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Abstract: When dealing with real control experimentation, the designer has to take into account several
uncertainties, such as: time variation of the system parameters, exogenous perturbation and the presence
of time delay in the feedback line. In the later case, this time delay behaviour may be random, or chaotic.
Hence, the control block has to be robust. In this work, a robust delay-dependent controller based on H∞

theory is presented by employing the linear matrix inequalities techniques to design an efficient output
feedback control. This approach is carefully tuned to face with random time-varying measurement
feedback and applied to the Furuta pendulum subject to an exogenous ground perturbation. Therefore,
a recent experimental platform is described. Here, the ground perturbation is realised using an Hexapod
robotic system. According to experimental data, the proposed control approach is robust and the control
objective is completely satisfied.

Keywords: random time delay; exogenous disturbance; Furuta pendulum; nonlinear systems;
LMI-robust controller

1. Introduction

Time delays are usually encountered in numerous industrial systems to be controlled, such as distributed
networks [1], nuclear reactors [2,3], telecommunication [4], electrical servo systems [5], robotics [6], etc. Usually,
ignoring the effect of time delays yields a severe deterioration in system performance or even instability.
For instance, in [7], an analysis of communication delays shows these effects on an electric power grid.
In [8], an overview of recent results for time delay systems is provided. Thus, time delay controllers
have practical significance [9–13]. Recent years have witnessed a widespread interest in the synthesis
of appropriate control laws for time delay dynamical systems in the presence of uncertainties [14–16].
In [17], an adaptive fuzzy back-stepping method has been proposed for the nonlinear dynamical systems
with unmeasured states and unknown time delays. In [18], an H∞ stabilisation controller has been
investigated for Takagi–Sugeno fuzzy time delay systems under nonlinear perturbations and sampled-data
input. Moreover, ref. [19] presents the robust stabilisation problem of a class of time varying time delay
dynamical systems which are not perfectly known. In this case, by using output feedback, the system
output is modelled through a nonlinear function depending on the inputs and delayed states. The main
difference of these papers with our proposal is the control design: we use time delay linear controller
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to turn the design into a simpler one, but the delay is included to face unexpected events. Moreover,
in real and practical experiments, time delay cannot be considered constant or known. This is our
situation: we consider a random time delay [20] on the measurements of the Furuta pendulum, also named
rotary inverted pendulum (RIP). This type of time delay is common on, for instance, network control
electronics. For example, ref. [21] describes the systematic design techniques for random systems, and their
implementation in electronic circuits. Our paper faces the problem of the presence of chaotic behavior
in the time delay model, induced by the random-logistic map, but not in the nonlinear system model:
we design a linear control able to stabilize a nonlinear system, despite external disturbances and random
time delay inputs. This is the main difference, for instance, with [22–24], where nonlinear chaotic-systems
are studied.

The main advantage of the proposed time delay control design remains on the stability condition,
allowing one to control additional dynamics. We consider not only time delay on the measurements,
but also external disturbances inducing uncertainties on the system and unmodelled dynamics. As is
well-known, from a practical point of view, most process models, including power systems [25],
robotic manipulators [26], non-holonomic systems, under-actuated mechanisms and flexible space
structure [27] suffer from unpredictable behaviour. Thus, system uncertainties should always be taken
into account when a control system is designed for both stability and performance [28–31]. The problem
of designing a robust nonlinear state-feedback control scheme which overcomes system uncertainties
has been the subject of substantial investigation over the years [32–35]. The linear matrix inequality
(LMI) approach is a suitable technique to deal with systems uncertainties including parametric [36] or
unstructured uncertainties [37] (see [38,39] as introduction in LMI theory). Due to its influential structure,
the LMI technique has widely been applied to obtain some solutions for the convex problem minimisation
such as H∞ control [40–43] and H2 control [44,45]. To the best knowledge of the authors, little attention
has been brought to the problem of nonlinear state-feedback stabilization for time delay nonlinear systems
with Lipschitz nonlinearities using LMIs, which is still an open problem.

