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Abstract: The unit-Rayleigh distribution is a one-parameter distribution with support on the unit
interval. It is defined as the so-called unit-Weibull distribution with a shape parameter equal
to two. As a particular case among others, it seems that it has not been given special attention.
This paper shows that the unit-Rayleigh distribution is much more interesting than it might at first
glance, revealing closed-form expressions of important functions, and new desirable properties for
application purposes. More precisely, on the theoretical level, we contribute to the following aspects:
(i) we bring new characteristics on the form analysis of its main probabilistic and reliability functions,
and show that the possible mode has a simple analytical expression, (ii) we prove new stochastic
ordering results, (iii) we expose closed-form expressions of the incomplete and probability weighted
moments at the basis of various probability functions and measures, (iv) we investigate distributional
properties of the order statistics, (v) we show that the reliability coefficient can have a simple ratio
expression, (vi) we provide a tractable expansion for the Tsallis entropy and (vii) we propose some
bivariate unit-Rayleigh distributions. On a practical level, we show that the maximum likelihood
estimate has a quite simple closed-form. Three data sets are analyzed and adjusted, revealing that the
unit-Rayleigh distribution can be a better alternative to standard one-parameter unit distributions,
such as the one-parameter Kumaraswamy, Topp–Leone, one-parameter beta, power and transmuted
distributions.

Keywords: unit-Rayleigh distribution; hazard rate function; incomplete moments; order
statistics; estimation

MSC: 62G07; 62C05; 62E20

1. Introduction

In many applied scenarios, we are often confronted with the uncertainty of a phenomenon that
can be quantified in a bounded range of values. For the sake of accuracy, proper modeling should take
this information into account. As an immediate example, it is natural to model characteristics of the
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proportion type as a random variable (rv) with values in the “unit interval (0, 1)”, thus following a
certain unit distribution, i.e., distribution with support (0, 1). The unit-distributions are of particular
interest because of the following argues: (i) any rv X with bounded support of the form (0, a),
with a > 0, can be rescaled on (0, 1) as Y = X/a, and thus Y follows a certain unit-distribution, (ii) the
unit-distributions allow us to define general and simple families of continuous distributions through
the composition techniques; if F(x) denotes a cumulative distribution function (cdf) of a rv following a
unit-distribution and G(x) denotes the cdf of any continuous distribution with support denoted by
A, then a valid cdf is given as H(x) = F(G(x)), x ∈ R, defining a certain family of distributions with
support A (see [1] as pioneer reference, as well as [2] for a complete survey in this regard), and (iii) the
unit-distributions play a central role to define regression models having some characteristic with
unit-interval values (see [3] for the definitions of such regression models and [4] for a focus on the one
of most popular of them: the beta regression model).

Among the most useful unit-distributions with various number of parameters, there are the
power distribution, beta distribution, Johnson distribution by [5], Topp–Leone distribution by [6],
Kumaraswamy distribution by [7], unit-gamma distribution by [8,9], unit-logistic distribution
by [10], simplex distribution by [11], unit-Birnbaum–Saunders distribution by [12], exponentiated
Kumaraswamy distribution by [13], exponentiated Topp–Leone distribution by [14], unit-Weibull
distribution by [15,16], unit-Gompertz by [17], unit-Lindley distribution by [18], unit-inverse Gaussian
distribution by [19], composite quantile distributions by [20], unit-generalized half normal distribution
by [21], and unit modified Burr-III distribution by [22].

In this paper, we concentrate on a simple one-parameter unit distribution, called the unit-Rayleigh
distribution. Technically, this distribution is not new; it corresponds to a special case of the unit-Weibull
distribution introduced in [15], and it is briefly presented as such in this reference. However,
new researches on the unit-Rayleigh distribution have yielded interesting and surprising mathematical
fruits that we share in this paper. Specifically, we provide: (i) new motivations of considering this
special distribution, (ii) new characteristics on the form analysis of the corresponding probability
density function (pdf) (with a closed form for the mode) and hazard rate function (hrf), revealing
an unexpected fitting capability of the unit-Rayleigh model, (iii) new stochastic ordering results
involving the power distribution and some unlisted distributions of potential interest, (iv) new
manageable expressions and approximations of the incomplete and probability-weighted moments
involving the complementary error function, (v) some basics on the distributional properties of the
order statistics including discussions on their moments, (vi) a simple expression for the reliability
coefficient which is useful for estimation purposes, (vii) a tractable expression and approximation
of the so-called Tsallis entropy and (viii) some bivariate extensions of the unit-Rayleigh distribution
for two-dimensional modeling objectives. On the practical side, we analyze three different data sets,
showing that the unit-Rayleigh distribution can be a better alternative to standard one-parameter unit
distributions, such as the one-parameter Kumaraswamy, Topp–Leone, one-parameter beta, power and
transmuted distributions.

The paper organization is as follows. Section 2 recalls the unit-Rayleigh distribution, with some
new facts related to its main functions. The main technical mathematical results are developed in
Section 3. Applications are given in Section 4. Final notes are formulated in Section 5.

2. The Unit-Rayleigh Distribution

This section discusses some new facts regarding the primary essence of the unit-Rayleigh distribution.

2.1. Main Lines of the Study

The block diagram in Figure 1 resumes the main lines of the study.
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USEFULNESS OF THE UNIT-DISTRIBUTIONS

Unit Rayleigh distribution (UR): An unexplored 

special case of the unit Weibull distribution

New motivations and interests of the UR 

distribution for application purposes

Revelations on the flexibility of the UR pdf and hrf, also 

supported by a graphical analysis

Mathematical and statistical properties

• Stochastic order results

• Incomplete moments

• Probability weighted moments

• Order statistics

• Reliability coefficient

SOME BIVARIATE UNIT-RAYLEIGH DISTRIBUTIONS

Applications to practical datasets, with the conclusion that the UR model 

may have a much better fit than well-known competitors

Closed form expressions of a lot of crucial functions and measures

Figure 1. Block diagram on the main lines of this study.

