
mathematics

Article

Optimal Replenishment Policy for Deteriorating
Products in a Newsboy Problem with Multiple
Just-in-Time Deliveries

Abu Hashan Md Mashud 1, Hui-Ming Wee 2,* , Chiao-Ven Huang 2 and Jei-Zheng Wu 3,*,†

1 Department of Mathematics, Hajee Mohammad Danesh Science and Technology University,
Dinajpur 5200, Bangladesh; mashud@hstu.ac.bd

2 Department of Industrial and Systems Engineering, Chung Yuan Christian University,
Chungli 32023, Taiwan; jackjcv@yahoo.com.tw

3 Department of Business Administration, Soochow University, 56 Section 1, Kuei-yang Street, Taipei 10048, Taiwan
* Correspondence: weehm@cycu.edu.tw (H.-M.W.); jzwu@scu.edu.tw (J.-Z.W.);

Tel.: +886-3265-4409 (H.-M.W.); +886-2311-1531 (J.-Z.W.)
† If you are interested or have any doubt of this article, please contact Jei-Zheng Wu (jzwu@scu.edu.tw) first.

Received: 4 October 2020; Accepted: 22 October 2020; Published: 6 November 2020
����������
�������

Abstract: Product deterioration is a common phenomenon and is overlooked in most contemporary
research on the newsboy problem. In this study, we have considered product deterioration in a
production–inventory newsboy model based on multiple just-in-time (JIT) deliveries. This model is
solved by a classical optimization technique for the manufacturer production size, wholesale price,
replenishment plan, and retailer order policy using a distribution-free approach. Moreover, in order
to improve business and entice more customers, a return policy and a post-sale warranty policy is
adopted in the model. Theoretical development and numerical examples are provided to demonstrate
the validity of this approach.

Keywords: production inventory; newsboy model; deteriorating items; distribution free

1. Introduction

Demand is considered a crucial attribute in inventory research in the present competitive and
transparent business. The uncertain product demand is an important factor in products with a short life
cycle. For instance, some apparel goods, some electronic devices (e.g., computers, mobile phones, TVs,
fridges, etc.), and some food items have uncertain demand as well as short life cycles. Predicting demand
accurately is critical in satisfying customer demand. However, in every business, the retailer may face
shortages or overstocking problems due to this inaccurate demand prediction; this leads to a loss of
business. In order to deal with the uncertain demand problem, a newsboy model which considers the
stochastic or exogenous demand is used. For products with stochastic demand, retailers usually adopt
newsboy models to determine the optimal ordering decisions. In recent years, variable demand [1],
fuzzy demand [2], and price-sensitive demand [3] have received more attention by researchers.
The newsboy problem is a classical inventory problem that is worth studying from both theoretical and
practical perspectives [4,5]. It is generally applicable for decision making in the apparel and sporting
equipment industries [6–8]. In this study, we address the distribution-free newsboy problem [9].

Deterioration is a common phenomenon for most products. For instance, food items, vegetables,
electronics items, etc., deteriorate over time. A synergy between product deterioration and demand has
been studied. For uncertain demand and high deterioration rate, inventory management has become
more difficult for the retailer. When demand is known, it is easier for a retailer to manage deteriorating
items. Hence, an important question is how to deal with deteriorating items with uncertain demand.
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In our model, we proposed a newsboy model considering product deterioration and uncertain demand.
The study can provide some managerial insights for products with the mentioned characteristics.

The primary goal of this study is to develop a strategy to derive an optimal production size
when the wholesale price is known. We have taken into consideration how the wholesale price and
post-sale warranty influence production size and the material replenishment policy. Various integrated
inventory models considering return policies for retailers have been developed due to imperfect
products in a production process, e.g., failure of the machine, unskilled labor, and bad weather [2].
Our study considers deteriorating items for the newsboy problem and proposes an integrated
retailer–manufacturer inventory model. Some of the major contributions of the study are:

• We derive the optimal wholesale price and production strategies for a newsboy problem model.
• We incorporate product deterioration into the newsboy problem model.
• We simultaneously include repair cost, warranty cost, setup cost, item cost, storage cost,

and JIT delivery.

The remainder of this study is structured as follows: The literature review is provided in Section 1.1.
The problem description, notation, and assumptions are presented in Section 2. Section 3 introduces
model descriptions and mathematical formulations. In Section 4, the optimization technique and
its algorithm are discussed. Numerical examples are given in Section 5. Finally, Section 6 provides
managerial insights, conclusions, and suggestions for future studies.