This work aims to present a output-feedback control law for the stability problem of Lipschitz
nonlinear systems under random time delay. Parametric uncertainties are also taken into account due to
their significant contribution to the system stability. By constructing a Lyapunov–Krasovskii functional,
asymptotic stabilisation conditions are prepared in the form of LMI and the parameters of the nonlinear
state-feedback control law are determined through LMIs. The offered control law ensures asymptotic
stability of these systems, even if the nonlinear part is non-zero. Unlike the former investigations,
the resultant LMI conditions possess fewer pre-assumed design parameters, and thus, the planned method
may lead to less conservative conditions. Besides, the control scheme is independent of the order of the
system. The main contributions of the proposed technique are listed as follows:

(a) Design of a nonlinear state-feedback stabiliser for nonlinear systems with random time delays,
Lipschitz nonlinearities and parametric uncertainties.

(b) Satisfaction of the asymptotic stabilisation based on Lyapunov–Krasovskii stability theory and
LMI approach.

(c) The proposed method is rather straightforward and there is no complexity in the employment of
this technique.

(d) Application of the offered method on an experimental device, to prove the efficiency of the method.

This experimental platform is presented in Figure 1, where the rotary pendulum (or Furuta device) is
placed over the Steward platform (or Hexapod robot). Hence, the Hexapod device is employed to generate
an exogenous Furuta’s base perturbation which propagates all along the pendulum dynamics. Moreover,
the vibration produced by the hexapod movement induces an additional perturbations on the pendulum
such as induced Coriolis force. Hence, the control design objective is established to mitigate all these
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disturbances, and overcome the input delay presented on the control action. This platform is conceived to
emulate mechanism under periodic disturbances, such as for example, missile guidance over the sea [46].

Figure 1. Experimental setup: Furuta pendulum located on a Steward platform.

The organization of this paper is as follows. Section 2 develops the description of the problem and
the required preliminaries. Section 3 presents stability analysis and design process of LMI-based nonlinear
state-feedback control scheme for the nonlinear time delay systems in the presence of uncertainties.
In Section 4, the random time delay system is implemented and experimental results are studied. Finally,
Section 5 concludes the paper.

2. Notation

The notation throughout the paper is fairly standard: capital letter denotes matrix; AT denotes the
transpose of a matrix A; in symmetric block matrices or long matrix expressions, symbol ∗ is used as an
ellipsis for terms that are induced by symmetry, e.g.,:(

S + (∗) ∗
M Q

)
≡
(

S + ST MT

M Q

)
.

A symmetric positive-definite matrix A is denoted by A > 0. Lately, the real sign function is denoted
by sgn(x).

3. Robust Delay-Dependent Control Design

The objective of this section is to present the mathematical problem statement necessary to solve our
control statement. The family system under study is a continuous system with Lipschitzian nonlinearities,
external disturbances and feedback delay, given by:
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ẋ(t) = f (x(t)) + Ax(t) + A1x(t− τ) + Bu(t− τ) + Ew(t)

y(t− τ) = Cx(t− τ)

z(t) = D11x(t− τ) + D12w(t)

(1)

where the variables are defined as:

• x(t) ∈ Rn is the state variable.
• τ ∈ R is the time delay.
• A, A1, B, E, C, D11 and D12 are real matrices of appropriate dimensions.
• w(t) ∈ Rm is the external perturbation.
• u(t) ∈ R is the control input.
• y(t) ∈ Rp is the output variable.
• z(t) ∈ Rq is the H∞ internal or virtual variable.

Time delay τ ∈ [0, h] is assumed unknown, but with known upper value h. Function f (x(t)) is a
Lipschitz function, satisfying for all x, x̄ ∈ Rn [47]:

‖ f (x)− f (x̄)‖ ≤ ‖L(x− x̄)‖, (2)

where L ∈ Rn×n is a Lipschitz constant matrix.

Objective: The main control objective is to characterise a time delay dependent robust controller,
defined as

u(t− τ) = Fy(t− τ), (3)

under exogenous perturbations induced by a planned dynamic movement of the hexapod.

