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Abstract: Due to the applications in many fields, there is great interest in studying partial difference
equations involving functions with two or more discrete variables. In this paper, we deal with the
existence of infinitely many solutions for a partial discrete Dirichlet boundary value problem with the
p-Laplacian by using critical point theory. Moreover, under appropriate assumptions on the nonlinear
term, we determine open intervals of the parameter such that at least two positive solutions and an
unbounded sequence of positive solutions are obtained by using the maximum principle. We also
show two examples to illustrate our results.
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1. Introduction

Let Z, R, N denote all integers, real numbers and positive integers, respectively. Define Z(a, b) =
{a, a + 1, · · · , b} for any a, b ∈ Z with a ≤ b.

In this paper, we consider the following problem, namely (S f
λ)

∆1(φp(∆1x(i− 1, j))) + ∆2(φp(∆2x(i, j− 1))) + λ f ((i, j), x(i, j)) = 0, (i, j) ∈ Z(1, m)×Z(1, n),

with boundary conditions

x(i, 0) = x(i, n + 1) = 0, i ∈ Z(0, m + 1),

x(0, j) = x(m + 1, j) = 0, j ∈ Z(0, n + 1),

where m and n are given positive integers, λ is a positive real parameter, ∆1 and ∆2 are
forward difference operators, respectively defined by ∆1x(i, j) = x(i + 1, j) − x(i, j) and
∆2x(i, j) = x(i, j + 1) − x(i, j), ∆2

1x(i, j) = ∆1(∆1x(i, j)) and ∆2
2x(i, j) = ∆2(∆2x(i, j)), φp is

the p-Laplacian operator given by φp(s) = |s|p−2s, 1 < p < +∞ and f ((i, j), ·) ∈ C(R,R) for all
(i, j) ∈ Z(1, m)×Z(1, n).

The study of difference equations has captured special attention, which is due to the fact that
difference equations are widely used as mathematical models in discrete optimization, physics,
population genetics, etc. [1–4]. Many researchers have done in-depth study on the difference equation
and use critical point theory to acquire some wonderful conclusions. For example, some results on
homoclinic solutions [5–13], periodic solutions [14–16], ground state solutions [17,18] and solutions for
boundary value problems [19–29] have been achieved. Especially, in recent years, owing to more and
more applications of partial difference equation mathematical models in many fields, such as economy,
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computer science and control systems, there has aroused a great deal of interest in studying partial
difference equations involving functions with two or more discrete variables. With the increase of
research, many results have been obtained [30–32].

In [30], Shapour Heidarkhani and Maurizio Imbesi considered the following partial discrete
Dirichlet problem (E f

λ)

∆2
1u(i− 1, j) + ∆2

2u(i, j− 1) + λ f ((i, j), u(i, j)) = 0, (i, j) ∈ Z(1, m)×Z(1, n),

with boundary conditions
u(i, 0) = u(i, n + 1) = 0, i ∈ Z(1, m),

u(0, j) = u(m + 1, j) = 0, j ∈ Z(1, n).

The authors transformed the matrix form into the one-dimensional vector form, and obtained the
existence of at least three solutions for problem (E f

λ) by utilizing two critical point theorems.

In [31], Marek Galewski and Aleksandra Orpel obtained some existence results of (E f
λ) in light of

variational methods and some monotonicity results.
Maurizio Imbesi and Giovanni Molica Bisci [32] determined unbounded intervals of parameters

such that (E f
λ) admitted either an unbounded sequence of solutions or a pairwise distinct sequence of

solutions by the critical point theory.
However, until now, there is very little research on the partial difference equations with the

p-Laplacian. For this reason, this paper is to study the existence of multiple solutions for partial
discrete Dirichlet problems involving the p-Laplacian. In this paper, in the framework of variational
methods, we consider the two-dimensional discrete problem (S f

λ) by using critical point theory and we
come up with more specific sets of parameters such that the existence of infinitely many solutions for
problem (S f

λ) can be obtained. Under some proper assumptions, we deal with the existence of multiple

solutions of problem (S f
λ) by applying Theorem 3.3 of [33] in Theorem 2. Furthermore, we show that

problem (S f
λ) admits at least two positive solutions in Theorem 3. In addition, we obtain that problem

(S f
λ) admits an unbounded sequence of solutions by utilizing Theorem 2.1 of [34] in Theorem 4.

The structure of the rest of this paper is as follows. In Section 2, some basic lemmas and
propositions are showed. In Section 3, we give our main results. In Section 4, two examples are
presented to explicate our results. We conclude our results in the last section.

2. Preliminaries

Let E denote a finite dimensional real Banach space and let Iλ : E→ R be a function satisfying
the following structure hypothesis:
(A) Iλ(x) := Φ(x)− λΨ(x) for all x ∈ E, where Φ, Ψ : E→ R are two functions of class C1 on E with
Φ coercive, i.e., lim

‖x‖→∞
Φ(x) = +∞, and λ is a real positive parameter.

The following lemma comes from Theorem 2.2 of [30].

Lemma 1. Assume that the condition (A) holds. We have
(B) Φ is convex and inf

E
Φ = Φ(0) = Ψ(0) = 0;

(C) for each λ > 0 and for every x1, x2 ∈ E which are local minima for the functional Iλ := Φ− λΨ and such
that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0, one has inf

0≤t≤1
Ψ(tx1 + (1− t)x2) ≥ 0.

Further, assume that there are two positive constants ρ1, ρ2 and u ∈ E, with 2ρ1 < Φ(u) < ρ2
2 , such that

(a1)
sup

x∈Φ−1(−∞,ρ1)

Ψ(x)

ρ1
<

2
3
· Ψ(u)

Φ(u)
;
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(a2)
sup

x∈Φ−1(−∞,ρ2)

Ψ(x)

ρ2
<

1
3
· Ψ(u)

Φ(u)
.

Then, for each λ ∈

 3
2 ·

Φ(u)
Ψ(u) , min

 ρ1
sup

x∈Φ−1(−∞,ρ1)

Ψ(x) , ρ2/2
sup

x∈Φ−1(−∞,ρ2)

Ψ(x)


 , the functional Iλ has at least

three distinct critical points which lie in Φ−1(−∞, ρ2).

The following lemma comes from Corollary 3.1 of [33].

