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Abstract: The quality characteristics with unilateral specifications include the smaller-the-better
(STB) and larger-the-better (LTB) quality characteristics. Roundness, verticality, and concentricity
are categorized into the STB quality characteristics, while the wire pull and the ball shear of gold
wire bonding are categorized into the LTB quality characteristics. In terms of the tolerance, zero and
infinity (∞) can be viewed as the target values in line with the STB and LTB quality characteristics,
respectively. However, cost and timeliness considerations, or the restrictions of practical technical
capabilities in the industry, mean that the process mean is generally far more than 1.5 standard
deviations away from the target value. Researchers have accordingly proposed a process quality
index conforming to the STB quality characteristics. In this study, we come up with a process quality
index conforming to the LTB quality characteristics. We refer to these two types of indices as the
unilateral specification process quality indices. These indices and the process yield have a one-to-one
mathematical relationship. Besides, the process quality levels can be completely reflected as well.
These indices possess unknown parameters. Therefore, sample data are required for calculation.
Nevertheless, interval estimates can lower the misjudgment risk resulting from sampling errors more
than point estimates can. In addition, considering cost and timeliness in the industry, samples are
generally small, which lowers estimation accuracy. In an attempt to increase the accuracy of estimation
as well as overcome the uncertainty of measured data, we first derive the confidence interval for
unilateral specification process quality indices, and then propose a fuzzy membership function on the
basis of the confidence interval to establish the two-tailed fuzzy testing rules for a single indicator.
Lastly, we determine whether the process quality has improved.

Keywords: two-tailed fuzzy testing; process quality index; unilateral specification; quality
characteristics; α-cuts

1. Introduction

According to a number of studies, process capability indices (PCIs) are convenient tools for process
quality assessment, such that they are widely employed in the manufacturing industry [1–8]. Six Sigma
is also a widely-used approach which can enhance process quality levels in manufacturing [9–12].
Many researchers examined the relations of various PCIs with Six Sigma quality levels [13–15].
According to the definitions of Six Sigma quality levels, Chen et al. [13] and Huang et al. [16] proposed
a Six Sigma quality index—when the process mean shifts 1.5 standard deviations from the target value
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and the standard deviation of the process is one-sixth of the tolerance, the quality level of the process is
exactly 6 standard deviations, which means the Six Sigma quality index is exactly 6.

Chen et al. [13] noted that the PCIs for unilateral specifications do not have specific target values.
Although zero and infinity ( ∞ ) can respectively be considered the target values of STB and LTB
quality characteristics, considerations of cost and timeliness and the restrictions of practical technical
capabilities in the industry mean that the process mean is generally far more than 1.5 standard
deviations away from the target value. The STB quality characteristics include roundness, verticality,
and concentricity, while the LTB quality characteristics include the wire pull and ball shear of gold wire
bonding. Chang et al. [17] accordingly presented a process quality index in line with STB. In this study,
a process quality index is proposed to conform with LTB. Under the assumption of normality, we let
the random variable X follow the normal distribution with the process mean µ and process standard
deviation σ. Therefore, the process quality index of the unilateral specification can be expressed
as follows:

PQI =

 USL−µ
σ , smaller− the− better

µ−LSL
σ , larger− the− better

(1)

where USL and LSL respectively represent the upper as well as lower specification limits. On the basis
of the concept put forward by Chang et al. [17], when µ+ kσ = USL, then the process quality level
reaches k− sigma for STB quality characteristics. Therefore,

PQI =
USL− µ

σ
=

(µ+ kσ) − µ
σ

=
kσ
σ

= k (2)

Similarly, when µ − kσ = LSL, then the process quality level reaches k sigma for LTB quality
characteristics. Therefore,

PQI =
µ− LSL
σ

=
µ− (µ− kσ)

σ
=

kσ
σ

= k (3)

Based on the above description, if the process quality level attains to k sigma, then the unilateral
specification process quality index value will be equal to k. The process yield for the STB quality
characteristic can be calculated as follows:

yield% = p(X ≤ USL) =
∫ (USL−µ)/σ

−∞

1
√

2π
exp

{
t2

2

}
dt = Φ

(
PQI

)
(4)

Similarly, for LTB quality characteristics, the process yield can be displayed in the following:

yield% = p(X ≥ LSL) =
∫
∞

(µ−LSL)/σ

1
√

2π
exp

{
t2

2

}
dt = Φ

(
PQI

)
(5)

where Z = (X − µ)/σ complies with the standard normal distribution. Φ(z), a cumulative function of
the standard normal distribution, is expressed as follows:

Φ(z) = p(Z ≤ z) =
∫ z

−∞

1
√

2π
exp

{
t2

2

}
dt (6)

Based on the above description, the process yield and unilateral specification process quality
indices have a one-to-one mathematical relationship. Obviously, the process quality indices of
the unilateral specification show the process yield as well as the quality level, so they are good
quality assessment tools for processes with unilateral specifications. These indices include unknown
parameters, so sample data are required for calculation [18,19]. However, interval estimates can decrease
the misjudgment risk resulting from sampling errors more than point estimates can [20,21]. In addition,
due to cost and timeliness considerations, samples are generally small, which lowers estimation
accuracy. To increase the accuracy of estimation and decrease the uncertainty of measurement data,
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many researchers use the confidence interval of indices to construct confidence interval-based fuzzy
evaluation models [22–26]. In this study, we first derive the confidence interval for the unilateral
specification process’ quality indices, and then propose a confidence interval-based fuzzy membership
function to establish the two-tailed fuzzy testing rules for a single index. Lastly, we determine whether
process quality has improved. Obviously, the fuzzy evaluation model proposed by this study can make
a more accurate judgment in a short period of time on whether the process has improved through a
smaller sample size and the integration of accumulated past expert experience [20,22–25]. Besides,
grasping the opportunity for improvement can not only reduce the testing cost but also make the
quality level quickly meet the requirements of the specifications. At the same time, it has the advantage
of reducing the ratio of rework and scrap as well as further reducing social losses, such as carbon
emissions [26,27]. Central Taiwan holds a strategic position in the global machine-tool and machinery
industries, and is home to a complete industry chain, including upstream, midstream and downstream
manufacturers [28,29]. We therefore demonstrated the application of the proposed approach using the
roundness of a gear-grinding process at a factory in Central Taiwan.