To prove the robustness of the control approach, we use the well-known Lyapunov–Krasovskii
theory. The methods based on Lyapunov–Krasovskii functionals are certainly the most popular for
analysing and controlling time delay systems in the time-domain framework [48]. Over the family of
Lyapunov–Krasovskii functional, we choose the one that introduces a term which makes the stability
condition delay-dependent, allowing the control of additional dynamics. Therefore, consider the next
Lyapunov–Krasovskii function (4):

V(t) = xT(t)Px(t) +
∫ t

t−τ
x(s)T P1x(s) ds +

1
τ

∫ 0

−τ

∫ t

t+θ
ẋ(v)T P2 ẋ(v) dv dθ. (4)

The last term in (4) will make the H∞ condition delay-dependent. Under H∞ theory, we have
to impose:

V̇(t) + γ−1zT(t)z(t)− γwT(t)w(t) < 0. (5)

First of all, let’s see the expression of V̇(t):

V̇(t) = ẋ(t)T Px(t) + x(t)T Pẋ(t) + x(t)T P1x(t)− x(t− τ)T P1x(t− τ)

+ 1
τ

∫ 0
−τ

(
ẋ(t)T P2 ẋ(t)− ẋ(t + θ)T P2 ẋ(t + θ)

)
dθ

= ẋ(t)T Px(t) + x(t)T Pẋ(t) + x(t)T P1x(t)− x(t− τ)T P1x(t− τ)

+ẋ(t)T P2 ẋ(t)− 1
τ

∫ t
t−τ ẋ(s)T P2 ẋ(s) ds.

(6)
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Let’s compensate the integral term 1
τ

∫ t
t−τ ẋ(s)T P2 ẋ(s) ds in (6) by using the Jensen’s inequality [48]:

φ

(∫ b

a
z(s)ds

)
≤ (b− a)

∫ b

a
φ(z(s))ds.

Considering φ = P2, a = t− τ and b = t, the integral term in (6) verifies:

1
τ

∫ t
t−h ẋ(s)T P2 ẋ(s) ds ≥ 1

τ2

(∫ t
t−τ ẋ(s)Tds

)
P2

(∫ t
t−τ ẋ(s)ds

)
= 1

τ2 (x(t)− x(t− τ))T P2 (x(t)− x(t− τ))

≥ 1
h (x(t)− x(t− τ))T P2 (x(t)− x(t− τ)) .

(7)

In the last inequality of (7), we use τ ∈ [0, h] (obviously, if h < 1 then τ2 ≤ τ). To simplify the
presentation, we omit the dependence on t, and denote x(t) as x, x(t− τ) as xτ , z(t) as z, and w(t) as w.
Now, we can work on the H∞ condition, using (1):

V̇(t) + γ−1zTz− γwTw ≤

ẋT Px + xT Pẋ + xT P1x− xT
τ P1xτ + ẋT P2 ẋ− 1

h (x− xτ)T P2(x− xτ)

+γ−1zTz− γwTw

= ( f (x) + Ax + A1xτ + BFCxτ + Ew)T Px + (∗) + xT P1x− xT
τ P1xτ

+ ( f (x) + Ax + (A1 + BFC)xτ + Ew)TP2 ( f (x) + Ax + (A1 + BFC)xτ + Ew)

− 1
h (x− xτ)

T P2 (x− xτ) + γ−1 (D11xτ + D12w)T (D11xτ + D12w)− γwTw

(8)

In order to linearise inequality (8), we add the term ± f (x)T f (x) (this mathematical strategy has been
used, for instance, in [39,49]) and use the Lipschitz property (2), obtaining:

V̇(t) + γ−1zT(t)z(t)− γwT(t)w(t) ≤

( f (x) + Ax + A1xτ + BFCxτ + Ew)T Px + (∗) + xT P1x− xT
τ P1xτ

+ ( f (x) + Ax + (A1 + BFC)xτ + Ew)TP2 ( f (x) + Ax + (A1 + BFC)xτ + Ew)

− 1
h (x− xτ)

T P2 (x− xτ) + γ−1 (D11xτ + D12w)T (D11xτ + D12w)− γwTw

+xT LT Lx− f T f .