Lemma 2. Assume that the condition (A) holds. We have
(D) Φ is convex and inf

E
Φ = Φ(0) = Ψ(0) = 0;

(E) for each λ > 0 and for every x1, x2 ∈ E which are local minima for the functional Iλ := Φ− λΨ and such
that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0, one has inf

0≤t≤1
Ψ(tx1 + (1− t)x2) ≥ 0.

Further, assume that there are two positive constants ρ1, ρ2 and u ∈ E, with ρ1 < Φ(u) < ρ2
2 , such that

(a3)
sup

x∈Φ−1(−∞,ρ1)

Ψ(x)

ρ1
<

1
2
· Ψ(u)

Φ(u)
;

(a4)
sup

x∈Φ−1(−∞,ρ2)

Ψ(x)

ρ2
<

1
4
· Ψ(u)

Φ(u)
.

Then, for each λ ∈

 2Φ(u)
Ψ(u) , min

 ρ1
sup

x∈Φ−1(−∞,ρ1)

Ψ(x) , ρ2/2
sup

x∈Φ−1(−∞,ρ2)

Ψ(x)


 , the functional Iλ has at least

three distinct critical points which lie in Φ−1(−∞, ρ2).

Let t, t1, t2 > inf
E

Φ with t2 > t1 and t3 > 0 such that

ϕ(t) = inf
x∈Φ−1(−∞,t)

 sup
x∈Φ−1(−∞,t)

Ψ(x)

−Ψ(x)

t−Φ(x) ,

β(t1, t2) = inf
x∈Φ−1(−∞,t1)

sup
y∈Φ−1[t1,t2)

Ψ(y)−Ψ(x)
Φ(y)−Φ(x) ,

γ(t2, t3) =

sup
x∈Φ−1(−∞,t2+t3)

Ψ(x)

t3
,

α(t1, t2, t3) = max
{

ϕ(t1), ϕ(t2), γ(t2, t3)
}

.

The following lemma comes from Theorem 3.3 of [33].

Lemma 3. Assume that the condition (A) holds. We have
(F) Φ is convex and inf

E
Φ = Φ(0) = Ψ(0) = 0;

(G) for each λ > 0 and for every x1, x2 ∈ E which are local minima for the functional Iλ := Φ− λΨ and such
that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0, one has inf

0≤s≤1
Ψ(sx1 + (1− s)x2) ≥ 0.
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Further, assume that there are three positive constants ρ1, ρ2, ρ3 with ρ1 < ρ2, such that
(a5) ϕ(ρ1) < β(ρ1, ρ2);
(a6) ϕ(ρ2) < β(ρ1, ρ2);
(a7) γ(ρ2, ρ3) < β(ρ1, ρ2).

Then, for each λ ∈
(

1
β(ρ1,ρ2)

, 1
α(ρ1,ρ2,ρ3)

)
, the functional Iλ has three distinct critical points.

Let

γ = lim inf
t→+∞

ϕ(t), δ = lim inf
t→
(

inf
E

Φ
)+

ϕ(t).

Clearly, γ ≥ 0 and δ ≥ 0. When γ = 0 (or δ = 0), in the sequel, we agree to read 1
γ (or 1

δ ) as +∞.
The following lemma comes from Theorem 2.1 of [34].

Lemma 4. Assume that the condition (A) holds, one has
(i) If γ < +∞ then, for each λ ∈ (0, 1

γ ), the following alternative holds: either
(i1) Iλ possesses a global minimum, or
(i2) there is a sequence {xk} of critical points (local minima) of Iλ such that lim

k→+∞
Φ(xk) = +∞.

(j) If δ < +∞ then, for each λ ∈ (0, 1
δ ), the following alternative holds: either

(j1) there is a global minimum of Φ which is a local minimum of Iλ, or
(j2) there is a sequence {xk} of pairwise distinct critical points (local minima) of Iλ, with lim

k→+∞
Φ(xk) = inf

E
Φ,

which weakly converges to a global minimum of Φ.

Now we consider the mn-dimensional Banach space

S =
{

x : Z(0, m + 1)×Z(0, n + 1)→ R such that x(i, 0) = x(i, n + 1) = 0,

i ∈ Z(0, m + 1) and x(0, j) = x(m + 1, j) = 0, j ∈ Z(0, n + 1)
}

,

endowed with the norm

‖x‖ =
(

n

∑
j=1

m+1

∑
i=1
|∆1x(i− 1, j)|p +

m

∑
i=1

n+1

∑
j=1
|∆2x(i, j− 1)|p

) 1
p

, x ∈ S.

For each x ∈ S, let

Φ(x) =
n

∑
j=1

m+1

∑
i=1

1
p
|∆1x(i− 1, j)|p +

m

∑
i=1

n+1

∑
j=1

1
p
|∆2x(i, j− 1)|p,

Ψ(x) =
n

∑
j=1

m

∑
i=1

F((i, j), x(i, j)),

where F((i, j), x) =
∫ x

0
f ((i, j), ξ)dξ for every ((i, j), x) ∈ Z(1, m)×Z(1, n)×R.

Define
Iλ(x) = Φ(x)− λΨ(x),

for any x ∈ S. It is clear that Iλ ∈ C1(S,R) with
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Φ′(x)(z) = lim
t→0

Φ(x + tz)−Φ(x)
t

=
n

∑
j=1

m+1

∑
i=1

φp (∆1x(i− 1, j))∆1z(i− 1, j) +
m

∑
i=1

n+1

∑
j=1

φp (∆2x(i, j− 1))∆2z(i, j− 1)

=
n

∑
j=1

m

∑
i=1

φp (∆1x(i− 1, j))∆1z(i− 1, j)−
n

∑
j=1

φp (∆1x(m, j)) z(m, j)

+
m

∑
i=1

n

∑
j=1

φp (∆2x(i, j− 1))∆2z(i, j− 1)−
m

∑
i=1

φp (∆2x(i, n)) z(i, n)

= −
n

∑
j=1

m

∑
i=1

∆1φp (∆1x(i− 1, j)) z(i, j)−
m

∑
i=1

n

∑
j=1

∆2φp (∆2x(i, j− 1)) z(i, j),

and

Ψ′(x)(z) = lim
t→0

Ψ(x + tz)−Ψ(x)
t

=
n

∑
j=1

m

∑
i=1

f ((i, j), x(i, j)) z(i, j),

for all x, z ∈ S.