1.1. Literature Review

Deterioration of products is a crucial factor in today’s competitive and transparent business.
Deterioration is the decay, spoilage, obsolesce, or evaporation of products which degrade the quality
and quantity of the products [10–13]. Ghare and Schrader [14] were the first authors to introduce
a deteriorating inventory model. Later, Covert and Philip [15] and Raafat et al. [16] developed
the concept of product deterioration under various assumptions. Wee [17] proposed a production
inventory model with partial backlogged shortages, and Mashud et al. [10] considered different types
of deterioration with shortages. Wee and Jong [18] examined the just-in-time (JIT) delivery strategy
for deteriorating items in an integrated production–inventory model, while Perez and Torres [19]
developed a multiple-delivery inventory model. Their models considered product deterioration and
the time value of money with JIT delivery. Yang and Wee [20] developed an inventory model for
deteriorating items based on a production model for multiple lot-sizing problems. By incorporating
pricing strategies into a single-period supply chain with return policies, Lau and Lau [21] have studied
the effect of uncertain demand in the retail market on retailers’ and manufacturers’ estimated profits.
Lariviere and Porteus [22] incorporated market size and growth into a model to investigate how these
two attributes affect profits. Abdel and Ziegler [23] recommended a two-echelon inventory model
without shortage. This approach features variable holding costs with fixed demand for a perishable
item for multi-echelon supply chains. In the models, the Lagrange function is applied to obtain
the optimal order quantity for manufacturers and retailers. Yoo et al. [24] introduced a model for
imperfect items under a return policy, and Sarkar et al. [25] provided a remanufacturing and returnable
model for a closed-loop supply chain. Eppen [26] proposed a model of N locations with normal
distribution demand with a penalty cost. Chang and Lin [27] modified Eppen’s model by incorporating
transportation cost; their results indicated that the projected holding and penalty costs were higher
under decentralized coordination than under centralized coordination. However, for most cases,
centralized coordination is preferable to decentralized coordination due to lesser overall costs [28].
According to Cherikh [28], the excess demand is distributed to other locations due to a stock-out
situation, while this proposed model does not allow any stock-out situations through some continuous
reviews of inventories. Another important contribution that stemmed from Cherikh [28] is that the
model considers multi-locations in the newsboy problem, while this proposed model considers a
multi-player newsboy model.
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The effect of different demand patterns has impacted the distribution-free newsboy problem where
the demand distribution is unknown. Some studies have investigated the distribution-free newsboy
problem with the mean (µ) and variance (σ2). Gallego and Moon [6] explored the circumstances for
constrained multiple products with random yields and constant ordering costs. Numerous researchers
have indicated that demand behaves exogenously for varying demand atmospheres [21,29–34].
For instance, if one plugs the trade credit approach in the model then it will trigger the demand for a
certain period, which is known as exogenous behavior of demand.

Quality management and manufacturing strategy are primary manufacturing concerns.
JIT delivery is a manufacturing methodology in which quality management and manufacturing
strategy are incorporated into the overall organizational function. Sakakibara et al. [35] investigated
the influence of JIT manufacturing and infrastructure on manufacturing performance. They found that
quality management, manufacturing strategy, and workforce management are critical in business
competitiveness. Quality management, manufacturing strategy, and purchasing are closely linked in JIT
manufacturing. Nassimbeni [36] identified three factors correlated to purchasing, namely synchronization,
interaction, and design. To avoid potential production disruptions and wastage, and to ensure
quality and quick recovery, small deliveries should be implemented alongside appropriate
production–inventory strategies [37,38]. In production–inventory strategies, another important
factor which has been discussed recently is the sustainability of the economic growth, which mainly
depends on numerous parameters [39–42]. Kung et al. [43] considered a production–inventory system
for deteriorating items with machine breakdown, inspection, and partial backordering.

Due to the possible defective products as a result of an imperfect production process [44–48], the company
may provide a product warranty; the warranty costs are influenced by the product quality and price.
Daryanto and Wee [49] were among the first authors to investigate the joint effect of imperfect
production for deteriorating items, and Shaw et al. [50] developed an inventory model for repairable
deteriorating items. Hasan et al. [51] considered an imperfect production system for deteriorating
agricultural products where product separation is conducted to segregate perfect ones from defective
ones. Yeh et al. [52] considered a free warranty service in their production–inventory model, and Wang
and Sheu [53] converted this free warranty process into a discrete unit for an imperfect production
system. Both of these models minimized the optimal production lot size, and the total supply chain
cost. Moreover, Wang [54] developed a production model with a free warranty period and Lin [55]
studied the effects of warranty and quantity discounts for deteriorating items with allowable shortages.
Ullah et al. [56] investigated the newsboy problem with a discount policy under various pricing
strategies. However, from our literature search, few studies have developed a newsboy problem model
for deteriorating items with an imperfect process.

2. Problem Description, Assumptions, and Notation

In this section, the problem description of the proposed study is introduced along with the
associated assumptions and notation.