As to the rest of this paper, it will be arranged as follows: Section 2 indicates the confidence
interval of a unilateral specification process quality index; Section 3 presents the two-tailed statistical
hypothesis testing of a unilateral specification process quality index; Section 4 develops the two-tailed
fuzzy testing model on the basis of the above rules with critical values; Section 5 employs an application
to demonstrate the efficacy of the proposed approach. Last but not least, conclusions are given in
Section 6.

2. Confidence Intervals

It is assumed that ( X1, . . . , Xi, . . . , Xn ) is a random sample derived from N
(
µ, σ2

)
using sample

size n. Then, the estimator of µ and σ is

X =
1
n

n∑
i=1

Xi = S

√√
1

n− 1

n∑
i=1

(
Xi −X

)2

As a result, the estimator of these two process quality indices can be expressed as follows:

P∗QI =

 USL−X
S , smaller− the− better

X−LSL
S , larger− the− better

(7)

Let the random variable K = (n− 1)S2/σ2. The characteristic function of K is φK(t) = (1− 2it)−(n−1)/2;
therefore, K proceeds with the chi-square distribution using n− 1 degrees of freedom, expressed as
χ2

n−1. If we let α′ = 1−
√

1− α, then

p
{
χ2
α′/2;n−1 ≤ K ≤ χ2

1−α′/2;n−1

}
=
√

1− α (8)

where χ2
α′/2;n−1 refers to the lower α′/2 quantile of the chi-square distribution using n− 1 degrees of

freedom. Therefore,

p


√
χ2
α′/2;n−1

n− 1
≤

S
σ
≤

√
χ2

1−α′/2;n−1

n− 1

 =
√

1− α (9)

If we let the random variable

Z =


√

n[(USL−µ)−(USL−X)]
σ , smaller− the− better

√
n[(X−LSL)−(µ−LSL)]

σ , larger− the− better
(10)



Mathematics 2020, 8, 2129 4 of 17

then Z follows the standard normal distribution, denoted as N(0, 1). We also let α′= 1 −
√

1− α. Then

p
{
−Zα′/2 ≤ Z ≤ Zα′/2

}
=
√

1− α (11)

where Zα′/2 means the upper α′/2 quantile of the standard normal distribution. Therefore,

p
{

P∗QI

(S
σ

)
−

Zα′/2
√

n
≤ PQI ≤ P∗QI

(S
σ

)
+

Zα′/2
√

n

}
=
√

1− α (12)

We set event A and event B as:

A =

{
P∗QI

(S
σ

)
−

Zα′/2
√

n
≤ PQI ≤ P∗QI

(S
σ

)
+

Zα′/2
√

n

}
(13)

B =


√
χ2
α′/2;n−1

n− 1
≤

S
σ
≤

√
χ2

1−α′/2;n−1

n− 1

 (14)

X and S2 are independent, and so are Z and K. Therefore, event A and event B are independent.

p{A∩ B} = p{A} × p{B} = 1− α (15)

Thus,

p


P∗QI

(
S
σ

)
−

Zα′/2
√

n
≤ PQI ≤ P∗QI

(
S
σ

)
+

Zα′/2
√

n
,√

χ2
α′/2;n−1

n−1 ≤
S
σ ≤

√
χ2

1−α′/2;n−1
n−1

 = 1− α (16)

and we have

p


P∗QI ×

√
χ2
α′/2;n−1

n−1 −
Zα′/2
√

n
≤ PQI

≤ P∗QI ×

√
χ2

1−α′/2;n−1
n−1 +

Zα′/2
√

n

 ≥ 1− α (17)

Based on the above description,
[
L− PQI, U − PQI

]
is the 100(1 −α)% confidence interval of the

index PQI where

L− PQI = P∗QI

√
χ2
α′/2;n−1

n− 1
−

Zα′/2
√

n
(18)

U − PQI = P∗QI

√
χ2

1−α′/2;n−1

n− 1
+

Zα′/2
√

n
(19)

3. Two-Tailed Statistical Hypothesis Testing

Statistical hypothesis testing is an effective approach determining whether the process quality
index of the unilateral specification value is equal to k, which demonstrates that the process quality has
attained to the kσ level. Therefore, the hypotheses for testing at significance level α can be described
as below:

null hypothesis H0: PQI = k (20)

alternative hypothesis Ha: PQI , k (21)
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If we let Z=(X1, · · · , Xi, · · · , Xn)
′, then the statistical test function for the null hypothesis H0 is

given by

φ(Z) =

 1 , i f P∗QI < C0L or P∗QI < C0R

0 , otherwise,
(22)

Furthermore, suppose the random variable T′ =
√

n×P∗QI, then

T′ =
Z′√

S2/σ2
=

N(δ, 1)√
χ2

n−1/n− 1
(23)

proceeds with the non-central t-distribution at n − 1 degrees of freedom using the non-centrality
parameter δ =

√
n × PQI, denoted as t′n−1(δ) and

Z′ =


√

n
(
USL−X

)
/σ, smaller− the− better

√
n
(
X − LSL

)
/σ, larger− the− better

(24)

is denoted as N(δ, 1). Then the critical value C−0 , is controlled by

p
{
P∗QI < C−0

∣∣∣∣PQI = k
}
= α

2

⇒ p
{
t′n−1

(
δ =

√
nk

)
<
√

n×C−0
}
= α

2

⇒ C−0 =
t′α/2,n−1(δ=

√
nk)