Now

[Φ′(x)− λΨ′(x)](z) = −
n

∑
j=1

m

∑
i=1

[∆1φp (∆1x(i− 1, j)) + ∆2φp (∆2x(i, j− 1))

+ λ f ((i, j), x(i, j))]z(i, j).

Consequently, the critical points of Iλ in S are exactly the solutions of problem (S f
λ).

Proposition 1. For every x ∈ S, the relation

max
i∈Z(1,m)
j∈Z(1,n)

{|x(i, j)|} ≤ (m + n + 2)
p−1

p

4
‖x‖ (1)

holds.

Proof. For any given x ∈ S, there exist s ∈ Z(1, m) and τ ∈ Z(1, n) such that

|x(s, τ)| = max
i∈Z(1,m)
j∈Z(1,n)

{|x(i, j)|} .

Since x(i, 0) = x(i, n + 1) = 0, i ∈ Z(0, m + 1) and x(0, j) = x(m + 1, j) = 0, j ∈ Z(0, n + 1),
we can obtain

|x(s, τ)| = 1
2

∣∣ s
∑

i=1
∆1x(i− 1, τ) +

τ

∑
j=1

∆2x(s, j− 1)
∣∣

≤ 1
2

s
∑

i=1

∣∣∆1x(i− 1, τ)
∣∣+ 1

2

τ

∑
j=1

∣∣∆2x(s, j− 1)
∣∣

≤ 1
2 · (s + τ)

1
q

(
s
∑

i=1

∣∣∆1x(i− 1, τ)
∣∣p + τ

∑
j=1

∣∣∆2x(s, j− 1)
∣∣p) 1

p
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and

|x(s, τ)| = 1
2

∣∣ m+1
∑

i=s+1
∆1x(i− 1, τ) +

n+1
∑

j=τ+1
∆2x(s, j− 1)

∣∣
≤ 1

2

m+1
∑

i=s+1

∣∣∆1x(i− 1, τ)
∣∣+ 1

2

n+1
∑

j=τ+1

∣∣∆2x(s, j− 1)
∣∣

≤ 1
2 · (m + n− s− τ + 2)

1
q ·
(

m+1
∑

i=s+1

∣∣∆1x(i− 1, τ)
∣∣p + n+1

∑
j=τ+1

∣∣∆2x(s, j− 1)
∣∣p) 1

p

,

where q is the conjugative number of p, that is, 1
p + 1

q = 1. If

s
∑

i=1
|∆1x(i− 1, τ)|p +

τ

∑
j=1
|∆2x(s, j− 1)|p

≤ (m+n+2)p−1

2p ·(s+τ)p−1 ·
(

m+1
∑

i=1
|∆1x(i− 1, τ)|p

)
+ (m+n+2)p−1

2p ·(s+τ)p−1 ·
(

n+1
∑

j=1
|∆2x(s, j− 1)|p

)
,

then we can get

max
i∈Z(1,m)
j∈Z(1,n)

{|x(i, j)|} ≤ (m + n + 2)
p−1

p

4

(
m+1

∑
i=1
|∆1x(i− 1, τ)|p +

n+1

∑
j=1
|∆2x(s, j− 1)|p

) 1
p

.

So, we obtain the required relation (1). If, on the contrary,

s
∑

i=1
|∆1x(i− 1, τ)|p +

τ

∑
j=1
|∆2x(s, j− 1)|p > (m+n+2)p−1

2p ·(s+τ)p−1 ·
(

m+1
∑

i=1
|∆1x(i− 1, τ)|p

)
+ (m+n+2)p−1

2p ·(s+τ)p−1 ·
(

n+1
∑

j=1
|∆2x(s, j− 1)|p

)
,

then we have
m+1
∑

i=s+1
|∆1x(i− 1, τ)|p +

n+1
∑

j=τ+1
|∆2x(s, j− 1)|p

=
m+1
∑

i=1
|∆1x(i− 1, τ)|p +

n+1
∑

j=1
|∆2x(s, j− 1)|p

−
(

s
∑

i=1
|∆1x(i− 1, τ)|p +

τ

∑
j=1
|∆2x(s, j− 1)|p

)
<

(
1− (m+n+2)p−1

2p ·(s+τ)p−1

)
·
(

m+1
∑

i=1
|∆1x(i− 1, τ)|p

)
+
(

1− (m+n+2)p−1

2p ·(s+τ)p−1

)
·
(

n+1
∑

j=1
|∆2x(s, j− 1)|p

)
.

Moreover, we have

|x(s, τ)|

< 1
2 · (m + n− s− τ + 2)

1
q ·
(

1− (m+n+2)p−1

2p ·(s+τ)p−1

) 1
p ·
(

m+1
∑

i=1
|∆1x(i− 1, τ)|p +

n+1
∑

j=1
|∆2x(s, j− 1)|p

) 1
p

.

We claim that inequality

1
2
· (m + n− s− τ + 2)

1
q ·
(

1− (m + n + 2)p−1

2p · (s + τ)p−1

) 1
p

≤ (m + n + 2)
1
q

4
(2)
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holds. In fact, we define a function g : (0, m + n + 2)→ R by

g(t) =
1

(m + n− t + 2)p−1 +
1

tp−1 .

The function g can attain its minimum 2p

(m+n+2)p−1 at t = m+n+2
2 . Since s ∈ Z(1, m), τ ∈ Z(1, n),

we can get g(s + τ) ≥ 2p

(m+n+2)p−1 , that is,

1
(m + n− s− τ + 2)p−1 +

1
(s + τ)p−1 ≥

2p

(m + n + 2)p−1 .

This implies assertion (2) and we can obtain the required inequality (1). The proof is complete.

Remark 1. Obviously, when m = 1 and n = 1, then ‖x‖ = 4
1
p |x(1, 1)| and the inequality in (1) holds.

Now we establish the strong maximum principle for problem (S f
λ).

Proposition 2. Assume that there exists x̄ : Z(0, m + 1)×Z(0, n + 1)→ R such that

∆1
(
φp(∆1 x̄(i− 1, j))

)
+ ∆2

(
φp(∆2 x̄(i, j− 1))

)
≤ 0, (3)

for every (i, j) ∈ Z(1, m)×Z(1, n) and

x̄(i, 0) = x̄(i, n + 1) = 0, i ∈ Z(0, m + 1), x̄(0, j) = x̄(m + 1, j) = 0, j ∈ Z(0, n + 1),

then, either x̄ is the identically zero function or x̄(i, j) > 0 for every (i, j) ∈ Z(1, m)×Z(1, n).