(9)

We now impose the H∞ condition defined in (5). By considering [xT , xT
τ , wT , f T ], inequality (5),

joined with (9), becomes:

Θ11 ∗ ∗ ∗

Θ21 Θ22 ∗ ∗

ET P2 A + ET P Θ32 −γDT
12D12 + ET P2E− γ ∗

P + P2 A P2BFC P2ET P2 − Id


< 0, (10)
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with
Θ11 = AT P + PA + P1 + AT P2 A− 1

h
P2 + LT L,

Θ21 = (A1 + BFC)T P + (A1 + BFC)T P2 A +
1
h

P2,

Θ22 = −P1 + (A1 + BFC)T P2BFC + γ−1DT
11D11,

Θ32 = ET P2BFC + γ−1DT
12D12.

As a result, the matrix inequality (10) is not linear, due to the quadratic term P2F. To obtain an
equivalent LMI, we first apply the Schur complements [49]:

∆1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∆2 −P1 ∗ ∗ ∗ ∗ ∗ ∗

ET P 0 −γ ∗ ∗ ∗ ∗ ∗

P + P2 A P2(A1 + BFC) ET P2 P2 − Id ∗ ∗ ∗ ∗

P 0 0 0 −P ∗ ∗ ∗

0 DT
11 DT

12 0 0 −γ ∗ ∗

AT P2 P2(A1 + BFC) P2ET 0 0 0 −P2 ∗

LT 0 0 0 0 0 0 −Id



< 0,

with ∆1 = AT P + PA− P + P1 − 1
h P2 and ∆2 = (A1 + BFC)T P + 1

h P2. Then, from Projection Lemma [49],
considering P = [−I, A, BFC + A1, E, 0, I, 0, I] and S = [I, 0, . . . , 0], we obtain Theorem 1, where a robust
time delay dependent controller is designed.

Theorem 1. If there exist matrices X = XT > 0, P = PT > 0, P1 = PT
1 > 0, P2 = PT

2 > 0, and Y such that

−(XT + X) ∗ ∗ ∗ ∗ ∗ ∗ ∗

AT X + P −P + P1 − P2 + LT L ∗ ∗ ∗ ∗ ∗ ∗

YC P2 −P2 ∗ ∗ ∗ ∗ ∗

ET X 0 0 −γ ∗ ∗ ∗ ∗

0 0 DT
11 DT

12 −γ ∗ ∗ ∗

X 0 0 0 0 −P ∗ ∗

hPT
2 0 0 0 0 −PT

2 −P2 ∗

X 0 0 0 0 0 0 −P2



< 0 (11)

is a feasible LMI. From the relation Y = XT(BFC+ A1), the control matrix F is obtained, with Lyapunov–Krasovskii
function (4). Then, the control law u(t− τ) = Fy(t− τ) solves the control objective and it is a time delay dependent
controller and robust against external disturbances.
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Remark 1. Because it is assumed that the time delay h is fixed, it can be set to its feasible maximum value according
to (11), to robustify the control scheme.

4. Random Time Delay Realization

In the designed experimental platform, it is assumed the existence of a random time delay on the
position measurements of the Furuta pendulum system (see Figure 1). Our aim is to test the robustness
of the control design in front of the uncertainties introduced by time delay and external disturbances.
To clarify the main experiment, Figure 2 presents a system representation of the experimental setup.
The measurements of the load disk and inverted pendulum positions are virtually random time delayed.
As is well-known, Furuta pendulum is a test platform used frequently to evaluate controller designs,
where the objective is to maintain the upright unstable position of the inverted pendulum. In our
experiment, we consider also external disturbance on the ground (produced by the hexapod), as presented
in Figures 1 and 2.

	

Sensors	
Chaotic	

Time-Delay	
channel	

LMI-Controller	Furuta	
Pendulum	

Hexapod	
	

Sergio Arruga Cantalapiedra  

 - 8 - 

CAPÍTULO 2:  

INFRAESTRUCTURA 

El equipo con el que se ha realizado este proyecto se encuentra en la Escola 
Universitària d’Enginyeria Tècnica Industrial de Barcelona, concretamente en e l 
aula 1B14 de la primera planta, espacio reservado para el grupo de investigación 
CoDAlab. La unidad consta de tres elementos: el Hexapod, un sensor de fuerzas 
y torques y un PC. 