√
n

(25)

where t′α/2,n−1

(
δ =

√
nk

)
is the lower α/2 quantile of t′n−1

(
δ =

√
nk

)
. Similarly, the critical value C+

0 ,
is determined by

p
{
P∗QI > C+

0

∣∣∣∣PQI = k
}
= α

2

⇒ p
{
t′n−1

(
δ =

√
nk

)
<
√

n×C+
0

}
= 1− α

2

⇒ C+
0 =

t′1−α/2,n−1(δ=
√

nk)
√

n

(26)

where t′1−α/2,n−1

(
δ =
√

nk
)

is the lower 1 −α/2 quantile of t′n−1
(
δ =
√

nk
)
. If we let (x1, . . . , xi, . . . , xn)

be the observed value of (X1, . . . , Xi, . . . , Xn ), then the observed values of X and S are

x =
1
n

n∑
i=1

xi (27)

and

s =

√√
1

n− 1

n∑
i=1

(xi − x)2 (28)

Therefore, the observed value of P∗QI can be displayed as follows:

p∗qi =

 USL−x
s , smaller− the− better

x−LSL
s , larger− the− better

(29)

The statistical testing rules are listed below:

(1) If C−0 ≤ p∗qi ≤ C+
0 , then H0 is not rejected, and it is concluded that H0 = k;

(2) If p∗qi < C0L, then H0 is rejected, and it is concluded that PQI < k;

(3) If C+
0 < p∗qi, then H0 is rejected, and it is concluded that k < PQI.
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4. Two-Tailed Fuzzy Testing

As noted by Chen [30], sample size n can affect the statistical inference results. Thus, this paper
develops a two-tailed fuzzy testing model on the basis of the above rules with critical values C−0 and
C+

0 . Furthermore, the observed values of L− PQI and U − PQI, respectively, are

l− pqi = p∗qi ×

√
χ2

0.5−
√

1−α/2,n−1

n− 1
−

Z0.5−
√

1−α/2
√

n
(30)

u− pqi = p∗qi ×

√
χ2

0.5+
√

1−α/2,n−1

n
+

Z0.5−
√

1−α/2
√

n
(31)

According to the observed values of the confidence interval
[
l− pqi, u− pqi

]
and the proposal

made by Chen [22], the α−cuts of the triangular fuzzy number p̃∗qi is p̃∗qi[α] =
[
p∗qi1(α), p∗qi2(α)

]
for

0.01 ≤ α ≤ 1, where

p∗qi1(α) = p∗qi ×

√
χ2

0.5−
√

1−α/2,n−1

n− 1
−

Z0.5−
√

1−α/2
√

n
(32)

p∗qi2(α) = p∗qi ×

√
χ2

0.5+
√

1−α/2,n−1

n
+

Z0.5−
√

1−α/2
√

n
(33)

It is recalled that the α−cuts of triangular fuzzy number p̃∗qi[α] for 0 ≤ α < 0.01 is equal to p̃∗qi[0.01].

In the case of α = 1, p∗qi1(1)=p∗qi2(1)=p∗qi×

√
χ2

0.5,n−1
n−1 ,p∗qi. According to Chen [22], considering the

convenience in practice, we let

x′ =

√
n− 1
χ2

0.5,n−1

x (34)

Thus:

(1) When x = p∗qi1(α), then

x′ = p̃′qi1(α) = p∗qi

√√√√χ2
0.5−

√
1−α/2,n−1

χ2
0.5,n−1

−

Z0.5−
√

1−α/2√
χ2

0.5,n−1

(35)

(2) When x = p∗qi2(α), then

x′ = p̃′qi2(α) = p∗qi

√√√√χ2
0.5+

√
1−α/2,n−1

χ2
0.5,n−1

+
Z0.5−

√
1−α/2√

χ2
0.5,n−1

(36)

Therefore, the α-cuts of the new triangular fuzzy number of p∗qi is p̃′qi[α] =
[
p′qi1(α), p′qi2(α)

]
for

0.01 ≤ α ≤ 1, where

p′qi1(α) = p∗qi ×

√√√√χ2
0.5−

√
1−α/2,n−1

χ2
0.5,n−1

−

Z0.5−
√

1−α/2√
χ2

0.5,n−1

(37)
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p′qi2(α) = p∗qi ×

√√√√χ2
0.5+

√
1−α/2,n−1

χ2
0.5,n−1

+
Z0.5−

√
1−α/2√

χ2
0.5,n−1

(38)

It is suggested that all of theα-cuts of p̃′qi[α] for 0 ≤ α < 0.01 be equal to p̃′qi[0.01]. Obviously, ifα = 1,

then p′qi1(1) = p′qi2(1) = p∗qi. The new triangular fuzzy number of p∗qi is p̃′qi = ∆( pL, pM, pR), where

pL = p∗qi ×

√√√
χ2

0.0025,n−1

χ2
0.5,n−1

−
Z0.0025√
χ2

0.5,n−1

(39)

pM = p∗qi (40)

pR = p∗qi ×

√√√
χ2

0.9975,n−1

χ2
0.5,n−1

+
Z0.0025√
χ2

0.5,n−1

(41)

Then, the membership function of the triangular fuzzy number p̃′qi is

η(x) =



0 i f x < pL

α1 i f pL ≤ x < p∗qi
1 i f x = pM

α2 i f p∗qi < x ≤ pR

0 i f pR < x

(42)

where α1 and α2 are determined by p′qi1(α1) = x and p′qi2(α2) = x. The membership function η(x) is
presented in Figure 1.
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χ χ
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 
 −
 
 

+ 2× 0.5 1 0.001 2

2
0.5, 1

l

n

Z

χ
− − ×

−

 (46) 

thl

Figure 1. Membership function η(x).
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Suppose AT is the area in the graph of η(x), and then

AT =
{
(x,α)

∣∣∣p′qi1(α) ≤ x ≤ p′qi2(α), 0 ≤ α ≤ 1
}

(43)

As noted by Chen [31] and Buckley [32], the area of set AT can be computed as follows:

aT =

pR∫
pL

η(x) dx (44)

Based on Chen [31], it is difficult to calculate aT directly via integration, so we let l = b1000αc,
l = 0,1, . . . ,1000 for 0 ≤ α 1, where b1000αc refers to the largest integer less than or equal to 1000α.
We let α = 0.001 ×l and l = 0,1, . . . ,1000, showing that AT is divided into 1000 trapezoid-shaped
blocks by 1001 horizontal lines. Therefore, the l th block for l = 0, 1, 2, . . . , 999 can be stated in the
following equation:

ATl =

 (x,α)
∣∣∣p′qi1(0.001× l) ≤ x ≤ p′qi2(0.001× l),

0.001× l ≤ α ≤ 0.001× (l + 1)

 (45)

We also let the coordinates of the two intersection points of horizontal line α = 0.001 × l and set
AT be

(
xT

l1, 0.001× l
)

and
(
xL

l2, 0.001× l
)
. Thus, the distance between these two points is dT

l = xT
l2 − xT

l1 as
shown below:

dT
l = p∗qi ×


√√√√χ2

0.5+
√

1−0.001×l/2,n−1

χ2
0.5,n−1

−

√√√√χ2
0.5−

√
1−0.001×l/2,n−1

χ2
0.5,n−1

+ 2
Z0.5−

√
1−0.001×l/2√
χ2

0.5,n−1

(46)

Obviously, dT
0 = dT

1 = . . . = dT
10, dT

1000 = 0 and ATl is a trapezoid-shaped block containing lower
base dT

l−1, upper base dT
l , and height 0.001. As a result, the approximate value of its area aTl for l = 1, 2, . . . ,

1000 can be written as

aTl = (0.001) ×

dT
l−1 + dT

l
2

 (47)

Therefore,

aT =
1000∑
l=1

aTl

= (0.001) ×
1000∑
l=1

(
dT

l−1+dT
l

2

)
= 0.001×

{(
dT

0
2 +

dT
1
2

)
+

(
dT

1
2 +

dT
2
2

)
+ . . .+

(
dT

9
2 +

dT
10
2

)
+

(
dT

10
2 +

dT
11
2

)}
+ 0.001×

{(
dT

11
2 +

dT
12
2

)
+ . . .+

(
dT

999
2 +

dT
1000
2

)}
= (0.001) ×

{(
dT

0
2 + dT

1 + . . .+ dT
10

)
+

(
dT

11 + dT
12 + . . .+ dT

999 +
dT

1000
2

)}
= (0.001) ×

(
10.5× dT

10 +
999∑

l=11
dT

l

)

(48)

As noted by Chen [22], since the test is two-tailed, the following two cases must be taken
into account:

Case 1: p∗qi < k
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Similar to p̃′qi[α], when p∗qi < k, the α−cuts of triangular fuzzy critical value number C̃−0 is

C̃−0 [α]=
[
C−01(α), C−02(α)

]
for 0.01 ≤ α ≤ 1, where

C−01(α) = C−0 ×

√√√√χ2
0.5−

√
1−α/2,n−1

χ2
0.5,n−1

−

Z0.5−
√

1−α/2√
χ2

0.5,n−1

(49)

C−02(α) = C−0 ×

√√√√χ2
0.5+

√
1−α/2,n−1

χ2
0.5,n−1

+
Z0.5−

√
1−α/2√

χ2
0.5,n−1

(50)

It is suggested that all of the α−cuts of C̃−0 [α] for 0 ≤ α < 0.01 are equal to C̃−0 [0.01]. Obviously,

if α = 1, then C−01(1) = C−02(1) = C−0 and the triangular fuzzy number of C−0 is C̃−0 = ∆
(
C−L , C−0 , C−R

)
,

where C−L = C−01(0.01) and C−R = C−02(0.01). Then, the membership function of the triangular-shaped
fuzzy number C̃−0 is

η−(x) =



0 i f x < C−L
α−1 i f C−L ≤ x < C−0
1 i f x = C−0
α−2 i f C−0 < x ≤ C−R
0 i f C−R < x

(51)

where α−1 and α−2 are determined by C−01(α
−

1 ) = x and C−02(α
−

2 ) = x. Therefore, the membership functions
η(x) and η−(x) are presented in Figure 2.
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n
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Figure 2. Membership functions η(x) and η−(x).

Suppose AL is the area attaining to the left of the vertical line x = C−0 in the graph of η−(x), and then

AL =
{
(x,α)

∣∣∣p′qi1(α) ≤ x ≤ C−0 , 0 ≤ α ≤ 0.001× b
}

(52)
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where C−0 = p′qi1(0.001 × b). We also let α = 0.001 × l and l = 1, . . . , b, which indicate that b + 1
horizontal lines divide AL into b trapezoid-shaped blocks. Then, the lth block can be displayed
as follows:

ALl =

{
(x,α)

∣∣∣p′qi1(0.001× l) ≤ x ≤ p′qi1(0.001× b),
0.001× (l− 1) ≤ α ≤ 0.001× l

}
(53)

We also let the coordinates of the two intersection points of horizontal line α = 0.001 × l and set
AL be

(
xL

l1, 0.001× l
)

and
(
xL

l2, 0.001× l
)
. Thus, the distance between these two points is dL

l = xL
l2 − xL

l1,
as shown below:

dL
l = p∗qi ×

√
χ2

0.5−
√

1−0.001×b/2,n−1
−

√
χ2

0.5−
√

1−0.001×l/2,n−1√
χ2

0.5,n−1

−

Z0.5−
√

1−0.001×b/2 −Z0.5−
√

1−0.001×l/2√
χ2

0.5,n−1

(54)

Obviously, dL
0 = dL

1 = . . . = dL
10, dL

b = 0 and ALl is a trapezoid-shaped block, including lower base
dL

l−1, upper base dL
l , and height 0.001. Consequently, the approximate value of its area aLl for l = 1, . . . , b

can be expressed below:

aLl = (0.001) ×

dL
l−1 + dL

l
2

 (55)

Therefore,

aL =
b∑

l=1
aLl

= (0.001) ×
b∑

l=1

(
dL

l−1+dL
l

2

)
= 0.001×

{(
dL

0
2 +

dL
1
2

)
+

(
dL

1
2 +

dL
2
2

)
+ . . .+

(
dL

9
2 +

dL
10
2

)
+

(
dL

10
2 +

dL
11
2

)}
+ 0.001×

{(
dL

11
2 +

dL
12
2

)
+ . . .+

(
dL

b−1
2 +

dL
b
2

)}
= (0.001) ×

{(
dL

0
2 + dL

1 + . . .+ dL
10

)
+

(
dL

11 + dL
12 + . . .+ dL

b−1 +
dL

b
2

)}
= (0.001) ×

(
10.5× dL

10 +
b−1∑
l=11

dL
l

)