Note that when f : Z(1, m)×Z(1, n)×R→ R is a non-negative function, the above proposition
ensures that every solution of problem (S f

λ) is either zero or positive.

Proof. Let θ ∈ Z(1, m), ω ∈ Z(1, n) and

x̄(θ, ω) = min
{

x̄(i, j) : i ∈ Z(1, m), j ∈ Z(1, n)
}

.

If x̄(θ, ω) > 0, then it is clear that x̄(i, j) > 0 for all i ∈ Z(1, m), j ∈ Z(1, n) and the proof is
complete.

If x̄(θ, ω) ≤ 0, then x̄(θ, ω) = min
{

x̄(i, j) : i ∈ Z(0, m + 1), j ∈ Z(0, n + 1)
}

, since ∆1 x̄(θ − 1, ω) =

x̄(θ, ω)− x̄(θ − 1, ω) ≤ 0, ∆2 x̄(θ, ω− 1) = x̄(θ, ω)− x̄(θ, ω− 1) ≤ 0, and ∆1 x̄(θ, ω) = x̄(θ + 1, ω)−
x̄(θ, ω) ≥ 0, ∆2 x̄(θ, ω) = x̄(θ, ω + 1)− x̄(θ, ω) ≥ 0, φp(η) is increasing in η, and φp(0) = 0, we obtain

φp (∆1 x̄(θ, ω)) ≥ 0 ≥ φp (∆1 x̄(θ − 1, ω)) .

Similarly,
φp (∆2 x̄(θ, ω)) ≥ 0 ≥ φp (∆2 x̄(θ, ω− 1)) .

We get
∆1
(
φp(∆1 x̄(θ − 1, ω))

)
+ ∆2

(
φp(∆2 x̄(θ, ω− 1))

)
≥ 0.

Thus, we have
φp (∆1 x̄(θ, ω)) = φp (∆1 x̄(θ − 1, ω)) = 0.

That is x̄(θ + 1, ω) = x̄(θ, ω) = x̄(θ − 1, ω). If θ + 1 = m + 1, we get x̄(θ, ω) = 0. Otherwise,
(θ + 1) ∈ Z(1, m). Replacing θ by θ + 1, we obtain x̄(θ + 2, ω) = x̄(θ + 1, ω). Continuing this process
(m + 1− θ) times, we have x̄(θ, ω) = x̄(θ + 1, ω) = x̄(θ + 2, ω) = · · · = x̄(m + 1, ω) = 0. Similarly,



Mathematics 2020, 8, 2030 8 of 20

we get x̄(θ, ω) = x̄(θ − 1, ω) = x̄(θ − 2, ω) = · · · = x̄(0, ω) = 0. Therefore, x̄(i, ω) = 0 for i ∈ Z(1, m).
In the same way, we can show that x̄ ≡ 0 and the proof is complete.

3. Main Results

For each positive constant h, put

τ(h) =

n
∑

j=1

m
∑

i=1
F ((i, j), h)

hp .

Theorem 1. For every (i, j) ∈ Z(1, m) × Z(1, n), let f ((i, j), ·) : R → R be a non-negative continuous
function. Assume that there exist three positive constants b1, b2 and l with

4b1

(n + m)
1
p · (m + n + 2)

p−1
p

< l <
(

4
n + m + 2

) p−1
p
· b2

(n + m)
1
p

such that
(g1) max

{
τ(b1), 2τ(b2)

}
< 4p

3n+3m ·
τ(l)

(m+n+2)p−1 .

Then, for each λ ∈
(

3n+3m
pτ(l) , 4p

p(m+n+2)p−1·max
{

τ(b1),2τ(b2)
}), problem (S f

λ) admits at least two positive

solutions xk, k = 1, 2.

Proof. Fix λ as in the conclusion, and put Φ, Ψ, Iλ as defined in Section 2 for all x ∈ S. Let us
employ Lemma 1 to our problem. Clearly, Φ and Ψ satisfy assumptions (A) and (B) of Lemma 1.
Now, let x1 and x2 be two local minima for Iλ. Then x1 and x2 are critical points for Iλ, so, x1 and
x2 are solutions of problem (S f

λ). Owing to Proposition 2, one has x1(i, j) ≥ 0 and x2(i, j) ≥ 0 for all
(i, j) ∈ Z(1, m)×Z(1, n). It follows that tx1(i, j) + (1− t)x2(i, j) ≥ 0 for every (i, j) ∈ Z(1, m)×Z(1, n)
and for every 0 ≤ t ≤ 1. Hence, Ψ(tx1 + (1 − t)x2) ≥ 0 for all 0 ≤ t ≤ 1 and (C) is verified.
Moreover, put

ρ1 =
(4b1)

p

p(m + n + 2)p−1 and ρ2 =
(4b2)

p

p(m + n + 2)p−1 .

For all x ∈ S, we have

max
i∈Z(1,m)
j∈Z(1,n)

{|x(i, j)|} ≤ (m + n + 2)
p−1

p

4
· ‖x‖.

We obtain

max
i∈Z(1,m)
j∈Z(1,n)

{|x(i, j)|} ≤ (m + n + 2)
p−1

p

4
· (pρ1)

1
p = b1,

for every x ∈ S such that ‖x‖ ≤ (pρ1)
1
p , and

max
i∈Z(1,m)
j∈Z(1,n)

{|x(i, j)|} ≤ (m + n + 2)
p−1

p

4
· (pρ2)

1
p = b2,
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for all x ∈ S such that ‖x‖ ≤ (pρ2)
1
p . It follows that

sup
x∈Φ−1(−∞,ρ1)

Ψ(x)

ρ1
=

sup

‖x‖<(pρ1)
1
p

n
∑

j=1

m
∑

i=1
F((i,j),x(i,j))

ρ1

≤

n
∑

j=1

m
∑

i=1
F((i,j),b1)

ρ1

= p(m+n+2)p−1

4p τ(b1),

and

sup
x∈Φ−1(−∞,ρ2)

Ψ(x)

ρ2
=

sup

‖x‖<(pρ2)
1
p

n
∑

j=1

m
∑

i=1
F((i,j),x(i,j))

ρ2

≤

n
∑

j=1

m
∑

i=1
F((i,j),b2)

ρ2

= p(m+n+2)p−1

4p τ(b2).