2.1. Hexapod 
El Hexapod fue adquirido a mediados del año 2010 por el grupo de investigación 
CoDAlab. Se trata de una Plataforma Stewart comercializada por la empresa de 
tecnología Q uanser, y  orientada tanto a re alizar investigación como a la 
educación universitaria. 

Figura 1. Hexapod comercializado por la compañía Quanser (Fuente: 
Quanser). 

w(t)	

α(t),	θ(t)	 h,	τ(t)	

u(t)	

Figure 2. Diagram of the perturbed random time delay system.

4.1. Nonlinear System Equations

Figure 3 shows an schematic diagram of the Furuta pendulum system. Consider θ(t) the drive disk
angular position, α(t) the pendulum angular position, and u(t) the motor torque, also named control
input. We define the system variable as:

x(t)T = [x1(t), x2(t), x3(t), x4(t)] = [θ(t), θ̇(t), α(t), α̇(t)],

where θ̇(t) and α̇(t) are the angular velocities of the load disk and pendulum, respectively.
The equations of motion for the unperturbed case are obtained from Lagrange’s equations,

which leads to a second-order under actuated model. Model synthesis and experimental parameters
are detailed in [47]. By examining the Figure 3, the dynamics are defined by:

ẋ(t) = f (x(t)) + Ax(t) + A1x(t− τ) + Bu(t− τ),
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with

f (x(t)) =



0

sin(x1) cos(x2)x2
4 + 25.54 sin(x1)

0

0.072 sin(x1)x2
2 − 0.072 sin(2x1)x2x4 − 0.43sgn(x4)


,

A =



0 1 0 0

0 −0.056 0 0

0 0 0 1

0 0 −0.52 −4.34


,

A1 = 0.93



0 0 0 0

0 0. 0 0

0 0 0 0

1 1 1 1


, B =



0.2

0.1

0.1

1.94


.

	

x 

z 

y 

θ	

α	

Load	Disk	
Pendulum	

u 

Figure 3. Diagram representation of Furuta pendulum with rotating base [50,51]: θ load disk angular
position, α pendulum angle, u motor torque.

To complete the system description, the next Lipschitz matrix L is proposed [47]:

L =



0.2 0 0 0

0 0.3 0 0

0 0 0.4 0

0 0 0 0.8


.

4.2. H∞ Formulation

The induced external disturbance w(t) is produced at the base by the movement of the hexapod.
This hexapod dynamical movement introduces exogenous perturbation in all the Furuta mechanism,
such as: Coriolis force, mechanical impact (due to the backlash phenomenon by the gear articulations),
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and unmodelled effects. On the other hand, the virtual variable z(t) is defined by the controller designer
to attenuate and analyse the effect of this external disturbance on the system. Therefore, we set it as:

z(t) = [θ(t), α(t), w(t)]T .

Only position system measurements are available for the controller, and these measurements are
obtained with random time delay. Hence, Equation (1) yields:

y(t− τ) = [θ(t− τ), α(t− τ)].

Thus, the system equations are represented as:

ẋ(t) = f (x(t)) + Ax(t) + Bu(t− τ) + Ew(t),

y(t− τ) = Cx(t− τ),

z(t) = D11x(t− τ) + D12w(t),

with:

E = 0.1

 1
1
1

 , C =

(
1 0 0 0
0 0 1 0

)
,

D11 =

 1 0 0 0
0 0 1 0
0 0 0 0

 , D12 =

 0
0
1

 .

Finally, by solving the LMI statement in (11), we obtain the control matrix F = [−0.0968, 0.0971],
with H∞ parameter γ = 1.0024. So, we obtain the time delay dependent robust controller defined in (3):

u(t− τ) = [−0.0968, 0.0971]

[
θ(t− τ)

α(t− τ)

]
. (12)

4.3. Random Time Delay Algorithm

We consider random time delay measurements on the Furuta pendulum, simulated by using the
random logistic map [52,53], where the time delay variable takes two possible values: τ ∈ {d1, d2}.
Algorithm 1 presents the algorithm used to simulate a random time delay in the related measurement
signals. The time delay is stated as τ ∈ [0.02, 0.4] s. The variable xn in Algorithm 1 defines the
random behaviour.