(56)

Case 2: k ≤ p∗qi

Similar to C̃−0 [α], when k ≤ p∗qi, the α−cuts of triangular fuzzy critical value number C̃+
0 will be

C̃+
0 [α] =

[
C+

01(α), C+
02(α)

]
for 0.01 ≤ α ≤ 1, where

C+
01(α) = C+

0 ×

√√√√χ2
0.5−

√
1−α/2,n−1

χ2
0.5,n−1

−

Z0.5−
√

1−α/2√
χ2

0.5,n−1

(57)

C+
02(α) = C+

0 ×

√√√√χ2
0.5+

√
1−α/2,n−1

χ2
0.5,n−1

+
Z0.5−

√
1−α/2√

χ2
0.5,n−1

(58)
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Suppose the α−cuts of C̃+
0 [α] for 0 ≤ α < 0.01 equals C̃+

0 [0.01]. Obviously, if α = 1, then C+
01(1)

= C+
02(1) = C+

0 and the triangular fuzzy number of C+
0 is C̃+

0 = ∆
(
C+

L , C+
0 , C+

R

)
where C+

L = C+
01(0.01)

and C+
R = C+

02(0.01). Then, the membership function of triangular fuzzy number C̃+
0 is

η+(x) =



0 i f x < C+
L

α+1 i f C+
L ≤ x < C+

0
1 i f x = C+

0
α+2 i f C+

0 < x ≤ C+
R

0 i f C+
R < x

(59)

where α+1 and α+2 are determined by C+
01(α

+
1 ) = x and C+

02(α
+
2 ) = x. Therefore, the membership

functions η(x) and η+(x) are as presented in Figure 3:Mathematics 2020, 8, x FOR PEER REVIEW 12 of 18 
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It is assumed that AR is the area extending to the right of the vertical line x = C+
0 in the graph of

η(x), and then
AR =

{
(x,α)

∣∣∣C+
0 ≤ x ≤ p′qi2(α), 0 ≤ α ≤ 0.001× a

}
(60)

where C+
0 = p′qi2(0.001× a). We let α = 0.001 × l and l = 1, . . . , a, which indicate that a + 1 horizontal

lines divide AR into a trapezoid-shaped blocks. Therefore, the lth block can be expressed in the
following equation:

ARl =

{
(x,α)

∣∣∣p′qi2(0.001× a) ≤ x ≤ p′qi2(0.001× l),
0.001× (l− 1) ≤ α ≤ 0.001× l

}
(61)
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We also set the coordinates of the two intersection points of horizontal line α = 0.001 × l and set
AR as

(
xR

l1, 0.001× l
)

and
(
xR

l2, 0.001× l
)
. Thus, the distance between these two points is dR

l = xR
l2 − xR

l1 as
shown below:

dR
l = p∗qi ×

√
χ2

0.5+
√

1−0.001×l/2,n−1
−

√
χ2

0.5+
√

1−0.001×a/2,n−1√
χ2

0.5,n−1

+
Z0.5−

√
1−0.001×l/2−Z0.5−

√
1−0.001×a/2√

χ2
0.5,n−1

(62)

Obviously, dR
0 = dR

1 = . . . = dR
10, dR

a = 0 and ARl is a trapezoid-shaped block with a lower base
dR

l−1, upper base dR
l , and height 0.001. As a result, the approximate value of its area aRl for l = 1,..., a

can be written as follows:

aRl = (0.001) ×

dR
l−1 + dR

l
2

 (63)

Therefore,

aR =
a∑

l=1
aRl

= (0.001) ×
a∑

l=1

(
dR

l−1+dR
l

2

)
= 0.001×

{(
dR

0
2 +

dR
1
2

)
+

(
dR

1
2 +

dR
2
2

)
+ . . .+

(
dR

9
2 +

dR
10
2

)
+

(
dR

10
2 +

dR
11
2

)}
+ 0.001×

{(
dR

11
2 +

dR
12
2

)
+ . . .+

(
dR

a−1
2 +

dR
a
2

)}
= (0.001) ×

{(
dR

0
2 + dR

1 + . . .+ dR
10

)
+

(
dR

11 + dR
12 + . . .+ dR

a−1 +
dR

a
2

)}
= (0.001) ×

(
10.5× dR

a−1∑
l=11

dR
l

)

(64)

According to the above-mentioned inferences, the fuzzy testing rules can be based on case 1
(p∗qi < k) and case 2 (k ≤ p∗qi ). Letting 0< φ1 < φ2 < 0.5, the fuzzy hypothesis testing rules can be listed
as follows:

Case 1: p∗qi < k.

(1) If aL/aT < φ1, then H0 is not rejected, and it is concluded that PQI = k;
(2) If φ1 ≤ aL/aT ≤ φ2, then no decision is made;
(3) If φ2 < aL/aT, then H0 is rejected, and it is concluded that PQI < k.

Case 2: p∗qi≥k.

(1) If aR/aT < φ1, then H0 is not rejected, and it is concluded that PQI = k;
(2) If φ1 ≤ aR/aT ≤ φ2, then no decision is made;
(3) If φ2 < aR/aT, then H0 is rejected, and it is concluded that PQI > k.

5. A Practical Application

As noted by Wu et al. [28] and Chen et al. [29], Central Taiwan boasts a large machinery industry
including various upstream, midstream, and downstream manufacturers. We therefore used the
roundness of a gear-grinding process at a factory in Central Taiwan to illustrate the two-tailed fuzzy
hypothesis testing method with process quality indices of the unilateral specification. The roundness of
the inner hole in a gear is an STB quality characteristic, and the upper specification limit USL = 0.01 µm.
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Based on Equations (27) and (28), we can compute the values of x and s with sample size n = 100
as follows:

x =
1
n

n∑
i=1

xi =
1

100

100∑
i=1

xi = 0.0067

s =

√√
1

n− 1

n∑
i=1

(xi − x)2 =

√√√
1
99

100∑
i=1

(xi − 0.0067)2 = 0.0008.