Let v ∈ S be defined by

v(i, j) =


l, i f (i, j) ∈ Z(1, m)×Z(1, n),

0, i f i = 0, j ∈ Z(0, n + 1) or i = m + 1, j ∈ Z(0, n + 1),

0, i f j = 0, i ∈ Z(0, m + 1) or j = n + 1, i ∈ Z(0, m + 1).

Clearly, we have Φ(v) = (2n+2m)
p · lp. Hence, from 4b1

(n+m)
1
p (m+n+2)

p−1
p

< l, we get 2ρ1 < Φ(v) and

from l <
(

4
n+m+2

) p−1
p · b2

(m+n)
1
p

, we obtain Φ(v) < ρ2
2 . Moreover,

Ψ(v)
Φ(v)

=

p ·
n
∑

j=1

m
∑

i=1
F((i, j), l)

(2n + 2m) · lp =
pτ(l)

2n + 2m
.

Therefore, owing to (g1), we can get assumptions (a1) and (a2) of Lemma 1. Further, one has that

λ ∈
(

3n + 3m
pτ(l)

,
4p

p(m + n + 2)p−1 ·max
{

τ(b1), 2τ(b2)
}) .

Thus, we see from Lemma 1 that problem (S f
λ) admits at least two positive solutions xk,

k = 1, 2.

Remark 2. Clearly, problem (E f
λ) in [30] can be regarded as the special case p = 2 of problem (S f

λ). In such

a case, we get the set of λ in Theorem 1 which is similar to ([30] Theorem 3.2) such that problem (S f
λ) admits

at least two positive solutions. In Theorem 1, we get the set of λ that is more specific than the set of λ

in ([30] Theorem 3.2), where λ1 in the set of λ is just known to be an eigenvalue but not given a definite
expression. Compared with that, in this paper, the set of λ we put forward can be calculated to any given number,
so it is possible to get the full set of λ. Moreover, we obtain the existence of infinitely many solutions for problem
(S f

λ) when 1 < p < +∞, which extends the case of p = 2, discussed in [30].

Now, we mark the discrete problem (S f
λ) as (Sy,β

λ ) when f ((i, j), x(i, j)) = β(i, j)y(x(i, j)), that is

∆1(φp(∆1x(i− 1, j))) + ∆2(φp(∆2x(i, j− 1))) + λβ(i, j)y(x(i, j)) = 0, (i, j) ∈ Z(1, m)×Z(1, n),



Mathematics 2020, 8, 2030 10 of 20

with boundary conditions

x(i, 0) = x(i, n + 1) = 0, i ∈ Z(0, m + 1),

x(0, j) = x(m + 1, j) = 0, j ∈ Z(0, n + 1),

where β : Z(1, m)× Z(1, n) → R is a non-negative and non-zero function and y : [0,+∞) → R is a
continuous function such that y(0) = 0.

Corollary 1. Assume that there exist three positive constants b1, b2 and l with

4b1

(n + m)
1
p · (m + n + 2)

p−1
p

< l <
(

4
n + m + 2

) p−1
p
· b2

(n + m)
1
p

such that

(g2) max

{∫ b1

0
y(ξ)dξ

bp
1

,
2

∫ b2

0
y(ξ)dξ

bp
2

}
<

4p

∫ l

0
y(ξ)dξ

(3n+3m)lp ·(m+n+2)p−1 .

Then, for every

λ ∈

 (3n + 3m) · lp

p ·
n
∑

j=1

m
∑

i=1

∫ l

0
β(i, j)y(ξ)dξ

,

4p

p(m + n + 2)p−1 ·max

{ n
∑

j=1

m
∑

i=1

∫ b1

0
β(i, j)y(ξ)dξ

bp
1

,
2

n
∑

j=1

m
∑

i=1

∫ b2

0
β(i, j)y(ξ)dξ

bp
2

}


,

problem (Sy,β
λ ) admits at least two positive solutions.

Proof. Put

f ((i, j), r) =

{
β(i, j)y(r), i f r ≥ 0,

0, i f r < 0,

for all (i, j) ∈ Z(1, m)×Z(1, n) and r ∈ R. By Theorem 1 and (g2), we obtain the conclusion.

Theorem 2. For every (i, j) ∈ Z(1, m) × Z(1, n), let f ((i, j), ·) : R → R be a non-negative continuous
function. Assume that there exist three positive constants b1, b2, and l with

4b1

(m + n + 2)
p−1

p

·
(

1
2n + 2m

) 1
p
< l <

b2

(n + m)
1
p
·
(

4
m + n + 2

) p−1
p

such that
(g3) max

{
τ(b1), 2τ(b2)

}
<
(

4
n+m+2

)p−1
· τ(l)
(n+m)

.

Then, for all λ ∈
(

4n+4m
pτ(l) , 4p

p(m+n+2)p−1·max{τ(b1),2τ(b2)}

)
, problem (S f

λ) admits at least two
positive solutions.
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Proof. Let

ρ1 =
(4b1)

p

p(m + n + 2)p−1 and ρ2 =
(4b2)

p

p(m + n + 2)p−1 .

We have
sup

x∈Φ−1(−∞,ρ1)

Ψ(x)

ρ1
≤ p(m + n + 2)p−1

4p · τ(b1)

and
sup

x∈Φ−1(−∞,ρ2)

Ψ(x)

ρ2
≤ p(m + n + 2)p−1

4p · τ(b2).

For v ∈ S defined as

v(i, j) =


l, i f (i, j) ∈ Z(1, m)×Z(1, n),

0, i f i = 0, j ∈ Z(0, n + 1) or i = m + 1, j ∈ Z(0, n + 1),

0, i f j = 0, i ∈ Z(0, m + 1) or j = n + 1, i ∈ Z(0, m + 1),

we obtain Φ(v) = (2n+2m)
p · lp. From 4b1

(m+n+2)
p−1

p
·
(

1
2n+2m

) 1
p
< l, we have ρ1 < Φ(v) and from

l < b2

(n+m)
1
p
·
(

4
m+n+2

) p−1
p , we get Φ(v) < ρ2

2 . It is clear that,

Ψ(v)
Φ(v)

=
pτ(l)

2n + 2m
.