2.1. Problem Description

In the proposed production–inventory model (PIM), there are M-types of raw material in the
manufacturing process (Figure 1). The finished product must be delivered to the retailer before the
expiration date. After the expiration date, the products must be discharged at a salvage value.
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Figure 1. Schematic of the production–inventory model with various activities. Source: modified from [57].

The retailer can make ordering decisions, but price is not under their control. In our model, the retailer’s
ordering costs are considered to be proportional to the ordering capacity, which affects the logistics cost.
Different from previous studies, our model considers free repair or replacement by the manufacturer for
defective items, as well as the manufacturer’s repair cost, warranty cost, and JIT benefit.

The study is divided into two phases. Phase 1 is related to the retailer’s order strategy and phase
2 focuses on the manufacturer’s strategy and associated circumstances.

2.2. Assumptions

The following assumptions are adopted to formulate the problem:

a. Total orders are calculated by the manufacturer based on the retailer’s orders according to the
production lot size for the following cycle while the demand is considered unknown.

b. Material inventory is controlled through periodic reviews; backlogging is forbidden to
prevent shortages.

c. A static wholesale price is set by the manufacturer during replenishment, and the newsboy rule
is followed by the retailer to regulate the order quantity with reference to the average demand,
total salvage cost, and wholesale price.

d. The lead-time for raw materials is fixed, and the transportation time is considered to be zero.
e. The production rate is larger than the demand rate.
f. The deterioration rate is constant, and the deterioration rate is considered only after the product

has been received into inventory.
g. No information gaps are considered during negotiations.
h. Replenishment is instantaneous.
i. The production procedure is initially controlled; after intervention, it may vary between

controlled and out of control. The intervention time imperfect production process is distributed
exponentially with known mean and variance.

j. Imperfect production is not identified until the completion of an inspection process.
k. JIT production and JIT multiple-delivery strategies are considered.

2.3. Notations

Table 1 presents the notations used in the model.
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Table 1. Notations.

µc The mean demand ϑ1
Ratio of non-conforming products when the

procedure is under control

σ Standard deviation parameter ϑ2
Ratio of non-conforming products when the

procedure is out of control

S = (1 + L1)Cp Retailer’s selling price of products CR Per unit cost for rework procedure

Ls = L2Cp Per unit value of lost sale amount Cw Per unit cost for item warranty

V = (1− L3)Cp Per unit value of salvage amount Gm Per unit target profit

Crj Item cost of material j per unit u Per unit item production cost

U = L4Cp Per unit transportation cost H Per unit holding cost for manufacturer

A1 = L5Cp Per unit ordering items cost L1
j

The variation of lead-time for material j
(=maximum lead-time -average lead-time)

CS Cost of setup for production Cmj Ordering cost for material j

P Production rate hdmj Additional cost to handle the material j

Θ Rate of deterioration hdmj Additional cost to handle the material j

K Duration of warranty Hrj Holding cost for materials

A0 Constant ordering cost α j Quantity of material j required per unit product

F Constant transportation cost rj The decrease fraction for material j

Cp Per unit purchase cost L1 Constant coefficient of selling price

L2 Constant coefficient of lost sale amount L3 Constant coefficient of salvage amount

L4 Constant coefficient of transportation cost L5 Constant coefficient of ordering cost

3. Model Development

The mathematical form of the proposed model is presented in Section 3.1 along with some
associated lemmas to support the applicability of the model. In Section 3.2, the cost for the manufacturer
is provided along with the respective cost function. Finally, the material cost for the manufacturer is
provided in Section 3.3.

3.1. Mathematical Form of the Model

Demand is primarily affected by wholesale price in most practical cases, and this is the most
critical factor for decision making when considering ordering a new product. Moreover, demand is
usually unknown for seasonal products because of the unknown wholesale price. The distribution-free
approach can be adopted to investigate this problem. The primary aim of this study was to develop a
distribution-free approach for a two-echelon PIM. We assumed that demand follows the worst possible
distribution, = and an unknown distribution is denoted by G. Let DR represent the random demand
G ∈ =with mean µ and variance σ2.

To determine the optimal ordering quantities, the following relations can be derived:

S = (1 + L1)CP, 0 < L1 < 1

V = (1− L3)CP, 0 < L3 < 1;

LS = L2CP, 0 < L2 < 1;

U = L4CP, 0 < L4 < 1;

A1 = L5CP, 0 < L5 < 1.