Algorithm 1: Algorithm of the random time delay on the measurements.
Initialise xn, xm, r (xn = 0.1, xm = 0, r = 3.7, d1 = 0.23, d2 = 0.45)
do

xm = r·xn·(1-xn)
if (xm > 0.5) d = d1
else d = d2
endif
xn = xm

end do
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To implement a similar experiment into any system, first of all the reader has to implement the time
delay algorithm in the acquisition data phase. Once the measurements contain the delay, they are sent to
the controller as delayed input.

5. Experimental Results

This section presents the time delay Furuta pendulum experimental platform results, subject to
exogenous disturbances. Figure 4 presents the random time delay introduced on the experimental system.
The time delay is stated from logistic-map variable xn, as defined in Algorithm 1. The delay takes values
{0.02, 0.4} randomly, inducing some kind of chaotic behavior. Notice that the experimental sample-time is
set at 0.885 ms, so the time delay induced on the measurements is greater than the acquisition sample-time.

0 10 20 30 40 50 60
0

0.5

1

x
n

0 10 20 30 40 50 60

Time (sec.)

 0.02

0.4

Figure 4. Random time delay model. The values of random variable xn determine the time delay τ.
The maximum delay is set at h = 0.4 s.

Additionally, at the link https://youtu.be/C8f1orF5uDo, the reader can find a demonstrative video
of our experiment. The experiment begins without ground disturbance. Then, the external perturbation
starts at 8s, when hexapod begins to move. Figures 5–9 represent the state variables and control input
seen in the video. The effect of the ground perturbation and how the control input tries to maintain the
inverted pendulum in its upright position can be appreciated, despite time delay inputs and external
disturbances. Therefore, Figure 5 shows a zoom to appreciate the reaction of the pendulum position when
measurements are time delayed. Moreover, Figure 6 shows the disturbance produced by the hexapod,
at the base of the system. The load position corresponding to θ(t) and pendulum position α(t) are pictured
in Figure 7, and Figure 8 presents the control effort. Figure 9 shows that the random behaviour presented
on the measurements does not appear on the Furuta system.

https://youtu.be/C8f1orF5uDo
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24 26 28 30 32 34

Time (sec)

-1

-0.5

0

0.5

1

 (
d
e
g
)

24 26 28 30 32 34

Time (sec.)

0.02

0.4

Figure 5. Experimental results in the time interval [23, 35] s. It can be appreciated that when the time delay
is about 0.4 s, the pendulum maintains its upright position.
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0 1 2 3 4 5 6
Time (s)

-0.3

0

0.3
Pod 5,6

Figure 6. Hexapod links programmed motion to produce the exogenous disturbances to the Furuta
pendulum. This Figure only shows 6 s of the external perturbation, to clarify the hexapod movement
(see the video: https://youtu.be/C8f1orF5uDo).
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Figure 7. Load disk (left) and Pendulum (right) angular position response (closed-loop system).

https://youtu.be/C8f1orF5uDo
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Figure 8. Experimental control effort of the closed-loop system.
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Figure 9. Pendulum position versus pendulum velocity.

6. Conclusions

This paper presents a robust control design to a nonlinear system, against the presence of random time
delay on the measurements, and exogenous disturbances. In our control approach, we develop a general
design in terms of LMI, where the designer has to a priori define an upper bound of the allowed time
delay. Hence, this value can be adjusted by an optimisation technique. Furthermore, a new experimental
platform is realised, involving Furuta pendulum located over a Steward platform. Finally, according to
experimental results, our control approach is able to attenuate random dynamics. Additionally, the video
of the experiment can be found at https://youtu.be/C8f1orF5uDo.

Future work. In this paper, we consider only external perturbations that do not change the structure
of the system. It can be an interesting future work to implement some fault structure detection directly on
the pendulum and study the influence of the ground disturbance on it. Moreover, resilient control could
be designed to recover its function after being damaged [54].
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