Owing to (g3), problem (S f
λ) admits at least two positive solutions.

Theorem 3. For every (i, j) ∈ Z(1, m) × Z(1, n), let f ((i, j), ·) : R → R be a non-negative continuous
function. Assume that there are positive constants e1, e2, e3 and d with

4e1

(m + n + 2)
p−1

p

·
(

1
2n + 2m

) 1
p
< d <

4e2

(m + n + 2)
p−1

p

·
(

1
2n + 2m

) 1
p

and e2 < e3 ,

such that

(g4) max
{

τ(e1), τ(e2),

n
∑

j=1

m
∑

i=1
F((i,j),e3)

ep
3−ep

2

}
< 4p−1τ(d)

(n+m)·(m+n+2)p−1 .

Then, for all

λ ∈
(

(2n + 2m) · 4p

4p · τ(d)p− (2n + 2m) · pτ(e1) · (m + n + 2)p−1 ,

4p

p · (m + n + 2)p−1 max
{

τ(e1), τ(e2),

n
∑

j=1

m
∑

i=1
F((i,j),e3)

ep
3−ep

2

}
 ,

problem (S f
λ) admits at least two positive solutions xk, k = 1, 2.

Proof. Let

t1 =
(4e1)

p

p(m + n + 2)p−1 ,
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t2 =
(4e2)

p

p(m + n + 2)p−1 ,

t3 =
(4e3)

p − (4e2)
p

p(m + n + 2)p−1 .

By (1), we have

max
i∈Z(1,m)
j∈Z(1,n)

{|x(i, j)|} ≤ (m + n + 2)
p−1

p

4
· (pt1)

1
p = e1,

for all x ∈ S such that ‖x‖ ≤ (pt1)
1
p , and

max
i∈Z(1,m)
j∈Z(1,n)

{|x(i, j)|} ≤ (m + n + 2)
p−1

p

4
· (pt2)

1
p = e2,

for each x ∈ S such that ‖x‖ ≤ (pt2)
1
p , and

max
i∈Z(1,m)
j∈Z(1,n)

{|x(i, j)|} ≤ (m + n + 2)
p−1

p

4
· (pt2 + pt3)

1
p = e3,

for all x ∈ S such that ‖x‖ ≤ (pt2 + pt3)
1
p . One has

ϕ(t1) = inf
x∈Φ−1(−∞,t1)

 sup
x∈Φ−1(−∞,t1)

Ψ(x)

−Ψ(x)

t1−Φ(x)

≤
sup

x∈Φ−1(−∞,t1)
Ψ(x)

t1

=

sup

‖x‖<(pt1)
1
p

n
∑

j=1

m
∑

i=1
F((i,j),x(i,j))

t1

≤

n
∑

j=1

m
∑

i=1
F((i,j),e1)

t1

= pτ(e1)·(m+n+2)p−1

4p ,

ϕ(t2) = inf
x∈Φ−1(−∞,t2)

 sup
x∈Φ−1(−∞,t2)

Ψ(x)

−Ψ(x)

t2−Φ(x)

≤
sup

x∈Φ−1(−∞,t2)
Ψ(x)

t2

=

sup

‖x‖<(pt2)
1
p

n
∑

j=1

m
∑

i=1
F((i,j),x(i,j))

t2

≤

n
∑

j=1

m
∑

i=1
F((i,j),e2)

t2

= pτ(e2)·(m+n+2)p−1

4p ,
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and

γ(t2, t3) =

sup
x∈Φ−1(−∞,t2+t3)

Ψ(x)

t3

=

sup

‖x‖<(pt2+pt3)
1
p

Ψ(x)

t3

=

sup

‖x‖<(pt2+pt3)
1
p

n
∑

j=1

m
∑

i=1
F((i,j),x(i,j))

t3

≤

n
∑

j=1

m
∑

i=1
F((i,j),e3)

t3

=
p

n
∑

j=1

m
∑

i=1
F((i,j),e3)·(m+n+2)p−1

(4e3)
p−(4e2)

p .

Let u ∈ S be defined by

u(i, j) =


d, i f (i, j) ∈ Z(1, m)×Z(1, n),

0, i f i = 0, j ∈ Z(0, n + 1) or i = m + 1, j ∈ Z(0, n + 1),

0, i f j = 0, i ∈ Z(0, m + 1) or j = n + 1, i ∈ Z(0, m + 1).

Then we have

β(t1, t2) = inf
x∈Φ−1(−∞,t1)

sup
y∈Φ−1[t1,t2)

Ψ(y)−Ψ(x)
Φ(y)−Φ(x)

≥ inf
x∈Φ−1(−∞,t1)

Ψ(u)−Ψ(x)
Φ(u)−Φ(x)

≥ inf
x∈Φ−1(−∞,t1)

Ψ(u)−Ψ(x)
Φ(u)

≥ Ψ(u)
Φ(u) −

sup
x∈Φ−1(−∞,t1)

Ψ(x)

t1

=

n
∑

j=1

m
∑

i=1
F((i,j),d)

(2n+2m)·dp
p

−

sup

‖x‖<(pt1)
1
p

n
∑

j=1

m
∑

i=1
F((i,j),x(i,j))

t1

≥
p

n
∑

j=1

m
∑

i=1
F((i,j),d)

(2n+2m)dp −

n
∑

j=1

m
∑

i=1
F((i,j),e1)

t1

= pτ(d)
2n+2m −

pτ(e1)·(m+n+2)p−1

4p .

Hence, from 4e1

(m+n+2)
p−1

p
·
(

1
2n+2m

) 1
p
< d < 4e2

(m+n+2)
p−1

p
·
(

1
2n+2m

) 1
p , e2 < e3 and (g4), we obtain

ϕ(t1) < β(t1, t2), ϕ(t2) < β(t1, t2) and γ(t2, t3) < β(t1, t2). Then it is clear that for all

λ ∈
(

(2n + 2m) · 4p

4p · τ(d)p− (2n + 2m) · pτ(e1) · (m + n + 2)p−1 ,

4p

p · (m + n + 2)p−1 max
{

τ(e1), τ(e2),

n
∑

j=1

m
∑

i=1
F((i,j),e3)

ep
3−ep

2

}
 ,

problem (S f
λ) admits at least two positive solutions xk, k = 1, 2.
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Let

B∞ = lim sup
x→+∞


n
∑

j=1

m
∑

i=1
F((i, j), x)

xp

 .