The retailer determines the order quantity based on the newsboy policy; the order quantity
(
QN

)
fulfills the following formula:

ERG = SE
(
min

{
QN, DR

})
+ VE

(
QN
−DR

)+
(1a)
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ECG = A0 + F + (A1 + CP + U)QN + LSE
(
DR
−QN

)+
(1b)

EPG = ERG
− ECG (2)

Equation (2) can be restated by substituting the following equations:

E
(
min

{
QN, DR

})
= DR

−

(
DR
−QN

)+
(
DR
−QN

)+
=

(
DR
−QN

)
+

(
QN
−DR

)+
(
QN
−DR

)+
=

(
QN
−DR

)
+

(
DR
−QN

)+
Thus, Equation (2) becomes:

ERG = Sµ− SE
(
DR
−QN

)+
+ VE

(
QN
−DR

)+
−

{
A0 + F + (A1 + CP + U)QN + LSE

(
DR
−QN

)+}
EPG = CP

{
(L1 + L3 − L2)µ− (L1 + L3)E

(
DR
−QN

)+
− (L3 − L2 − L4 − L5)QN

− (L2)E
(
QN
−DR

)+}
−A1 − F

(3)

To maximize Equation (3), the following lemmas developed by Gallego and Moon [6] are applied.
In lemmas 1 and 2, they presented a very compact optimality proof of Scarf’s ordering rule for the

newsboy problem where only the mean and the variance of the demand are known.

Lemma 1.

E
(
DR
−QN

)+
≤

[σ2 +
(
QN
− µc

)2
] 1

2
−

(
QN
− µc

)
2

Lemma 2.

E
(
QN
−DR

)+
≤

[σ2 +
(
µc −QN

)2
] 1

2
−

(
µc −QN

)
2

Equation (3) can be revised using lemmas 1 and 2 as follows:

EPG
≥CP

(L1 + L3 − L2)µ− (L1 + L3)

[
σ2+(QN

−µc)
2
]1/2

−(QN
−µc)

2

− (L3 − L2 − L4 − L5)QN
− (L2)

[
σ2+(µc−QN)

2
]1/2

−(µc−QN)
2

−A1 − F

(4)

We then maximize the lower bound of Equation (4) by minimizing the following function:

ΘEpG =

(L3 − L2 − L4 − L5)QN + (L1 + L3)

[
σ2+(QN

−µc)
2
]1/2

−(QN
−µc)

2

+(L2)

[
σ2+(µc−QN)

2
]1/2

−(µc−QN)
2


= 1

2

{
(L3 − L2 − L1 − 2(L4 + L5))QN + (L3 + L2 + L1)

[
σ2 +

(
QN
− µc

)2
]1/2

+(L3 − L2 + L1)µc
}

(5a)
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The wholesale price influences the ordering decision. Therefore, we take the first derivative of ΘEpG

with respect to QN and set it equal to zero; after deterioration is taken into consideration, the result is:

QN∗ =
1

1− θ

µc +
σ(R/Z)[

1− (R/Z)2
]1/2

 (5b)

where R
Z =

L3−L2−L1−2(L4+L5)
L3+L2+L1

3.2. Manufacturing Cost

According to Figure 2, the following differential equation represents the inventory level during
the manufacturer’s production period:

dΨS(t1)

dt1
= P− θ ·ΨS(t1)0 ≤ t1 ≤ Tp (6)
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Figure 2. Manufacturer inventory system for deteriorating items in a single-period
production–inventory model (PIM).

Given the boundary conditions ΨS(0) = 0 and ΨS(TP) = QN
v [58], the solution of Equation (6)

can be written as follows:
ΨS(t1) = P

θ

{
1− e−θt1

}
ΨS

(
Tp

)
= QN

v = P
θ

{
1− e−θTp

} (7)
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Because θ << 1 and TP < 1, e−θTp can be replaced by 1− θTP + 1
2! (θTP)

2. The fraction error for the
third term in the Taylor series is given by

1
2! (θTP)

2

1− θTP + 1
2! (θTP)

2

When θTP ≤ 0.03, the error is approximately 0.0464%. The error is negligible for terms higher
than the third order in the Taylor series.

Next, the Taylor expansion can be used to estimate QN
v:

P
θ

θTP −
(θ · TP)

2

2

 = QN
v (8)

From Equations (7) and (8), when the order quantities of the manufacturer and retailer are
connected by setting QN

v = QN∗ and letting QN∗ = QN/(1− θ), the time required to complete
production is determined as follows:

TP =
1−

√
1− 2θQN∗

P

θ
=

1−
√

1− 2θQN

P(1−θ)

θ
(9)

Proposition 1. When the deterioration rate tends to zero, TP →
QN

P .

The proof of this proposition is provided in Appendix A.
Considering the deterioration rate, the manufacturer’s storage cost is

H
TP∫
0

ΨS(t1)dt1 = H
TP∫
0

P
θ

{
1− e−θt1

}
=

HP[θTP−1+e−θTp ]
θ2 ≈

HPT2
P

2

(
1− θTP

3

) (10)

Because the production process is imperfect, the occurrence time is assumed to be exponentially
distributed with a mean of 1/µ; that is,

f (χ) = µe−µχ and 1− F(χ) = e−µχ

The number of the nonconforming items φ is obtained from the following relation with the
production time.

