for the
PM10–O3 pair. The overall dependence parameters (δt) are found to be more volatile than those of
the time-varying lower dependence (τL) and upper dependence (τU). The values of the parameter
fluctuate around the mean of 0.12 within a range of 0.05–0.19. The parameters for the time-varying
lower dependence (τL) and upper dependence (τU) fluctuate around a very low mean and very low
range, except for some early points of the lower tail dependency before the year 2004. However,
in general, these values are considerably lower than those for the PM10–CO and PM10–NO2 pairs.
Thus, we can conclude that the behaviour of the time-varying overall, lower tail, and upper tail
dependencies for PM10–O3 are low. The dependency behaviour of the PM10–NO2 pair is shown
in Figure 8. The values of the time-varying overall dependence parameter (δt), lower dependence
(τL), and upper dependence (τU) indicate similar volatilities in the range of 0–0.5. The mean of the
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overall dependence parameter is about 0.36, which is higher than the mean of the lower and upper
dependence parameters. These values indicate the low magnitudes of the overall, lower tail, and upper
tail dependencies for the PM10–NO2 pair. The results shown in Figures 5–8 also show that the measure
based on the constant copula (red dashed line) is not sufficient to describe the dependency behaviour
among the pollutant variables over time. Nevertheless, the constant measure of dependency is found
to provide a good approximation of the means of the fluctuations of the plots for overall dependence,
lower tail dependence, or upper tail dependence (except for the lower and upper tails of PM10–O3 pair).

8. Conclusions

This study investigated the behaviour of the dynamic dependence structure between several
important pollutant variables, namely, PM10, CO, O3, NO2, and SO2. The distribution of each pollutant
variable is non-normal, heavy tailed, and dynamically changes over time. Thus, a measurement
determined by a common linear method, such as a Pearson correlation, which is subject to the
normality assumption, will fail to provide accurate results. The Pearson correlation method is a
rigid approach and cannot be used to evaluate the dynamic changes of the dependency behaviour
among pollutant variables over time. Thus, this study proposes a method that combines the GARCH,
GPD, and copula models to overcome air pollution data’s non-normal, heavy tailed, and dynamically
changing properties over time. The results in this work indicate that compared with the linear
correlation method, the proposed method provides more information about the behaviour of the
dependency structure among pollutant variables, particularly in terms of the overall time paths and
lower and upper tail dependencies.
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