When B∞ = +∞, we agree to read 1
B∞ = 0.

Theorem 4. Assume that there exist two real sequences {αt} and {βt}, with lim
t→+∞

βt = +∞, such that

0 ≤ αt <
4βt

(2n + 2m)
1
p · (m + n + 2)

p−1
p

, f or all t ∈ N,

and

Q∞ = lim
t→+∞

n
∑

j=1

m
∑

i=1
max
|x|≤βt

F((i, j), x)−
n
∑

j=1

m
∑

i=1
F((i, j), αt)

(4βt)p − (2n + 2m)(αt)p(m + n + 2)p−1 <
B∞

(2n + 2m) · (m + n + 2)p−1 .

Then, for every λ ∈
(

2n+2m
p · 1

B∞ , 1
p(m+n+2)p−1 · 1

Q∞

)
, problem (S f

λ) admits an unbounded sequence
of solutions.

Proof. Fix λ ∈
(

2n+2m
p · 1

B∞ , 1
p(m+n+2)p−1 · 1

Q∞

)
and put

γt =
(4βt)p

p(m + n + 2)p−1 , f or each t ∈ N.

From (1), we have

max
i∈Z(1,m)
j∈Z(1,n)

{|x(i, j)|} ≤ (m + n + 2)
p−1

p

4
· (pγt)

1
p = βt, f or every x ∈ S,

such that ‖x‖ ≤ (pγt)
1
p for each t ∈ N, and we obtain

ϕ(γt) ≤ inf
x∈Φ−1(−∞,γt)

n
∑

j=1

m
∑

i=1
max
|x|≤βt

F((i,j),x)−
n
∑

j=1

m
∑

i=1
F((i,j),x)

(4βt)
p

p(m+n+2)p−1−
‖x‖p

p

.

Now, we choose ηt ∈ S, defined by

ηt(i, j) =


αt, i f (i, j) ∈ Z(1, m)×Z(1, n),

0, i f i = 0, j ∈ Z(0, n + 1) or i = m + 1, j ∈ Z(0, n + 1),

0, i f j = 0, i ∈ Z(0, m + 1) or j = n + 1, i ∈ Z(0, m + 1).

Clearly, we get Φ(ηt) =
(

2n+2m
p

)
α

p
t and ‖ηt‖p < pγt. One has

ϕ(γt) ≤

(
n
∑

j=1

m
∑

i=1
max
|x|≤βt

F((i, j), x)−
n
∑

j=1

m
∑

i=1
F((i, j), αt)

)
· p(m + n + 2)p−1

(4βt)p − (2n + 2m)α
p
t · (m + n + 2)p−1

.
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Therefore,
γ ≤ lim

t→+∞
ϕ(γt) ≤ pQ∞ · (m + n + 2)p−1 < +∞.

Now, we need to prove that Iλ is unbounded from below. To this end, we first assume that B∞ =

+∞. Fix M such that M > 2n+2m
pλ and let {et} be a sequence of positive numbers, with lim

t→+∞
et = +∞,

such that
n
∑

j=1

m
∑

i=1
F((i, j), et) > Mep

t , ∀t ∈ N. Define a sequence {dt} in S with

dt(i, j) =


et, i f (i, j) ∈ Z(1, m)×Z(1, n),

0, i f i = 0, j ∈ Z(0, n + 1) or i = m + 1, j ∈ Z(0, n + 1),

0, i f j = 0, i ∈ Z(0, m + 1) or j = n + 1, i ∈ Z(0, m + 1).

It is clear that

Iλ(dt) =

(
2n + 2m

p

)
ep

t − λ
n

∑
j=1

m

∑
i=1

F((i, j), et) <

(
2n + 2m

p

)
ep

t − λMep
t ,

which implies that lim
t→+∞

Iλ(dt) = −∞. Next, we assume that B∞ < +∞ and take ε > 0 such that

ε < B∞ − 2n+2m
pλ . Then we have the sequence of positive numbers {et} such that lim

t→+∞
et = +∞ and

(B∞ − ε)ep
t <

n

∑
j=1

m

∑
i=1

F((i, j), et) < (B∞ + ε)ep
t , ∀ t ∈ N.

It is easy to see that
Iλ(dt) <

(
2n+2m

p − λB∞ + λε
)
· ep

t .

So, lim
t→+∞

Iλ(dt) = −∞ and Iλ is unbounded from below. The proof is complete.

Remark 3. When B∞ = +∞, according to Theorem 4, we have that for every λ ∈
(

0, 1
p(m+n+2)p−1 · 1

Q∞

)
,

problem (S f
λ) admits an unbounded sequence of solutions.

Set

D∞ = lim inf
x→+∞

n
∑

j=1

m
∑

i=1
max
|ξ|≤x

F((i, j), ξ)

xp .

When D∞ = 0, we agree to read 1
D∞

= +∞.

Theorem 5. Assume that D∞ < 4pB∞

(2n+2m)(m+n+2)p−1 . Then, for all

λ ∈
(

2n + 2m
p

· 1
B∞ ,

4p

p(m + n + 2)p−1 ·
1

D∞

)
,

problem (S f
λ) admits an unbounded sequence of solutions.

Proof. Let {βt} be a sequence of positive numbers with lim
t→+∞

βt = +∞ and

lim
t→+∞

n
∑

j=1

m
∑

i=1
max
|x|≤βt

F((i, j), x)

(βt)p = D∞.
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Setting αt = 0 for each t ∈ N, we can reach the conclusion by Theorem 4.

Remark 4. When B∞ = +∞, according to the Theorem 5, we have that for every λ ∈
(

0, 4p

p(m+n+2)p−1 · 1
D∞

)
,

problem (S f
λ) admits an unbounded sequence of solutions. When D∞ = 0, according to the Theorem 5,

we have that for every λ ∈
(

2n+2m
p · 1

B∞ ,+∞
)

, problem (S f
λ) admits an unbounded sequence of solutions.

When B∞ = +∞ and D∞ = 0, according to the Theorem 5, we have that for every λ > 0, problem (S f
λ) admits

an unbounded sequence of solutions.