Therefore,

p∗qi =
USL− x

s
= 4.125

According to Equations (39)–(41), we have p̃′qi = ∆( pL, pM, pR) = ∆(3.047, 4.125, 5.259), and the
membership function η(x) with p∗qi = 4.125 is

η(x) =



0 i f x < 3.047
α1 i f 3.047 ≤ x < 4.125
1 i f x = 4.125
α2 i f 4.125 < x ≤ 5.259
0 i f 5.259 < x

where α1 and α2 are determined by p′qi1(α1) = x and p′qi2(α2) = x. Since dT
0 = dT

1 = . . . = dT
10 and

dT
1000 = 0, then, based on Equation (48), we have

aT = (0.001) ×
{(

dT
0
2 + dT

1 + . . .+ dT
10

)
+

(
dT

11 + dT
12 + . . .+ dT

999

)}
= (0.001) ×

(
10.5× dT

10 +
999∑

l=11
dT

l

)
= (0.001) × (10.5× 2.2122 + 864.9726)

= 0.8882

Our goal is to test whether the unilateral specification process quality index value is equal to
k = 5 with sample size n = 100 and α = 0.01. The null hypothesis is H0: PQI = 5, and the alternative
hypothesis is H1: PQI , 5. Obviously, p∗qi = 4.125 < 5 belongs to case 1. Thus, based on Equation (25),
we can compute the values of C−0 as follows:

C−0 =
t′α/2,n−1

(
δ =

√
nk

)
√

n
=

t′0.005,99
(
δ =

√
100× 5

)
√

100
= 4.060

According to Equations (49) and (50), we have C̃−0 = ∆
(
C−L , C−0 , C−R

)
= ∆( 2.994, 4.060, 5.180), and

the membership function η−(x) with C−0 = 4.060 is

η−(x) =



0 i f x < 2.994
α1 i f 2.994 ≤ x < 4.060
1 i f x = 4.060
α2 i f 4.060 < x ≤ 5.180
0 i f 5.180 < x

(65)

where α−1 and α−2 are determined by C−01(α
−

1 ) = x and C−02(α
−

2 ) = x. Therefore, the membership functions
η(x) and η−(x) are as presented in Figure 4.



Mathematics 2020, 8, 2129 14 of 17
Mathematics 2020, 8, x FOR PEER REVIEW 15 of 18 

 

 
Figure 4. Membership functions ( )xη  with qip

∗ = 4.125 and ( )xη−  with 0C
− = 4.060. 

Since 0 1 10...L L Ld d d= = =  and 0L
bd = (b = 983), then based on Equation (56), we have 

La ( ) ( )0
1 10 11 12 10.001 ... ...

2

L
L L L L L

b
d

d d d d d −

   = × + + + + + + +      
 

= (0.001) ×
1

10
11

10.5
b

L L
l

l
d d

−

=

 × + 
 

  

983 1

11
(0.001) 10.5 1.0135 L

l
l
d

−

=

 × × + 
 

  

( )(0.001) 10.5 1.0135 363.1641× × +  
= 0.3738. 

Based on Chen [30] and setting 2φ =  0.40, 

L Ta a = 0.3738
0.8882

= 0.421 > 2φ  

Based on the fuzzy testing rule (3) of case 1, we can conclude that QIP < 5. According to the 

statistical testing rules, since qip
∗ = 4.125 > 4.060 = 0C

− , the null hypothesis cannot be rejected ( QIP =

5). However, qip
∗ =  4.125 is much smaller than 5, so the conclusion that pkQ = 5 is obviously 

unreasonable. The conclusion that QIP < 5, received via the fuzzy testing method suggested in this 
study, is obviously more reasonable than the conclusion of the statistical testing method [20,22,24–
26,31]. 

In order to facilitate the use of the industry, this study summarizes the above and provides an 
application process as follows: 

Step 1: Calculate the sample mean x , and sample standard deviation ; 
Step 2: Calculate the estimated value of the indicator, qip

∗ , and the critical value, 0C ; 

=

=

s

Figure 4. Membership functions η(x) with p∗qi= 4.125 and η−(x) with C−0 = 4.060.

Since dL
0 = dL

1 = . . . = dL
10 and dL

b = 0 (b = 983), then based on Equation (56), we have

aL = (0.001) ×
{(

dL
0
2 + dL

1 + . . .+ dL
10

)
+

(
dL

11 + dL
12 + . . .+ dL

b−1

)}
= (0.001) ×

(
10.5× dL

10 +
b−1∑
l=11

dL
l

)
= (0.001) ×

(
10.5× 1.0135 +

983−1∑
l=11

dL
l

)
= (0.001) × (10.5× 1.0135 + 363.1641)

= 0.3738

Based on Chen [30] and setting φ2 = 0.40,

aL/aT =
0.3738
0.8882

= 0.421>φ2

Based on the fuzzy testing rule (3) of case 1, we can conclude that PQI < 5. According to the
statistical testing rules, since p∗qi = 4.125 > 4.060 =C−0 , the null hypothesis cannot be rejected (PQI = 5).
However, p∗qi = 4.125 is much smaller than 5, so the conclusion that Qpk = 5 is obviously unreasonable.
The conclusion that PQI < 5, received via the fuzzy testing method suggested in this study, is obviously
more reasonable than the conclusion of the statistical testing method [20,22,24–26,31].