2.2. Corresponding Functions

As the basis, the unit-Rayleigh distribution is associated with the cdf given as

F(x) = exp
{
−β [log(x)]2

}
, x ∈ (0, 1), (1)

where β > 0, and F(x) = 0 for x ≤ 0 and F(x) = 1 for x > 1. Thus defined, it is a special case of
the unit-Weibull distribution introduced by [15] with shape parameter equal to 2. By construction,
the unit-Rayleigh distribution is the distribution of the rv exp(−Y), where Y denotes an rv following
the Rayleigh distribution with scale parameter β, i.e., with cdf FY(x) = 1− exp(−βx2), with x > 0,
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and FY(x) = 0 otherwise. The Rayleigh distribution also corresponds to the chi-squared distribution
with two degrees of freedom. The basics and properties of this distribution can be found in [23].

As a new fact, the unit-Rayleigh distribution is also the distribution of the rv 1/Z, where Z
denotes a rv following the Benini distribution with truncated parameter equal to 1, i.e., with cdf
FZ(x) = 1− exp

{
−β [log(x)]2

}
, with x > 1, and FZ(x) = 0 otherwise. The Benini distribution is a

long tail distribution that can be viewed as a generalization of the Pareto distribution. We may refer to
the former work of [24].

Based on F(x), the pdf of the unit-Rayleigh distribution is given as

f (x) =
d

dx
F(x) = −2β

x
log(x) exp

{
−β [log(x)]2

}
, x ∈ (0, 1), (2)

and f (x) = 0 for x 6∈ (0, 1). The shape properties of this function are fundamental to evaluate the
capability of the unit-Rayleigh model to fit data. This aspect will be discussed later.

The survival function is obtained by

F̄(x) = 1− F(x) = 1− exp
{
−β [log(x)]2

}
, x ∈ (0, 1),

and F̄(x) = 1 for x ≤ 0 and F̄(x) = 0 for x > 1, the cumulative hrf is specified as

H(x) = − log[F̄(x)] = − log
[
1− exp

{
−β [log(x)]2

}]
, x ∈ (0, 1),

and H(x) = 0 for x ≤ 0 and H(x) = +∞ for x > 1, and the hrf is given as

h(x) =
d

dx
H(x) = −2β

x
log(x)

exp
{
−β [log(x)]2

}
1− exp

{
−β [log(x)]2

} , x ∈ (0, 1), (3)

and h(x) = 0 for x 6∈ (0, 1). The shape properties of the hrf are precious indicators on some features of
the unit-Rayleigh model. This point will be discussed later.

We end this part by specifying the quantile function of the unit-Rayleigh distribution obtained as

Q(x) = F−1(x) = exp

{
−
[
− 1

β
log(x)

]1/2
}

, x ∈ (0, 1). (4)

2.3. Analysis of the cdf

Basically, F(x) is an increasing and derivable function with respect to x for x ∈ (0, 1). We can
express it as a function of the power distribution cdf as

F(x) = F∗(x)− log(x),

where F∗(x) = xβ for x ∈ (0, 1), F∗(x) = 0 for x ≤ 0 and F∗(x) = 1 for x ≥ 1. The following
inequalities can be deduced: For any x ∈ (0, exp(−1)), we have F(x) ≤ xβ, and for x ∈ (exp(−1), 1),
the reverse inequality holds: F(x) ≥ xβ.

In addition, we can remark that F(x) is a decreasing function with respect to β; by setting
F(x; β) = F(x), for any β2 ≥ β1, we have

F(x; β2) ≤ F(x; β1).

This inequality reveals a basic first-order stochastic dominance of the unit-Rayleigh distribution.
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Moreover, one can note that, for any x ∈ (0, 1),

∂2F(x; β)

∂β2 = [log(x)]4 exp
{
−β [log(x)]2

}
> 0,

implying that F(x; β) is a convex function with respect to β.

2.4. Analysis of the pdf

In this section, we analyze f (x) as described in (2), also performing a mode(s) analysis. Such a
global analysis has been performed in [16] for the unit-Weibull distribution, in full generality. Here,
we provide more specific details on this aspect for the unit-Rayleigh distribution, including the
expression of the mode and its comportment when β varied.

As an alpha remark, let us note that, for any β > 0,

lim
x→0

f (x) = lim
x→1

f (x) = 0,

with the equivalence f (x) ∼ 2β(1− x) when x → 1. Since it is positive, the function f (x) is not
monotonic; the points 0 and 1 are not modes of f (x). Now, for x ∈ (0, 1), we have

d
dx

f (x) =
2β

x2 exp
{
−β [log(x)]2

} [
2β [log(x)]2 + log(x)− 1

]
.

Therefore, a critical point for f (x), say x0, satisfies x0 ∈ (0, 1) and 2β [log (x0)]
2 + log (x0)− 1 = 0.

After developments, we get

x0 = exp
{
− 1

4β

[√
8β + 1 + 1

]}
. (5)

Let us now study the nature of this critical point. For any x ∈ (0, 1), we have

d2

dx2 f (x) = −2β

x3 exp
{
−β [log(x)]2

}
(2β log(x) + 1)

[
2β [log(x)]2 + 2 log(x)− 3)

]
.

Since (2β/x3) exp
{
−β [log(x)]2

}
> 0, the sign of d2 f (x)/dx2

∣∣
x=x0

is the one of

η = −(2β log(x0) + 1)
[
2β [log(x0)]

2 + 2 log(x0)− 3)
]

.

After developments, we obtain η = −
√

8β + 1 < 0. We conclude that the point x0 as defined
by (5) is a maximum for the function f (x); it is the (unique) mode of the unit-Rayleigh distribution.
Therefore, the pdf of the unit-Rayleigh distribution is “more or less bell shape”.

Let us now discuss the behavior of this mode. By setting x0(β) = x0, we have

∂

∂β
x0(β) = exp

{
− 1

4β

[√
8β + 1 + 1

]} 4β +
√

8β + 1 + 1
4β2
√

8β + 1
> 0,

implying that x0(β) is an increasing function with respect to β. Furthermore, we have

lim
β→0+

x0(β) = 0, lim
β→+∞

x0(β) = 1,

meaning that the mode can take all the values of the interval (0, 1). This result indicates a certain
flexibility of the unit-Rayleigh distribution regarding its mode. A graphical illustration of the possible
shapes of f (x) is provided in Figure 2, considering the following values for β: 0.1, 0.5, 0.8, 1.5 and 4.
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Figure 2. Several curves of the pdf of the unit-Rayleigh distribution.