Now, we mark the problem (S f
λ) as (Sg,α

λ ) when f ((i, j), x(i, j)) = α(i, j)g(x(i, j)), that is

∆1(φp(∆1x(i− 1, j))) + ∆2(φp(∆2x(i, j− 1))) + λα(i, j)g(x(i, j)) = 0, (i, j) ∈ Z(1, m)×Z(1, n),

with boundary conditions

x(i, 0) = x(i, n + 1) = 0, i ∈ Z(0, m + 1),

x(0, j) = x(m + 1, j) = 0, j ∈ Z(0, n + 1),

where α : Z(1, m)× Z(1, n) → R is a non-negative and non-zero function and g : [0,+∞) → R is a
non-negative continuous function such that g(0) = 0.

Corollary 2. Assume that

lim inf
x→+∞

∫ x

0
g(s)ds

xp <
4p

(2n + 2m)(m + n + 2)p−1 lim sup
x→+∞


∫ x

0
g(s)ds

xp

 .

Then, for every

λ ∈


2n + 2m

p

lim sup
x→+∞


n
∑

j=1

m
∑

i=1

∫ x

0
α(i, j)g(s)ds

xp




,

4p

p(m + n + 2)p−1 ·

lim inf
x→+∞

n
∑

j=1

m
∑

i=1

∫ x

0
α(i, j)g(s)ds

xp




,

problem (Sg,α
λ ) admits an unbounded sequence of positive solutions.

Proof. Set

f ((i, j), x) =

{
α(i, j)g(x), x ≥ 0,

0, x < 0,
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for each (i, j) ∈ Z(1, m) × Z(1, n) and x ∈ R. Taking Proposition 2 into account, our goal can be
obtained owing to Theorem 5.

4. Examples

We give two examples to illustrate our results.

Example 1. Put p = 3, b1 = 1, b2 = 14, l = 2, m = 2 and n = 3. Let β : Z(1, 2)× Z(1, 3) → R be a

positive function and set A =
3
∑

j=1

2
∑

i=1
β(i, j). Make y : [0,+∞)→ R be the function defined as follows

y(r) =


r14, 0 ≤ r < 2,

(4− r)14, 2 ≤ r < 3,

1, 3 ≤ r.

One has ∫ 1

0
y(ξ)dξ =

∫ 1

0
r14dr =

1
15

,

2
143 ·

∫ 14

0
y(ξ)dξ =

2
143 · [

∫ 2

0
r14dr +

∫ 3

2
(4− r)14dr +

∫ 14

3
1dr] =

1095
343

,

and

43

(3× 2 + 3× 3)(23 × (3 + 2 + 2)2)

∫ 2

0
y(ξ)dξ =

43

(3× 2 + 3× 3)(23 × (3 + 2 + 2)2)

∫ 2

0
r14dr =

262, 144
11, 025

.

We get

max
{∫ 1

0
y(ξ)dξ,

2
143 ·

∫ 14

0
y(ξ)dξ

}
<

43

(3× 2 + 3× 3)× (23 × (3 + 2 + 2)2)
×
∫ 2

0
y(ξ)dξ,

and
4× 1

(2 + 3)
1
3 · (2 + 3 + 2)

2
3
< 2 <

(
4

2 + 3 + 2

) 2
3
× 14

(2 + 3)
1
3

.

Applying to Corollary 1, for each λ ∈ ( 75
4096A , 448

3285A ), the following problem

∆1(φ3(∆1x(i− 1, j))) + ∆2(φ3(∆2x(i, j− 1))) + λβ(i, j)y(x(i, j)) = 0, (i, j) ∈ Z(1, 2)×Z(1, 3),

with boundary conditions
x(i, 0) = x(i, 4) = 0, i ∈ Z(0, 3),

x(0, j) = x(3, j) = 0, j ∈ Z(0, 4),

admits at least two positive solutions.

Example 2. Put m = 2, n = 2 and p = 2. Set α(i, j) = 1, for (i, j) ∈ Z(1, 2) × Z(1, 2) and let
g : [0,+∞)→ R be the function defined as follows

g(x) =

{
18
5 x + x cos(ln(x)) + 2x sin(ln(x)), x > 0,

0, x = 0.

We have

lim inf
x→+∞

∫ x

0
g(s)ds

x2 = lim inf
x→+∞

9
5 x2 + x2 sin(ln(x))

x2 =
4
5

,
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and

lim sup
x→+∞

∫ x

0
g(s)ds

x2 = lim sup
x→+∞

9
5 x2 + x2 sin(ln(x))

x2 =
14
5

.

Since
42

(2× 2 + 2× 2)× (2 + 2 + 2)2−1 >
4
5

14
5

,

one has

lim inf
x→+∞

∫ x

0
g(s)ds

x2 <
42

(2× 2 + 2× 2)× (2 + 2 + 2)2−1 · lim sup
x→+∞

∫ x

0
g(s)ds

x2 .

By Corollary 2, for each λ ∈ ( 5
14 , 5

12 ), the following problem

∆1 (φ2 (∆1x(i− 1, j))) + ∆2 (φ2 (∆2x(i, j− 1)))
+ λ[ 18

5 x(i, j) + x(i, j) cos(ln(x(i, j))) + 2x(i, j) sin(ln(x(i, j)))] = 0,

for (i, j) ∈ Z(1, 2)×Z(1, 2), with boundary conditions

x(i, 0) = x(i, 3) = 0, i ∈ Z(0, 3),

x(0, j) = x(3, j) = 0, j ∈ Z(0, 3),

admits an unbounded sequence of positive solutions.

5. Conclusions

In this paper, we consider the existence of multiple solutions for a partial discrete Dirichlet
problem (S f

λ) involving the p-Laplacian. For problem (S f
λ), in the framework of variational methods,

we give that the set of λ can be more specific than that in the special case of p = 2 ([30] Theorem 3.2).
Furthermore, with appropriate assumptions on the nonlinear term, we get that problem (S f

λ) admits
an unbounded sequence of solutions by using Theorem 2.1 of [34]. By the method of the critical point
theory, we obtain sufficient conditions to guarantee the existence of multiple solutions for problem (S f

λ),

which are different from these conditions in [30,33,34]. In the future, we will consider problem (S f
λ)

with fewer and looser constraints and we could consider the existence of partial difference equations
with different boundary value conditions.
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