In order to facilitate the use of the industry, this study summarizes the above and provides an
application process as follows:

Step 1: Calculate the sample mean x, and sample standard deviation s;
Step 2: Calculate the estimated value of the indicator, p∗qi, and the critical value, C0;
Step 3: Apply the Statistical software (e.g., SAS programming), first, enter the required value K of

the quality level, and then enter the estimated value of the index, p∗qi, as well as the critical value, C0;
Step 4: Execute the completed Statistical software and then simply calculate to get the value aL/aT.
Step 5: Then, judgments can be made based on the fuzzy evaluation criteria.
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6. Conclusions

The unilateral specification process quality index reflects process yield and quality level.
In addition, it serves as a good bridge between the industry and customers as well as a tool for
internal engineers. This study proposes a two-tailed fuzzy test method built on the basis of the process
quality indices of the unilateral specification for performance evaluation conducted by the industry.
First, we derived the confidence interval of the unilateral specification process quality index based on
the results of statistical inferences. Next, we used the confidence interval to develop the two-tailed
fuzzy testing model based on the above rules with critical values. This two-tailed test provides an
effective method for process quality assessment as well as improvement. We also present a case study
evaluating the roundness of a gear-grinding process at a factory in Central Taiwan. The results of
the case study illustrate the application of the two-tailed fuzzy hypothesis testing method for the
unilateral specification process quality index, and further prove that the proposed method provides
more reasonable results than statistical testing [20,22,24–26,31]. Our proposed method can decrease
the testing cost and make the quality level reach the standard rapidly. Besides, it diminishes the
ratio of rework and scrap, as well as further reducing social losses such as carbon emissions [26,27].
Obviously, this method is an innovation for sustainable concept and application. In view of global
warming, sustainable development is the premise for all companies to maintain the advantages of
high quality and production efficiency. The sustainability concept is different from the traditional
one, which focuses on the profits only. Increasingly more and more companies apply our proposed
method and concept, not only to improve production efficiency, but also to reduce waste for the goal
of sustainability.

After the enterprise has completed the process improvement, it should carry out the improvement
verification [33] in order to practice the spirit of total quality management. Therefore, this study
suggests that the fuzzy improvement verification model be developed in the future. In addition,
considering that many process distributions are abnormal, the future research can focus on exploring
how to imitate a normal process as well as create a fuzzy evaluation model of the abnormal process
distribution when the process distribution is abnormal, the median replaces the average, and (1− α/2
upper quantile—α/2 upper quantile)/6 replaces the standard deviation [34,35].

Author Contributions: Conceptualization, C.-M.Y.; methodology, C.-M.Y. and W.-J.L.; software, T.-H.H.;
validation, K.-K.L.; formal analysis, C.-M.Y. and W.-J.L.; resources, K.-K.L.; data curation, T.-H.H., and K.-K.L.;
writing—original draft preparation, C.-M.Y., W.-J.L., T.-H.H.; writing—review and editing, C.-M.Y. and W.-J.L.;
visualization, K.-K.L.; supervision, W.-J.L.; project administration, C.-M.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, K.S.; Yang, C.M. Quality capability assessment for thin-film chip resistor. IEEE Access 2019, 7,
92511–92516. [CrossRef]

2. Chen, K.S.; Wang, C.C.; Wang, C.H.; Huang, C.F. Application of RPN analysis to parameter optimization of
passive components. Microelectron. Reliab. 2010, 50, 2012–2019. [CrossRef]

3. Otsuka, A.; Nagata, F. Quality design method using process capability index based on Monte-Carlo method
and real-coded genetic algorithm. Int. J. Prod. Econ. 2018, 204, 358–364. [CrossRef]

4. Nikzad, E.; Amiri, A.; Amirkhani, F. Estimating total and specific process capability indices in three-stage
processes with measurement errors. J. Stat. Comput. Simul. 2018, 88, 3033–3064. [CrossRef]

5. Yu, C.M.; Lai, K.K.; Chen, K.S.; Chang, T.C. Process-quality evaluation for wire bonding with multiple gold
wires. IEEE Access 2020, 8, 106075–106082. [CrossRef]

6. Chang, T.C.; Wang, K.J.; Chen, K.S. Sputtering process assessment of ITO film for multiple quality
characteristics with one-sided and two-sided specifications. J. Test. Eval. 2014, 42, 196–203. [CrossRef]

7. Chen, K.S. Estimation of the process incapability index. Commun. Stat. Theory Methods 1998, 27, 1263–1274. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2927657
http://dx.doi.org/10.1016/j.microrel.2010.06.014
http://dx.doi.org/10.1016/j.ijpe.2018.08.016
http://dx.doi.org/10.1080/00949655.2018.1498096
http://dx.doi.org/10.1109/ACCESS.2020.2998463
http://dx.doi.org/10.1520/JTE20130054
http://dx.doi.org/10.1080/03610929808832157


Mathematics 2020, 8, 2129 16 of 17

8. Chen, K.S.; Wang, K.J.; Chang, T.C. A novel approach to deriving the lower confidence limit of indices cpu,
cpl, and cpk in assessing process capability. Int. J. Prod. Res. 2017, 55, 4963–4981. [CrossRef]

9. Chang, T.C.; Chen, K.S. Testing process quality of wire bonding with multiple gold wires from the viewpoint
of producers. Int. J. Prod. Res. 2019, 57, 5400–5413. [CrossRef]

10. Anderson, N.C.; Kovach, J.V. Reducing welding defects in turnaround projects: A lean six sigma case study.
Qual. Eng. 2014, 26, 168–181. [CrossRef]

11. Gijo, E.V.; Scaria, J. Process improvement through Six Sigma with Beta correction: A case study of
manufacturing company. Int. J. Adv. Manuf. Technol. 2014, 71, 717–730. [CrossRef]

12. Shafer, S.M.; Moeller, S.B. The effects of Six Sigma on corporate performance: An empirical investigation.
J. Oper. Manag. 2012, 30, 521–532. [CrossRef]

13. Chen, K.S.; Chen, H.T.; Chang, T.C. The construction and application of six sigma quality indices. Int. J.
Prod. Res. 2017, 55, 2365–2384. [CrossRef]

14. Ouyang, L.Y.; Chen, K.S.; Yang, C.M.; Hsu, C.H. Using a QCAC-Entropy-TOPSIS approach to measure
quality characteristics and rank improvement priorities for all substandard quality characteristics. Int. J.
Prod. Res. 2014, 52, 3110–3124. [CrossRef]

15. Yu, K.T.; Sheu, S.H.; Chen, K.S. The evaluation of process capability for a machining center. Int. J. Adv.
Manuf. Technol. 2007, 33, 505–510. [CrossRef]

16. Huang, C.F.; Chen, K.S.; Sheu, S.H.; Hsu, T.S. Enhancement of axle bearing quality in sewing machines using
six sigma. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, 224, 1581–1590. [CrossRef]