We see in Figure 2 the “more or less bell shape” of the pdf, with an increasing mode according
to β. Note that the black curve, corresponding to the pdf defined with β = 0.1, is “highly spiked”;
the increasing curve does not appear in the figure because it is too sharp. In some senses, this graphical
analysis completes the one performed in ([15] Figure 1, last subfigure).

2.5. Analysis of the hrf

In this section, we analyze h(x) as specified in (3). As far as we know, this aspect has been
explored only graphically in ([15] Figure 2, last subfigure). Some new facts are discussed below. Firstly,
for any β > 0, we have

lim
x→0

h(x) = 0, lim
x→1

h(x) = +∞,

with the equivalence h(x) ∼ 2/(1− x) when x → 1. Since h(x) is positive, the point 0 is a minimum
for h(x). Now, for x ∈ (0, 1), we have

d
dx

h(x) = 2β
w(x)

x2
[
exp

{
β [log(x)]2

}
− 1
]2 ,

where
w(x) = 2β [log(x)]2 exp

{
β [log(x)]2

}
− (1− log(x))

[
exp

{
β [log(x)]2

}
− 1
]

,

being the difference of two positive functions.
In view of the denominator term, a critical point for h(x), say x1, satisfies x1 ∈ (0, 1) and

w(x1) = 0. The study of this equation is not obvious from the analytical side. As a result, we propose
some alternative arguments showing that the hrf can have various forms.

Firstly, due the presence of the β in factor of the first term, by dominance, for any x ∈ (0, 1),
we have limβ→+∞ w(x) = +∞. This implies the existence of a β∗ such that, for β > β∗, we have
w(x) > 0 and, a fortiori, dh(x)/dx > 0. Hence, for β > β∗, h(x) is an increasing function with respect
to x. Now, assume that β is small, say β→ 0. Then, standard equivalences gives

w(x) ∼ β [log(x)]2 (1 + log(x)),
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and the equivalence function is equal to 0 if x = exp(−1) ∈ (0, 1). Therefore, in the case where β

is small enough, at least one critical point exists. This new fact reveals that the hrf is not only an
increasing function, as one can think at first sight of ([15] Figure 2, last subfigure); non monotonic
shapes are possible for “small or not too small” β.

We illustrate this new fact by some plots of h(x) in Figure 2, considering the following values for
β: 0.1, 0.18, 0.3, 0.5 and 1.5.

We see in Figure 3 that the hrf can be increasing with convex and concave properties. For the black
line corresponding to the hrf defined with β = 0.1, a bathtub shape is observed. These observations
confirm the flexible hazard rate of the unit-Rayleigh distribution.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

x

hr
f

β = 0.1
β = 0.18
β = 0.3
β = 0.5
β = 1.5

Figure 3. Several curves of the hrf of the unit-Rayleigh distribution.

3. New Results

More mathematical results are developed in this section, all new.

3.1. Stochastic Order Results

We have already presented some stochastic order results involving the cdfs of the unit-Rayleigh
and power distributions. More technical ones are described in the result below.

Proposition 1. The following inequality holds:

Fo(x) ≤ F(x) ≤ Foo(x),

where

• Fo(x) = xβ(1/x−1) for x ∈ (0, 1), Fo(x) = 0 for x ≤ 0 and Fo(x) = 1 for x ≥ 1,
• Foo(x) = xβ(1−x) for x ∈ (0, 1), Foo(x) = 0 for x ≤ 0 and Foo(x) = 1 for x ≥ 1,

both being cdfs of unit-distributions.

Proof. The inequalities are immediate for x ≤ 0 and x ≥ 1. For x ∈ (0, 1), we can express F(x) as
F(x) = xβ[− log(x)]. The desired result is a consequence of the following well-known inequalities:
For x ∈ (0, 1), we have 1− 1/x ≤ log(x) ≤ x − 1. The claims that Fo(x) and Foo(x) are valid cdfs
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are proved below. We have limx→0 Fo(x) = limx→0 Foo(x) = 0, limx→1 Fo(x) = limx→1 Foo(x) = 1,
both are derivable for x ∈ (0, 1) with, for x ∈ (0, 1),

d
dx

Fo(x) = βxβ(1/x−1)−2[1− x− log(x)] > 0,
d

dx
Foo(x) = βxβ(1−x)−1[1− x− x log(x)] > 0.

This concludes the proof of Proposition 1.

As far as we know, the cdfs Fo(x) and Foo(x) described in Proposition 1 are not listed in the
literature. They can be of independent interest for purposes out of the scope of this paper (modelling of
proportion-type characteristics, constructions of new general families of continuous distributions, etc.).

3.2. Incomplete Moments

The incomplete moments of the unit-Rayleigh remain unexplored. We now fill this gap by
providing their analytical expressions via comprehensive functions.

Proposition 2. Let r be a nonnegative integer and X be a rv following the unit-Rayleigh distribution.
Then, the r-th incomplete moment of X at t ∈ (0, 1) is given as

mr(t) = E (Xr I({X ≤ t}))

= tr exp
{
−β [log(t)]2

}
− exp

(
r2

4β

)
r√
β

√
π

2
erfc

(
−
√

β log(t) +
r

2
√

β

)
,

where I(A) denotes the indicator function over an event A and erfc(a) is the complementary error function
defined by erfc(a) = (2/

√
π)
∫ +∞

a exp(−y2)dy, with a ∈ R.

Proof. We recall that the unit-Rayleigh distribution corresponds to the one of the rv exp(−Y), where Y
is a rv following the Rayleigh distribution with scale parameter β, i.e., with pdf fY(x) = 2βx exp(−βx2),
with x > 0, and fY(x) = 0 otherwise. Therefore, we have

mr(t) = E (exp(−rY)I{exp(−Y) ≤ t}) = E (exp(−rY)I{Y ≥ − log(t)})

=
∫ +∞

− log(t)
exp(−rx) fY(x)dx = 2β

∫ +∞

− log(t)
x exp(−rx− βx2)dx

= 2β exp
(

r2

4β

) ∫ +∞

− log(t)
x exp

−
(√

βx +
r

2
√

β

)2
 dx.