φ =

{
ϑ1PTP, whenχ ≥ TP

ϑ1Pχ+ ϑ2P(TP − χ), whenχ < TP
(11)

Because µ is extremely small, according to Equation (11), the expected number of nonconforming
products is

E(φ) =

 TP∫
0
[ϑ1Pχ+ ϑ2P(TP − χ)] f (χ)dχ+ ϑ1P

∞∫
TP

TP f (χ)dχ


=


ϑ2PTP + (ϑ1 − ϑ2)P

TP∫
0

e−µXdχ




=


ϑ2PTP + (ϑ1 − ϑ2)P

TP∫
0

(
∞∑

m = 0

(−µχ)m

m!

)
dχ




≈

{[
ϑ1PTP −

(ϑ1−ϑ2)Pµ
2 (TP)

2
]}

(12)
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In this study, product quality is the responsibility of the manufacturer and should be reviewed
periodically [36]. The frequent JIT deliveries enable nonconforming processes to be rapidly detected
and addressed, thus, this reduces the number of nonconforming items. The decrease in number of
nonconforming objects is expected to be related to the delivered material frequency. The cost of repair
can be represented as:

RC = CR

E(φ)
1−

M∑
j = 1

r j
(
n j − 1

)
 (13)

For the duration of its use (i.e., the warranty period), the hazard rates for conforming and

nonconforming items are v1(τ) and v2(τ), respectively, and the mean failure rates are h1 =
K∫

0
v1(τ)dτ

and h2 =
K∫

0
v2(τ)dτ, respectively. The cost of the free-repair warranty is

PO = Cw


E(φ)

1−
M∑

j = 1

r j
(
n j − 1

)
h2 +

QN
−

E(φ)

1− M∑
j = 1

r j
(
n j − 1

)

h1

 (14a)

If the hazard rates of conforming and nonconforming products follow a Weibull distribution

(please see [43]), then the mean failure rates are h1 =
K∫

0
v1(τ)dτ =

K∫
0
(λ
ρ1
1 ρ1tρ1−1)dt = (λ1K)ρ1 and

h2 =
K∫

0
v2(τ)dτ =

K∫
0
(λ
ρ2
2 ρ2tρ2−1)dt = (λ2K)ρ2 , respectively.

The post-sale warranty cost is derived as follows:

PO = Cw


E(φ)1−

M∑
j = 1

r j
(
n j − 1

)(h2 − h1) + PTPh1


= Cw


(ϑ1PTP −

(ϑ1−ϑ2)Pµ
2 (TP)

2
)1−

M∑
j = 1

r j
(
n j − 1

)(h2 − h1) + PTPh1


(14b)

3.3. Material Cost

From Figure 2, the inventory level for material j can be expressed using the following differential
equation:

dΨmj(t)

dt
= −α jP− θΨmj(t)0 ≤ t ≤ TP/n j (15)

For the boundary condition Ψmj
(
TP/n j

)
= 0, Equation (15) can be solved as follows:

Ψmj(t) =
α jP
θ

{
e[θ(TP/n j−t)]

− 1
}

(16)

From Equation (2), Ψmj(0) = QN′
mj, and assuming very small θ, the delivery batch size can be

determined as follows:

QN′
mj =Ψmj(0) =

α jP
θ

{
e
[
θTP
nj

]
− 1

}
≈ α jP

TP

n j

[
1 +

θTP

2n j

]
(17)

Additional handling costs include tax and overheads are given by:

M∑
j = 1

[
hdmjα jn j

(
PTP

n j

)(
1 +

θTP

2n j

)]
(18)
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The total storage cost for material j is

Hrjn j

TP/n j∫
0

Ψmj
(
t j
)
dt j =Hrjn j

TP/n j∫
0

α jP
θ

{
e

[θ(
TP
nj
−t j)]
− 1

}
dt j

=
Hrjn jα jP

θ ·

{
−1−θTP/n j+e(θTP/nj)

θ

} (19)

The total profit for the manufacturer can be written as follows:

(CP−Gm)
1−θ

µc +
σ( R

Z )[
1−( R

Z )
2
] 1

2

 =
M∑

j = 1

[
hdmj

α jn jP
θ

[
e
(

PTP
nj

)
− 1

]]

+

 M∑
j = 1

[n jCmj+
n j g1 j
θ ·

{
−1−θTP/n j+e(θTP/nj)