17. Chang, T.C.; Chen, K.S.; Yu, C.M. Process quality assessment model of hand tools: A case study on the
handle of ratchet torque wrench. Int. J. Reliab. Qual. Saf. Eng. 2016, 23, 1650017. [CrossRef]

18. Wang, C.H.; Chen, K.S. New process yield index of asymmetric tolerances for bootstrap method and six
sigma approach. Int. J. Prod. Econ. 2020, 219, 216–223. [CrossRef]

19. Yu, K.T.; Chen, K.S. Testing and analyzing capability performance for products with multiple characteristics.
Int. J. Prod. Res. 2016, 54, 6633–6643. [CrossRef]

20. Chen, K.S.; Yu, C.M. Fuzzy test model for performance evaluation matrix of service operating systems.
Comput. Ind. Eng. 2020, 140, 106240. [CrossRef]

21. Chen, K.S.; Lii, P.C.; Li, S.Y.; Yu, C.M. Development and application of a performance evaluation matrix:
A case study on exploring the items considered critical to quality. J. Test. Eval. 2018, 48, 3468–3478. [CrossRef]

22. Chen, K.S. Fuzzy testing of operating performance index based on confidence intervals. Ann. Oper. Res.
2019. [CrossRef]

23. Yang, C.M.; Lin, K.P.; Chen, K.S. Confidence interval based fuzzy evaluation model for an integrated-circuit
packaging molding process. Appl. Sci. 2019, 9, 2623. [CrossRef]

24. Yu, C.M.; Chen, K.S.; Lai, K.K.; Hsu, C.H. Fuzzy supplier selection method based on smaller-the-better
quality characteristic. Appl. Sci. 2020, 10, 3635. [CrossRef]

25. Yu, C.H.; Liu, C.C.; Chen, K.S.; Yu, C.M. Constructing fuzzy hypothesis methods to determine
critical-to-quality service items. Mathematics 2020, 8, 573. [CrossRef]

26. Chen, K.S.; Wang, C.H.; Tan, K.H. Developing a fuzzy green supplier selection model using Six Sigma quality
indices. Int. J. Prod. Econ. 2019, 212, 1–7. [CrossRef]

27. Li, K.Y.; Luo, W.J.; Hong, X.H.; Wei, S.J.; Tsai, P.H. Enhancement of machining accuracy utilizing varied
cooling oil volume for machine tool spindle. IEEE Access 2020, 8, 28988–29003. [CrossRef]

28. Wu, M.F.; Chen, H.Y.; Chang, T.C.; Wu, C.F. Quality evaluation of internal cylindrical grinding process with
multiple quality characteristics for gear products. Int. J. Prod. Res. 2019, 57, 6687–6701. [CrossRef]

29. Chen, K.S.; Chang, T.C.; Guo, Y.Y. Selecting an optimal contractor for production outsourcing: A case study
of gear grinding. J. Chin. Inst. Eng. 2020, 43, 415–424. [CrossRef]

30. Chen, K.S. Fuzzy testing decision-making model for intelligent manufacturing process with Taguchi capability
index. J. Intell. Fuzzy Syst. 2020, 38, 2129–2139. [CrossRef]

31. Chen, K.S. Two-tailed Buckley fuzzy testing for operating performance index. J. Comput. Appl. Math. 2019,
361, 55–63. [CrossRef]

32. Buckley, J.J. Fuzzy statistics: Hypothesis testing. Soft Comput. 2005, 9, 512–518. [CrossRef]
33. Chen, K.S.; Chang, H.T.; Yu, C.M. Development and application of performance improvement verification

model: A case study of an e-learning system. Total Qual. Manag. Bus. Excell. 2019, 30, 936–952. [CrossRef]

http://dx.doi.org/10.1080/00207543.2017.1282644
http://dx.doi.org/10.1080/00207543.2018.1524164
http://dx.doi.org/10.1080/08982112.2013.801492
http://dx.doi.org/10.1007/s00170-013-5483-y
http://dx.doi.org/10.1016/j.jom.2012.10.002
http://dx.doi.org/10.1080/00207543.2016.1246763
http://dx.doi.org/10.1080/00207543.2013.865092
http://dx.doi.org/10.1007/s00170-006-0481-y
http://dx.doi.org/10.1243/09544054JEM1769
http://dx.doi.org/10.1142/S0218539316500170
http://dx.doi.org/10.1016/j.ijpe.2019.05.004
http://dx.doi.org/10.1080/00207543.2016.1203469
http://dx.doi.org/10.1016/j.cie.2019.106240
http://dx.doi.org/10.1520/JTE20180166
http://dx.doi.org/10.1007/s10479-019-03242-x
http://dx.doi.org/10.3390/app9132623
http://dx.doi.org/10.3390/app10103635
http://dx.doi.org/10.3390/math8040573
http://dx.doi.org/10.1016/j.ijpe.2019.02.005
http://dx.doi.org/10.1109/ACCESS.2020.2972580
http://dx.doi.org/10.1080/00207543.2019.1567951
http://dx.doi.org/10.1080/02533839.2020.1751723
http://dx.doi.org/10.3233/JIFS-190865
http://dx.doi.org/10.1016/j.cam.2019.04.019
http://dx.doi.org/10.1007/s00500-004-0368-5
http://dx.doi.org/10.1080/14783363.2017.1416287


Mathematics 2020, 8, 2129 17 of 17

34. Pearn, W.L.; Chen, K.S. Estimating process capability indices for non-normal pearsonian populations.
Qual. Reliab. Eng. Int. 1995, 11, 386–388. [CrossRef]

35. Tai, Y.T.; Pearn, W.L. Measuring the manufacturing yield for skewed wire bonding processes. IEEE Trans.
Semicond. Manuf. 2015, 28, 424–430. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/qre.4680110510
http://dx.doi.org/10.1109/TSM.2015.2422839
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Confidence Intervals 
	Two-Tailed Statistical Hypothesis Testing 
	Two-Tailed Fuzzy Testing 
	A Practical Application 
	Conclusions 
	References