By applying the change of variable y =
√

βx + r/(2
√

β), that is x =
[
y− r/(2

√
β)
]

/
√

β,
and performing some calculus, we obtain

mr(t) = 2β exp
(

r2

4β

) ∫ +∞

−
√

β log(t)+r/(2
√

β)

1√
β

(
y− r

2
√

β

)
exp(−y2)

1√
β

dy

= 2 exp
(

r2

4β

){[
−1

2
exp(−y2)

]+∞

−
√

β log(t)+r/(2
√

β)
− r

2
√

β

∫ +∞

−
√

β log(t)+r/(2
√

β)
exp(−y2)dy

}

= exp
(

r2

4β

)
exp

−
(
−
√

β log(t) +
r

2
√

β

)2
− exp

(
r2

4β

)
r√
β

√
π

2
erfc

(
−
√

β log(t) +
r

2
√

β

)

= tr exp
{
−β [log(t)]2

}
− exp

(
r2

4β

)
r√
β

√
π

2
erfc

(
−
√

β log(t) +
r

2
√

β

)
.

The result of Proposition 2 is obtained.
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From Proposition 2, by taking r = 0, we obtain m0(t) = F(t) = exp
{
−β [log(t)]2

}
with t ∈ (0, 1).

The r-th raw moments of X can be derived as

mr = E(Xr) = lim
t→1

mr(t) = 1− exp
(

r2

4β

)
r√
β

√
π

2
erfc

(
r

2
√

β

)
.

We thus rediscover the formula in ([15] Subsection 2.2).
In addition, the incomplete moments of X allow us to define an arsenal of interesting measures

and functions involving the unit-Rayleigh distribution, such as mean deviations, mean residual life
function, variance residual life function, reversed mean residual life function, Zenga curve, and so on.
The complete list can be found in the book of [25], among others.

For approximation purposes of the incomplete moments of X, for any a ∈ R, we can use the
well-known expression and approximation of the function erfc(a) given as

erfc(a) = 1− 2√
π

+∞

∑
j=0

(−1)j

(2j + 1)j!
a2j+1 ≈ 1− 2√

π

J

∑
j=0

(−1)j

(2j + 1)j!
a2j+1,

where J denotes a large integer. Let us mention that some more simple approximations of erfc(a)
exist, with the assumptions that x is “small enough” or “large enough” (see [26]). On the other side,
erfc(a) is implemented in all the modern mathematical softwares, making the computations of mr(t)
straightforward.

The following result presents a new and simple series expansion of the incomplete moments,
with direct integration; no existing results on erfc(x) is used. It thus provides an alternative expression
to the one presented in Proposition 2.

Proposition 3. Under the setting of Proposition 2, for any t ∈ (0, 1), the following series expansion holds:

mr(t) =
+∞

∑
j=0

1
j!
(−1)jrjβ−j/2Γ

(
j
2
+ 1, β[log(t)]2

)
,

where Γ(a, x) is the incomplete upper gamma function defined by Γ(a, x) =
∫ +∞

x ta−1 exp(−t)dt,
with a, x > 0.

Proof. By making the change of variable x = Q(y) as defined as (4), we get

mr(t) =
∫ t

0
xr f (x)dx =

∫ F(t)

0
[Q(y)]rdy =

∫ exp
{
−β[log(t)]2

}
0

exp

{
−r
[
− 1

β
log(y)

]1/2
}

dy.

By applying the Taylor series expansion of the exponential function, we obtain

mr(t) =
+∞

∑
j=0

1
j!
(−1)jrjβ−j/2

∫ exp
{
−β[log(t)]2

}
0

[− log(y)]j/2 dy.

Now, the change of variable y = exp(−z) yields

∫ exp
{
−β[log(t)]2

}
0

[− log(y)]j/2 dy =
∫ +∞

β[log(t)]2
zj/2 exp(−z)dz = Γ

(
j
2
+ 1, β[log(t)]2

)
.

The proof of Proposition 3 follows from the above equalities.
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From Proposition 3, by taking r = 0 with the convention 00 = 1 in the sum, we rediscover
m0(t) = F(t) = 1× Γ

(
1, β[log(t)]2

)
= exp

{
−β [log(t)]2

}
, with t ∈ (0, 1). The r-th raw moments of

X can be derived as

mr = E(Xr) = lim
t→1

mr(t) =
+∞

∑
j=0

1
j!
(−1)jrjβ−j/2Γ

(
j
2
+ 1
)

,

where Γ(a) is the standard gamma function defined by Γ(a) =
∫ +∞

0 ta−1 exp(−t)dt, with a > 0.
The following simple finite sum approximation holds:

mr(t) ≈
J

∑
j=0

1
j!
(−1)jrjβ−j/2Γ

(
j
2
+ 1, β[log(t)]2

)
,

where J denotes a large integer.

3.3. Probability Weighted Moments

The probability-weighted moments can be viewed as generalizations of raw moments.
They appear quite naturally when we deal with the raw moments of order statistics. The closed
forms of the probability weighted moments for the unit-Rayleigh distribution are given below.

Proposition 4. Let r and s be two nonnegative integers and X be a rv following the unit-Rayleigh distribution.
Then, the (r, s)-th probability weighted moment of X is given as

mr,s = E [XrF(X)s] =
β

β + s

[
1− exp

(
r2

4(β + s)

)
r√

β + s

√
π

2
erfc

(
r

2
√

β + s

)]
,

erfc(x) being the complementary error function.

Proof. First of all, based on (1) and (2), let us notice that

F(x)s f (x) = −2β

x
log(x) exp

{
−(β + s) [log(x)]2

}
=

β

β + s
f∗(x),

where f∗(s) denotes the pdf of a rv Z following the unit-Rayleigh distribution with scale parameter
β + s. Therefore

mr,s =
∫ 1

0
xrF(x)s f (x)dx =

β

β + s

∫ 1

0
xr f∗(x)dx =

β

β + s
E(Zr).