θ

}
+

n j g2 j
θ

{
e
[
θTP
nj

]
− 1

}
× ( g3 j +

g4 jTP
2

)]
+CS+

HP[θTP−1+e−θTP ]
θ2

+

g5

1−
M∑

j = 1
r j
(
n j − 1

)+ g7

TP

−g6

1−
M∑

j = 1
r j
(
n j − 1

)T2
P



(20a)

This problem is equivalent to the following minimization problem:

Minimize TPG(n) =

M∑
j = 1

[
hdmj

α jn jP
θ

[
e
(

PTP
nj

)
− 1

]]
+

 M∑
j = 1

[
n jCmj +

n j g1 j
θ ·

{
−1−θTP/n j+e(θTP/nj)

θ

}
+

n j g2 j
θ

{
e
[
θTP
nj

]
− 1

}
×

(
g3 j +

g4 jTP
2

)]
+CS+

HP[θTP−1+e(−θTP)]
θ2

+

g5

1−
M∑

j = 1
r j
(
n j − 1

)+ g7

TP−g6

1−
M∑

j = 1
r j
(
n j − 1

)T2
P


(20b)

where n = (n1, n2, . . . , nM), g1 j = α jPHrj, g2 j = α jP, g3 j = L1
j
(
Crj + Hrj

)
+ Crj,

g4 j =
(
Crj + Hrj

)
, j = (1, 2, . . . , M), g6 =

[
[Cw(h2−h1)+CR](ϑ1−ϑ2)Pµ

2

]
g7 =

{
CwPh1 + µP

}
, g5 = (ϑ1P)(CR + Cw(h2 − h1))

and TP = 1
θ

{
1−

√
1− 2θQN

P(1−θ)

} (20c)

The value of g1j is determined based on the material storage cost for material j, g2j is determined
based on the production cost, g3j is determined based on the unit cost of the material j, g4j is determined
based on the storage cost rate of the material j, g5 is determined by the repair cost, and g6 is determined
by the post-sale warranty cost.

4. Theoretical Derivations

To maximize the supply chain profit, the optimal wholesale price
(
C∗P

)
for the manufacturer and

the optimal replenishment quantity for materials n∗ must be regulated. The optimal ordering decisions
are determined by the retailer. Suppose that TPGj

(
n j

)
represents the total profit for a single material;

the replenishment quantity n∗ can then be determined by minimizing TPG(n).
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Property 1.
If

(
Cmj + g6r jT2

P

)
> g5r jTP, then there exists n∗j such that

n∗j
(
n∗j − 1

)
≤

{[
g1 j + θ

(
hdmjP + g2 j

(
g4 jTP/4 + g3 j/2

))]}
2
[
Cmj − r jTP(g5 − g6TP)

] · T2
P ≤ n∗j

(
n∗j + 1

)
,

where j = 1 . . . . . .Mand TPG
(
n∗1 − 1, n∗2 − 1, . . . , n∗M − 1, CP

)
≥ TPG

(
n∗1, n∗2, . . . , n∗M, CP

)
≤ TPG

(
n∗1 + 1, n∗2 + 1, . . . , n∗M + 1, CP

)
Proof. TPG(n) is estimated using the Taylor expansion after neglecting the exponential terms of order
higher than two.

Choose n j = n∗j, j = 1 . . . . . .M, such that

TPG
(
n∗1 − 1, n∗2 − 1, . . . , n∗M − 1

)
≥TPG

(
n∗1, n∗2, . . . , n∗M

)
≤ TPG

(
n∗1 + 1, n∗2 + 1, . . . , n∗M + 1

)
(21a)

Because ni does not depend on n j for i , j and n j is independent of CP, then n∗ can be derived.
For the total profit for material j, TPGSj

(
n j

)
the following relationships hold:

TPGS1
(
n∗1 − 1

)
≥TPGS1

(
n∗1

)
≤ TPGS1

(
n∗1 + 1

)
TPGS2

(
n∗2 − 1

)
≥TPGS2

(
n∗2

)
≤ TPGS2

(
n∗2 + 1

)
TPGSM

(
n∗M − 1

)
≥TPGSM

(
n∗M

)
≤ TPGSM

(
n∗M + 1

) (21b)

The necessary condition for the optimal solution is given as follows:

n∗j
(
n∗j − 1

)
≤

{[
g1 j + θ

(
hdmjP + g2 j

(
g4 jTP/4 + g3 j/2

))]}
2
[
Cmj − r jTP(g5 − g6TP)

] · T2
P ≤ n∗j

(
n∗j + 1

)
(21c)

where j = 1 . . . . . .M. �

Based on Equation (21), when Cmj − r jTP(g5 − g6TP) > 0, the necessary condition is found.
The repair cost, the post-sale warranty cost, and the material ordering cost affect the material
delivery decision.