Owing to Proposition 2 with β + s instead of β and t→ 1, we have

E(Zr) = 1− exp
(

r2

4(β + s)

)
r√

β + s

√
π

2
erfc

(
r

2
√

β + s

)
.

By combining the two equalities above, we conclude the proof of Proposition 4.

Clearly, we have mr = mr,0. The probability-weighted moments will find applications in the
next section.
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3.4. Order Statistics

The modeling of several physical systems involved the use of order statistics. In this section,
the basic properties of the order statistics of the unit-Rayleigh distribution are discussed. The theory
and details on order statistics in a general setting can be found in [27].

First, based on a well-known distributional result of order statistics, (1) and (2), the pdf of the u-th
order statistic of X in a random sample of size n from the unit-Rayleigh distribution, say X(u), is

fX(u)
(x) =

n!
(u− 1)!(n− u)!

f (x)F(x)u−1[1− F(x)]n−u

= − n!
(u− 1)!(n− u)!

2β

x
log(x) exp

{
−βu [log(x)]2

} [
1− exp

{
−β [log(x)]2

}]n−u
,

x ∈ (0, 1). (6)

In particular, for the minimum and maximum order statistics, we get

fX(1)
(x) = −n

2β

x
log(x) exp

{
−β [log(x)]2

} [
1− exp

{
−β [log(x)]2

}]n−1

and

fX(n)
(x) = −n

2β

x
log(x) exp

{
−βn [log(x)]2

}
,

respectively. The raw moments of X(u) can be simply expressed via the probability weighted moments
of the former unit-Rayleigh distribution. Indeed, from the first expression of fX(u)

(x) in (6) and the
binomial formula, we can write

fX(u)
(x) =

n!
(u− 1)!(n− u)!

n−u

∑
j=0

(
n− u

j

)
(−1)j f (x)F(x)j+u−1

and the r-th raw moment of X(u) is specified by

m(u),r = E(Xr
(u)) =

∫ 1

0
xr fX(u)

(x)dx

=
n!

(u− 1)!(n− u)!

n−u

∑
j=0

(
n− u

j

)
(−1)j

∫ 1

0
xr f (x)F(x)j+u−1dx

=
n!

(u− 1)!(n− u)!

n−u

∑
j=0

(
n− u

j

)
(−1)jmr,j+u−1,

where, by Proposition 4,

mr,j+u−1 =
β

β + j + u− 1
×[

1− exp
(

r2

4(β + j + u− 1)

)
r√

β + j + u− 1

√
π

2
erfc

(
r

2
√

β + j + u− 1

)]
.

From the raw moments of X(u), several measures can be derived such as the skewness and kurtosis
coefficients, L-moments, allowing to define the L-scale, L-skewness and L-kurtosis, among others.

3.5. Reliability Coefficient

The reliability coefficient allows us to study the behavior of various random systems. It is defined
as the probability that a hierarchy exists between two characteristics of the system with unknown
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values a priori. All the details can be found in [28]. Here, we show that the reliability coefficient can be
expressed in a simple manner for the unit-Rayleigh distribution.

Proposition 5. Let U and V be two independent rvs following the unit-Rayleigh distribution with
scale parameters β and β∗, respectively. Then, the corresponding reliability coefficient is defined by
R = P(U ≤ V) and

R =
β∗

β + β∗
.

Proof. Let F(x; β) = F(x) be the cdf of U, f (x; β∗) = f (x) be the pdf of V and f∗(x) be the pdf of the
unit-Rayleigh distribution with scale parameter β + β∗. Then, we have

R = P(U ≤ V) =
∫ 1

0
F(x; β) f (x; β∗)dx =

∫ 1

0
−2β∗

x
log(x) exp

{
−(β + β∗) [log(x)]2

}
dx

=
β∗

β + β∗

∫ 1

0
f∗(x)dx =

β∗
β + β∗

.

This proved Proposition 5.

From Proposition 5, we clearly have R < 1/2 for β∗ < β, R = 1/2 for β∗ = β, and R > 1/2
for β∗ > β. The simple expression of R is useful for statistical aims. In particular, by the invariance
property, maximum likelihood estimates of the parameters β and β∗, say β̂ and β̂∗, respectively,
provide the maximum likelihood estimate for R given as

R̂ =
β̂∗

β̂ + β̂∗
.

3.6. Tsallis Entropy

Commonly, the Tsallis entropy is a measure of randomness of a random variable. One can refer to
the study of [29] for discussions on the roles of various entropy measures in applied sciences, including
the Tsallis entropy. The following result concerns a series expansion of this entropy measure in the
context of the unit-Rayleigh distribution.

Proposition 6. Let τ 6= 1 and τ > 0. Then, the Tsallis entropy of a random variable X following the
unit-Rayleigh distribution can be expressed as

Tτ =
1

τ − 1

[
1−

∫ 1

0
f (x)τdx

]
=

1
τ − 1

[
1− 2τ−1β(τ−1)/2τ−(τ+1)/2

+∞

∑
j=0

1
j!
(τ − 1)jβ−j/2τ−j/2Γ

(
j + τ + 1

2

)]
.

Proof. We only need to treat the integral term in the definition of Tr. Owing to (2), we have

∫ 1

0
f (x)τdx = 2τ βτ

∫ 1

0
x−τ [− log(x)]τ exp

{
−βτ [log(x)]2

}
dx.
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Therefore, by making the change of variable x = exp(−y), i.e., y = − log(x), and by introducing
a rv Y following the Rayleigh distribution with scale parameter βτ, we get

∫ 1

0
f (x)τdx = 2τ βτ

∫ +∞

0
exp[(τ − 1)y]yτ exp(−βτy2)dy

= 2τ−1βτ−1τ−1
∫ +∞

0
exp[(τ − 1)y]yτ−1

[
2βτy exp(−βτy2)

]
dy

= 2τ−1βτ−1τ−1E
{

exp[(τ − 1)Y]Yτ−1
}

.

Now, by using the Taylor series expansion of the exponential function and the following
well-known moment properties of the Rayleigh distribution: For any υ > −2, E(Yυ) =

β−υ/2τ−υ/2Γ(υ/2 + 1), we have

E
{

exp[(τ − 1)Y]Yτ−1
}
=

+∞

∑
j=0

1
j!
(τ − 1)jE(Y j+τ−1)

= β−(τ−1)/2τ−(τ−1)/2
+∞

∑
j=0

1
j!
(τ − 1)jβ−j/2τ−j/2Γ

(
j + τ + 1

2

)
.

By putting the above equalities together, we obtain

∫ 1

0
f (x)τdx = 2τ−1β(τ−1)/2τ−(τ+1)/2

+∞

∑
j=0

1
j!
(τ − 1)jβ−j/2τ−j/2Γ

(
j + τ + 1

2

)
.

The desired result follows by substituting this series expansion into the former definition of
Tr.

From Proposition 6, the following approximation holds:

Tr ≈
1

τ − 1

[
1− 2τ−1β(τ−1)/2τ−(τ+1)/2

J

∑
j=0

1
j!
(τ − 1)jβ−j/2τ−j/2Γ

(
j + τ + 1

2

)]
,

where J is a large enough integer.

3.7. Some Bivariate Unit-Rayleigh Distributions

Now, we present some motivated ideas to construct bivariate unit-Rayleigh distributions,
which are of interest for the modelling of conjoint characteristics with values on the unit interval.
In order to keep a control on the structure of the marginal rvs, we propose to use the special probabilistic
functions called copulas (see [30]).

As a first approach, we can define the Farlie-Gumbel-Morgenstern unit-Rayleigh distribution by
the following cdf:

F(x, y) = F(x; β)F(y; β∗) + λF(x; β)F(y; β∗) [1− F(x; β)] [1− F(y; β∗)] , (x, y) ∈ R2,

where λ ∈ [−1, 1], F(x; β) and F(y; β∗) are defined as (1) with the scale parameters β and β∗,
respectively. Hence, for (x, y) ∈ (0, 1)2, we have

F(x, y) = exp
{
−β [log(x)]2 − β∗ [log(y)]2

}
+ λ exp

{
−β [log(x)]2 − β∗ [log(y)]2

}
×[

1− exp
{
−β [log(x)]2

}] [
1− exp

{
−β∗ [log(y)]2

}]
.

By taking λ = 0, the marginal rvs are independent.
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Similarly, one can also define a bivariate unit-Rayleigh distribution by using the Clayton copula.
Thus, we can define the Clayton unit-Rayleigh distribution by the following cdf:

F∗(x, y) =
[
max

(
F(x; β)−λ + F(y; β∗)

−λ − 1, 0
)]−1/λ

, (x, y) ∈ R2,

where λ ≥ −1 and λ 6= 0, F(x; β) and F(y; β∗) are defined as (1) with the scale parameters β and β∗,
respectively. Thus, for (x, y) ∈ (0, 1)2, we have

F∗(x, y) =
[
max

(
exp

{
λβ [log(x)]2

}
+ exp

{
λβ∗ [log(y)]2

}
− 1, 0

)]−1/λ
.

As the last example, we can define the Gumbel unit-Rayleigh distribution by the following cdf:

F∗∗(x, y) = exp
{
−
[
(− log[F(x; β)])λ + (− log[F(y; β∗)])

λ
]1/λ

}
, (x, y) ∈ R2,

where λ ≥ 1, F(x; β) and F(y; β∗) are defined as (1) with the scale parameters β and β∗, respectively.
Hence, for (x, y) ∈ (0, 1)2, we have

F∗∗(x, y) = exp
{
−
[

βλ [log(x)]2λ + βλ
∗ [log(y)]2λ

]1/λ
}

.

These bivariate extensions generate bivariate models that may be useful in the analysis
of compositional data with values over (0, 1)2, involving proportions and/or percentages.
Concrete applications can be found in chemistry, demography, geology, high throughput sequencing
and survey. Estimation of the model parameters can be performed via the multivariate likelihood
estimation method (see [31]). The detail on the statistical analysis of compositional data can be found
in [32,33].

4. Applications

This section shows the applicability behavior of the unit-Rayleigh distribution in a data analysis
framework, which has not received a particular attention in [15] or [16]. We estimate the parameter β

by the maximum likelihood method, as done in [15] but by putting the shape parameter equal to 2; it is
not to be estimated. In this case, from n observations of a rv following the unit-Rayleigh distribution,
say x1, . . . , xn, the maximum likelihood estimate of β is defined by

β̂ =

{
1
n

n

∑
i=1

[log(xi)]
2

}−1

.

Based on (1)–(3), the estimated cdf, pdf and hrf are obtained by substituting β by β̂ in their
own expressions.

Thus, with the maximum likelihood method, we aim to compare the fit behavior of the
unit-Rayleigh distribution with those of the following well-known one-parameter competitors.

• the one-parameter Kumaraswamy (Ku) distribution (or special Lehmann type II power
distribution) defined by the cdf given as

FKu(x) = 1− (1− x)α, x ∈ (0, 1),

FKu(x) = 0 for x ≤ 0 and FKu(x) = 1 for x ≥ 1, with α > 0. See [7].
• the Topp–Leone (TL) distribution defined by the cdf specified by

FTL(x) = xθ(2− x)θ , x ∈ (0, 1),
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FTL(x) = 0 for x ≤ 0 and FTL(x) = 1 for x ≥ 1, where θ > 0. See [6].
• the one-parameter beta (B) distribution defined by the cdf given as

FB(x) =
1

B(µ, 2)

∫ x

0
tµ−1(1− t)dt, x ∈ (0, 1),

FB(x) = 0 for x ≤ 0 and FB(x) = 1 for x ≥ 1, where µ > 0 and B(a, b) =
∫ 1

0 ta−1(1− t)b−1dt,
a, b > 0.

• the power (P) distribution defined by the cdf expressed by

FP(x) = xη , x ∈ (0, 1),

FP(x) = 0 for x ≤ 0 and FP(x) = 1 for x ≥ 1, where η > 0.
• the transmuted (TM) distribution defined by the cdf expressed by

FTM(x) = (1 + λ)x− λx2, x ∈ (0, 1),

FTM(x) = 0 for x ≤ 0 and FTM(x) = 1 for x ≥ 1, where λ ∈ [−1, 1]. We may refer to [34] all the
characteristics of the transmuted distribution.