Property 2. As the deterioration rate tends to zero, the optimal number of deliveries for material j is given by

n j

(
n j − 1

)
≤

g1 j

2
[
Cmj − r jTP(g5 − g6TP)

] · T2
P ≤ n j

(
n j + 1

)
(22)

Proof. When θ = 0 is substituted into (21c), then θ
(
hdmjP + g2 j

(
g4 jTP/4 + g3 j/2

))
→ 0 and,

consequently, we get n j

(
n j − 1

)
≤

g1 j

2[Cmj−r jTP(g5−g6TP)]
· T2

P ≤ n j

(
n j + 1

)
which completes the proof.

�

Property 2 indicates that the ordering cost, production rate, storage cost rate, repair cost, and
warranty cost influence delivery decision making.
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4.1. The Sufficient Condition

When the Hessian matrix ∇2TPG(n) is positive definite, a sufficient condition for optimality
is achieved. Based on the property of ∂2TPG(n)/∂ni∂n j = 0, i , j (Appendix B), the Hessian

matrix can be easily obtained. When the optimal points n∗ =
(
n∗1, n∗2, . . . , n∗M

)
are substituted into

TPG(n), the optimal wholesale price C∗P can be established under a given profit, as follows:

QN∗
·Gm = QN∗

·CP − TPG(n∗) (23)

4.2. Algorithm

Due to the complexity of the total profit model, a heuristic algorithm procedure is proposed to
obtain the optimal values.

Step 1: Input all of the related values.
Step 2: When the condition

(
Cmj + g6r jT2

P

)
> g5r jTP is satisfied, there exists n∗j for each material;

if this condition holds, proceed to Step 3; otherwise, proceed to Step 7.

Step 3: Check n∗j

(
n∗j − 1

)
≤

{
[g1 j+θ(hdmjP+g2 j(g4 jTP/4+g3 j/2))]

}
2[Cmj−r jTP(g5−g6TP)]

· T2
P ≤ n∗j

(
n∗j + 1

)
where j = 1 . . .M to

determine the optimal value of n∗j.
Step 4: When n∗j j = 1 . . .M fulfills the sufficient condition for the optimal result,

then n∗ =
(
n∗1, n∗2, . . . , n∗M

)
is the optimal result; otherwise, proceed to Step 7.

Step 5: The production lot size can be determined from QN∗ = 1
1−θ

{
µc +

σ(R/Z)

[1−(R/Z)2]
1/2

}
,

where R
Z =

L3−L2−L1−2(L4+L5)
L3+L2+L1

.

Step 6: The total cost is determined from Equation (20b), and CP is calculated from Equation (20a).
Step 7: End.

5. Numerical Examples and Discussion

The preceding theoretical development is verified through the numerical examples.
Scenario 1: Assume a constant deterioration rate
On the basis of the inputs listed in Table 2, the optimal solution is shown in Table 3.

Table 2. Numerical examples.

Parameters Example 1 Example 2

µc 700 800
σ 60 70
L1 0.64 0.64
L2 0.6 0.6
L3 0.58 0.58
L4 0.04 0.04
L5 0.05 0.05
CS 1200 1000
P 1200 1200
θ 0.01 0.01
µ 0.015 0.015
K 2 2
λ1 0.01 0.01
λ2 0.015 0.012
ρ1 0.8 0.8
ρ2 0.9 0.8
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Table 2. Cont.

Parameters Example 1 Example 2

A0 230 230
F 600 600
ϑ1 1/320 1/360
ϑ2 1/220 1/240
CR 40 40
Cw 100 90
Gm 25 25
u 2 2
H 4 4.5
L1

1 0.002 0.0027
L1

2 0.0025
Cm1 285 300
Cm2 310
hdm1 13 10
hdm2 13
Cr1 5 4
Cr2 4.6
Hr1 3.5 3
Hr2 4
α1 3 2
α2 3
r1 0.0015 0.001
r2 0.001

Table 3. Optimal solutions of the numerical examples.

Value of n* Value of C*
P Total cost TPG(n*)

Example 1 n* (� 2.68) = 3 59.74 23,397.27

Example 2 (n∗1, n∗2) � (2.26, 3.14) = (2,3) 76.62 39,671.64

From the necessary condition stated in Property 1, the optimal number of material deliveries is
three and according to the Hessian matrix, the optimal total profit is 152.15. Therefore, this number
of material deliveries is an optimal and unique solution. The optimal solution for multiple materials
is also presented in Table 3. Multiple material deliveries incur a higher cost than a single delivery.
However, the cost of purchase is also slightly increased. In practice, the smooth operation of a
manufacturing site requires multiple material deliveries, and some losses must be incurred.