These distributions can be assimilated to semi-parametric statistical models for adjustment
purposes. The following classical criteria are used to compare the fits: minus estimated log-likelihood
(− ˆ̀), consistent Akaike information criterion (CAIC), Hannan–Quinn information criterion (HQIC),
Akaike information criterion (AIC), Bayesian information criterion (BIC), Cramer-von Mises criterion
(W) and Anderson–Darling criterion (A) are computed. The lower the values of these criteria, the better
the fit. The R software developed by [35] is used, with the help of the R function goodness.fit function
from the package AdequacyModel (see [36]).

Data with values into (0, 1) can be of various natures, including percentages or proportions.
Based on positive data x1, . . . , xn, one can suppose that a phenomenon can be modeled by a random
variable U with estimation of the upper bound of its theoretical support by m = sup(x1, . . . , xn) or any
reasonable larger value. Then, we can consider the random variable X = U/m which has support into
(0, 1). In all the situations, we can recover the distribution of U by multiplication with m a posteriori.
In the next, three data sets are considered. The first two data sets used the previous schema, and the
third one contains proportions-like data initially communicated with values in (0, 1).

First, we consider data of times to infection of kidney dialysis patients in months, as described
by [37]. The “times of infection” data set is: {2.5, 2.5, 3.5, 3.5, 3.5, 4.5, 5.5, 6.5, 6.5, 7.5, 7.5, 7.5,
7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 12.5, 13.5, 14.5, 14.5, 21.5, 21.5, 22.5, 22.5, 25.5, 27.5}. Now, we make a
normalization operation by divided these data by 30, to get data between 0 and 1. The transformed
data set becomes: {0.08333333, 0.08333333, 0.11666667, 0.11666667, 0.11666667, 0.15000000, 0.18333333,
0.21666667, 0.21666667, 0.25000000, 0.25000000, 0.25000000, 0.25000000, 0.28333333, 0.31666667,
0.35000000, 0.38333333, 0.41666667, 0.41666667, 0.45000000, 0.48333333, 0.48333333, 0.71666667,
0.71666667, 0.75000000, 0.75000000, 0.85000000, 0.91666667}.

The second data set concerns the failure times of the air conditioning system of an airplane
(in hours), as reported in [38]. These “failure times” data set is: {23, 261, 87, 7, 120, 14, 62, 47, 225, 71,
246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95}. Again, we make a normalization
operation by dividing these data by 265, to get data between 0 and 1. That is, we work with the
following data set: {0.086792453, 0.984905660, 0.328301887, 0.026415094, 0.452830189, 0.052830189,
0.233962264, 0.177358491, 0.849056604, 0.267924528, 0.928301887, 0.079245283, 0.158490566,
0.075471698, 0.018867925, 0.045283019, 0.452830189, 0.041509434, 0.011320755, 0.052830189,
0.267924528, 0.041509434, 0.052830189, 0.041509434, 0.060377358, 0.339622642, 0.003773585,
0.060377358, 0.196226415, 0.358490566}.
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The third data set is about the maximum flood levels of a particular river in Pennsylvania in
millions of cubic feet per second (mlcf/s). It is reported in [39]. With this unity of measure, the data
are of proportion type, belonging to (0, 1). These “flood levels” data set is: {0.265, 0.269, 0.297, 0.315,
0.3235, 0.338, 0.379, 0.379, 0.392, 0.402, 0.412, 0.416, 0.418, 0.423, 0.449, 0.484, 0.494, 0.613, 0.654, 0.74}

The data sets are basically analyzed in Table 1.

Table 1. Descriptive analysis for the times of infection, failure times and flood levels data sets.

Units n Mean Median Variance Skewness Kurtosis Min Max

Times of infection months/30 28 0.38 0.3 0.06 0.72 -0.75 0.08 0.92
Failure times hours/265 30 0.22 0.08 0.07 1.61 1.64 0.003 0.98
Flood levels mlcf/s 20 0.42 0.41 0.13 0.99 0.25 0.26 0.74

Table 1 indicates that the time of infection data set is right-skewed, with small dispersion and
negative kurtosis. This point means that the curve of the unknown pdf behind these data is flatter than
a normal pdf. Concerning the failure times data set, we can say that is “significantly” right-skewed,
with small dispersion and “significant” kurtosis. For the flood levels data set, we can say that is
right-skewed, with small dispersion and slightly positive kurtosis.

So the nature of the three data sets differs in numerous aspects. This is also illustrated through
the corresponding boxplots in Figure 4, presenting different quantiles characteristics. Note that some
extreme points are present.
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Figure 4. Boxplots of the (a) times of infection data set, (b) failure times data set and (c) flood levels
data set.

We complete the first statistical analysis by the total time on test (TTT) plots of the three data sets
in Figures 5, 6 and 7, respectively.
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Figure 5. Total time on test (TTT) plot of the times of infection data set.
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Figure 6. TTT plot of the failure times data set.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

i/n

T
(i/

n)

Figure 7. TTT plot of the flood levels data set.
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From Figure 5, we see that the TTT curve is concave, which corresponds to an increasing failure
intensity for the times of infection data set. Figure 6 shows that the TTT curve is convex, then concave,
suggesting a U-shape failure intensity for the failure times data set. In Figure 7, the TTT curve is
concave, indicating an increasing failure intensity for the flood levels data set. Thus, these TTT plots
highlighted the different nature of the failure intensity of these three data sets. It should also be
noted that the increasing and U-shaped failure intensities are covered by the unit-Rayleigh model,
which makes it suitable for more suitable analyzes of these data sets.

The quality of fit measurements for the models, as well as the maximum likelihood estimates
(MLEs) and standard errors (SEs) of the parameters involved are collected in Tables 2–4 for the times
of infection, failure times and flood levels data sets, respectively.

Table 2. Criteria and goodness-of-fit measures, maximum likelihood estimates (MLEs) and standard
errors (SEs) for the times of infection data set.

Model − ˆ̀ CAIC HQIC AIC BIC W A MLEs (SEs)

UR −4.4825 −6.8111 −6.557 −6.9650 −5.6328 0.0556 0.3832 0.5221
(β) (0.0986)
Ku −3.0686 −3.9834 −3.7300 −4.1373 −2.8051 0.1109 0.6897 1.6615
(α) (0.3140)
TL −3.8524 −5.551 −5.2975 −5.704 −4.3726 0.1066 0.6678 1.3778
(θ) (0.2603)
B −3.7584 −5.3629 −5.1095 −5.5168 −4.1846 0.1097 0.6839 1.3085
(µ) (0.2151)
TM −2.9334 −3.7131 −3.4596 −3.8669 −2.5347 0.0963 0.6172 0.7936
(λ) (0.2721)

CAIC = consistent Akaike information criterion, HQIC = Hannan–Quinn information criterion, AIC =
Akaike information criterion, BIC = Bayesian information criterion, W = Cramer-von Mises criterion,
A = Anderson–Darling criterion, MLEs = maximum likelihood estimates, SEs = standard errors, UR =
unit-Rayleigh, Ku = Kumaraswamy, TL = Topp–Leone, B = beta, P = power, TM = transmuted.

Table 3. Criteria and goodness-of-fit measures, MLEs and SEs for the failure times data set.

Model − ˆ̀ CAIC HQIC AIC BIC W A MLEs (SEs)

UR −12.7730 −23.4033 −23.0979 −23.5461 −22.1449 0.1253 0.7933 0.1497
(β) (0.0273)
Ku −7.5378 −12.9330 −12.627 −13.0759 −11.6747 0.2153 1.3759 2.2333
(α) (0.4077)
TL −11.9801 −21.8175 −21.5121 −21.9603 −20.5591 0.2379 1.5102 0.6017
(θ) (0.1098)
B −12.0261 −21.9094 −21.6040 −22.0523 −20.6511 0.23084 1.4687 0.6228
(µ) (0.1061)
P −12.7018 −23.2607 −22.9553 −23.4036 −22.0024 0.2068 1.3212 0.4501
(η) (0.0821)
TM −8.4186 −14.6944 −14.3890 −14.8373 −13.4361 0.1764 1.1390 0.8688
(λ) (0.1318)

From Tables 2–4, the unit-Rayleigh model can be considered as the best model for the three data
sets, because it has the smallest values for the CAIC, HQIC, AIC, BIC, W and A statistics. Figures 8–10
confirm this claim through a graphical approach. In them, we plot the estimated pdfs over the adequate
histograms for the times of infection, failure times and flood levels data sets, respectively.
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Table 4. Criteria and goodness-of-fit measures, MLEs and SEs for the flood level data set.

Model − ˆ̀ CAIC HQIC AIC BIC W A MLEs (SEs)

UR −11.0858 −19.9494 −19.9773 −20.1716 −19.1759 0.0882 0.5378 1.1383
(β) (0.2545)
Ku −2.5115 −2.8009 −2.8287 −3.0231 −2.0273 0.12791 0.7639 1.7276
(α) (0.3863)
TL −7.3674 −12.5126 −12.5404 −12.7348 −11.7390 0.1185 0.7122 2.2446
(θ) (0.5019)
B −6.4127 −10.6032 −10.63112 −10.8254 −9.8297 0.1238 0.74163 1.8348
(µ) (0.3444)
P −0.1122 1.9976 2.7711 1.7754 2.7711 0.1220 0.7311 1.1138
(η) (0.2490)
TW −2.7473 −3.2724 −3.3003 −3.4946 −2.4989 0.1347 0.8026 1.5451
(λ) (0.47291)
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Figure 8. Plots of the estimated pdfs of the considered models for the times of infection data set.
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Figure 9. Plots of the estimated pdfs of the considered models for the failure times data set.
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Figure 10. Plots of the estimated pdfs of the considered models for the flood level data set.

As anticipated, Figures 8–10 show the nice fits of the unit-Rayleigh model, which has captured
the main characteristics of the data contrary to most of the competitors.

We complete this graphical analysis by plotting the estimated hrfs of the unit-Rayleigh model
only in Figures 11–13.

Figure 11. Plots of the estimated hrfs for the times of infection data set.

Figure 12. Plots of the estimated hrfs for the failure times data set.
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Figure 13. Plots of the estimated hrfs for the flood levels data set.

As expected with the TTT plot in Figure 5, Figure 11 shows an increasing estimated hrf of the
unit-Rayleigh model for the times of infection data set. Figure 12 indicates a U-shape estimated hrf for
the failure time data set, which is coherent with the observation done in Figure 6. Figure 13 reveals
an increasing estimated hrf for the flood levels data set, as anticipated in Figure 7. We thus see the
importance of the possible U-shape of the hrf of the unit-Rayleigh distribution as evoked above for
such a modelling.

All the preceding points highlight the undeniable capacities of the unit-Rayleigh model in the
adjustment of various data. A possible continuation of this work may be the use of the unit-Rayleigh
distribution for the construction of general families of distributions, through composition techniques or
others, the construction of regression models including characteristics with values on the unit interval
through an appropriated link function (see [40]). The presented bivariate versions of the unit-Rayleigh
distribution can have applications in the treatment of compositional data with values over (0, 1)2

(see [32]). All of these research scopes remain to be developed; we leave it for future investigations.

5. Conclusions

In this article, we have shown that the unit-Rayleigh distribution is not only a special case of the
unit-Weibull distribution like many others, discussing specific motivations, interests, theoretical results,
and practical benefits. In particular, numerous important functions and measures have closed-form
expressions that can be useful for various probability and statistical purposes. The most relevant
theoretical facts was a detailed analysis of the main functions, results on some stochastic ordering,
the expressions of the incomplete and probability weighted moments, as well as those of the Tsallis
entropy and reliability coefficient, various properties on the order statistics, and a list of potential
bivariate extensions. An applied work has shown how the unit-Rayleigh distribution can be used in
practice, with a quite simple estimation of the unique unknown parameter by the maximum likelihood
technique. Based on three real data sets, we have proved empirically that it can be superior to other
well-reputed one-parameter unit distributions, namely the one-parameter Kumaraswamy, Topp–Leone,
one-parameter beta, power and transmuted distributions. We hope that this study will be able to
convince applied statisticians, and readers in general, that the unit-Rayleigh distribution can be used
effectively in different fields dealing with unit data.
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