Scenario 2: Variable deterioration rate
For a variable deterioration rate, the optimal solution demonstrates that increases in the

deterioration rate increase the optimal ordering quantity, selling price, total cost, and optimal number
of material deliveries. This is because when the rate of deterioration is high, a considerable percentage
of the products are lost, along with their related revenues. Table 4 lists various deterioration rates,
and the associated changes to clarify the effect of deterioration on the total cost. This information can
provide insight to management to restrict deterioration in order to secure a favorable profit margin.
Table 4 and Figure 3 illustrate the optimal total cost solutions for various deterioration rates.
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Table 4. Optimal solutions for various deterioration rates.

θ (n*
1,n*

2) C*
P Ordering Sizes Total Cost TPG(n*)

0.10 (3,4) 79.77 848.42 44,527.24
0.05 (3,3) 77.95 803.77 41,737.19
0.01 (2,3) 76.62 771.58 39,671.64
0.005 (2,3) 76.47 767.42 39,427.24
0.001 (2,3) 76.35 764.35 39,233.91
0.0005 (2,3) 76.33 763.96 39,209.88
0.0001 (2,3) 76.32 763.66 39,190.68
0.00001 (2,3) 76.32 763.59 39,186.36
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6. Conclusions

In this study, we propose a two-echelon distribution-free deteriorating production–inventory
model for deteriorating products with imperfect processes. The proposed newsboy problem model
not only incorporates product deterioration, but also JIT multiple deliveries. We have shown some
interesting results for varying deteriorating rates in the numerical analysis. We have observed that any
increase in deterioration rate raises the optimal ordering quantity, selling price, total cost, and optimal
number of material deliveries. Moreover, the model also implemented JIT deliveries which enable
rapid detection and rectification of the nonconforming items; this approach reduces the number
of nonconforming items. In the study, the optimal ordering policies for the retailer are derived.
The results of this study can provide some managerial insights for manufacturers and retailers in
their decision making. Theoretical derivations are provided to demonstrate the concavity of the profit
function. Besides the model development, a solution procedure is provided to assist manufacturers in
determining the optimal wholesale price and replenishing cycle.

The limitations of the study ignore the environmental concerns and assume a single
manufacturer–supplier. For the further research, this study can be extended to consider carbon
footprint, multiple manufacturers, and multiple suppliers. One can also consider preservation
technology to reduce the deterioration rate of the products.
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Appendix A

From Equation (8), the square roots of the production time can be written as

TP1 =
−2P(1− θ) + 2

√
P2(1− θ)2

− 2PθQ(1− θ)

2Pθ(−1 + θ)
=

g1(θ)

F1(θ)

TP2 =
−2P(1− θ) − 2

√
P2(1− θ)2

− 2PθQ(1− θ)

2Pθ(−1 + θ)
=

g2(θ)

F2(θ)

Let g1(θ) = −2P(1− θ) + 2
√

P2(1− θ)2
− 2PθQ(1− θ) and F1(θ) = 2Pθ(−1 + θ); according to

L’Hôspital’s rule,

lim
θ→0

TP1 = lim
θ→0

−2P(1− θ) + 2
√

P2(1− θ)2
− 2PθQ(1− θ)

2Pθ(−1 + θ)
= lim

θ→0

g1(θ)

F1(θ)

= lim
θ→0

dg1(θ)/dθ

dF1(θ)/dθ
=

2P +
2P2(θ−1)−2PQ(1−2θ)√
P2(1−θ)2

−2PθQ(1−θ)

−2P + 4Pθ
= −1 + 1 +

Q
P

=
Q
P

(A1)

Similarly, let g2(θ) = −2P(1− θ)− 2
√

P2(1− θ)2
− 2PθQ(1− θ) and F2(θ) = 2Pθ(−1 + θ); thus,

lim
θ→0

TP2 = lim
θ→0

−2P(1− θ) − 2
√

P2(1− θ)2
− 2PθQ(1− θ)

2Pθ(−1 + θ)
= lim

θ→0

g2(θ)

F2(θ)

= lim
θ→0

dg2(θ)/dθ

dF2(θ)/dθ
= −1− 1−

QN
√

P2
= −2 +

−QN

P
(A2)

We select Equation (A1) as the rational root of the production time.

Appendix B

The revised Hessian matrix is

∇
2TPG(n) =



∂2TPG
∂n2

1
0 0 · · · 0

0 ∂2TPG
∂n2

2
0 · · · 0

0 0
. . . · · ·

...
...

... . . . ∂2TPG
∂n2

M−1
0

0 0 . . . 0 ∂2TPG
∂n2

M


(A3)

Because ∂2TPG
∂n2

j
> 0 and the matrix [ ] j× j are greater than zero, ∇2TPG(n) is positive definite.
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