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Abstract: With the improvement of people’s living standards and entertainment interests, theme parks
have become one of the most popular holiday places. Many theme park websites provide a variety of
information, according to which tourists can arrange their own schedules. However, most theme
park websites usually have too much information, which makes it difficult for tourists to develop a
tourism planning. Therefore, the theme park routing problem has attracted the attention of scholars.
Based on the Traveling Salesman Problem (TSP) network, we propose a Time-Dependent Theme
Park Routing Problem (TDTPRP), in which walking time is time-dependent, considering the degree
of congestion and fatigue. The main goal is to maximize the number of attractions visited and
satisfaction and to reduce queues and walking time. To verify the feasibility and the effectiveness of the
model, we use the Partheno-Genetic Algorithm (PGA) and an improved Annealing Partheno-Genetic
Algorithm (APGA) to solve the model in this paper. Then, in the experimental stage, we conducted
two experiments, and the experimental data were divided into real-world problem instances and
randomly generated problem instances. The results demonstrate that the parthenogenetic simulated
annealing algorithm has better optimization ability than the general parthenogenetic algorithm when
the data scale is expanded.

Keywords: tourism planning; theme park problem; routing problem; time-dependent;
partheno-genetic algorithm

1. Introduction

With the improvement of people’s living standards and material level, people’s daily lives are
no longer solely focused on the pursuit of food and clothing but include more spiritual pursuits.
Holiday outings have become a common form of entertainment for modern people. Among them,
theme parks have become the best place for short-term travel [1]. Some famous theme parks such as
Tokyo Disneyland and Universal Studios Osaka attract millions of visitors every year, which shows
that, as people’s living standards improve, people’s demand for the entertainment industry is also
increasing. However, several issues in theme parks need to be resolved. For example, for popular
attractions, tourists need to endure long queues, which may take two or three hours. In addition,
since most theme parks are large in size and populated, tourists spend a lot of time walking and
queuing. Therefore, quickly planning the best way to enjoy the theme park with limited time and
energy, avoiding congestion, and enjoying as many attractions as possible has become the most
important concerns for tourists. Moreover, for the managers of theme parks, the degree of satisfaction
of tourists is fundamental to the sustainable development of the theme park. The higher the evaluation
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of tourists is, the more other tourists will be attracted to the theme park. In contrast, if the degree of
satisfaction of tourists is very low, the development of the theme park will be restricted.

In 2003, the theme park problem was defined by Kawamura et al. [2], that is, in a theme park with
multiple attractions, tourists visit the attractions as individuals or groups to minimize congestion and
satisfaction. In addition, they developed a coordinated scheduling algorithm based on large-scale user
support to solve this problem, proving that the average waiting time and congestion in theme parks can
be reduced by guiding tourist groups, and the average satisfaction of group visitors can be improved.
In short, the problem of theme parks is to maximize personal or crowd satisfaction using management
rules and planned timetables. Considering the group users, Yasushi et al. [3] developed networks for
theme park issues, such as small world networks and scale-free networks. Simulation experiment
results show that congestion can be greatly relieved, and satisfaction can be further improved.

Most previous studies involving the theme park problem focus on large-scale travel scheduling for
group users. However, differently, in this paper, we aim to help individual users avoid congestion and
improve the degree of satisfaction of the visitors in the theme park. We can call this kind of problem
theme park routing problem (TPRP). Thus far, route planning for individual users is usually divided
into two categories:

1. One category aims to find an efficient route among the chosen attractions [4].
2. The other is to select some attractions to visit and maximize the obtained total score for visited

attractions during a limited time, where origin and destination are appointed in advance [5].

The research in this paper belongs to the second category, which does not need to specify the
attractions in advance. Tsai et al. [6] developed a route recommendation system where the recommended
route satisfies visitor requirements using previous tourists’ favorite experiences. Lee et al. [7] presented
an ontological recommendation for a multi-agent for Tainan City travel, including a context decision
agent and a travel route recommendation agent. Lim, K. et al. [8] proposed an algorithm called PersTour
for recommending personalized tours using Points of Interest (POI) popularity and user interest
preferences, which are automatically derived from real-life travel sequences based on geo-tagged photos.
Mor, M. et al. [9] developed a bi-directional constrained pathfinder nearest neighbor route calculation
algorithm to compute routes that visit the most popular touristic locations among photographers.
Gionis, A. et al. [10] presented two alternative instantiations of a framework for generating customized
tour recommendations as a paradigm of an intelligent urban navigation service. Sengupta, L. et al. [11]
considered three different strategies for selecting the starting location and compared their effectiveness
regarding optimizing tour length. Hirotaka et al. [12] proved the tour recommendation problem can
be solved as the integer programming problem using a similar formulation as used in the traveling
salesman problem (TSP). Matsuda et al. [13] established a simple model of the optimal sightseeing
routing problem and solved the model with the exact algorithm and the heuristic algorithm, respectively.

From the perspective of mathematical modeling, our problem can be described as follows. A set
of points is given, along with associated scores and a connecting network. Under this assumption,
a path needs to be found between the specified starting point and end point to maximize the total score
at a given time. Through the above description, we find that this kind of problem can be attributed
to the TSP [14]. It should be noted that, due to the limited time, it is impossible to select all points,
and some points should be discarded. Subsequently, this problem is also called the selective traveling
salesperson problem (STSP) [15] or traveling salesman problem with profits [16], which is a generalized
traveling salesman problem in which profit is associated with each vertex and only some vertices
can be visited due to time constraints [17]. The STSP is also known as the orienteering problem [18]
and the maximum collection problem [19]. As the STSP is an Non-Deterministic Polynomial (NP)
hard problem, the exact algorithms are very time-consuming, thus most researchers focus on heuristic
algorithms, such as the Tabu search (TS) heuristic algorithm [20,21] or the ant colony optimization
(ACO) approach [22].

The major weakness of the previous research is that only static route networks are constructed,
but the change of time that leads to a change in the next journey is not considered. Considering
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this problem, Bouzarth et al. [23] set the service time as time-dependence but did not consider that
the travel times between two vertices are stochastic functions that depend on the department time
from the first vertex. Moreover, the previous studies are all single objective functions, and there are
few cases of solving multi-objective problems at the same time. The algorithm research of routing
optimization is mainly carried out under the condition of static networks, and there is less research
using dynamic networks.

Unlike previous research, we first propose to minimize total walking and queuing time and
maximize the number of attractions and the degree of satisfaction, which has a multi-objective function.
Then, we consider the walking time of time dependence [24,25]. Second, we introduce two algorithms in
detail to solve this problem. Finally, in the experimental stage, we use real-world problem instances and
randomly generated problem instances and analyze the experimental results to prove the correctness
of the model and the effectiveness of the algorithm.

2. Time-Dependent Theme Park Routing Problem Based on Multi-Objectives

2.1. Problem Description

Let G = (N, A) be a connected digraph with node set N = {1,2...,n} and arc set A = {( m, n) | m, n ∈
N, m , n}, where node 1 is the starting point, and n is the end point. In the time-dependent theme
park routing problem, each node represents an attraction in the theme park. What is associated with
each node is a utility score and a function of dwelling time, which is related to arrival time, queuing
time, and time at the attraction. When visitors enter from the designated entrance, they should find
the most satisfactory route to the attraction and cannot leave the exit after the designated time TD.
In this process, the objective of visitors is to find a route that starts from node 1 and ends at node n
before TD, such that the total utility collected by all visited nodes in the route is maximized and the
number of nodes experienced is maximized but the dwelling time is minimized.

Assume that the distance between the two attractions (m, n) is d, and the walking times that the
visitors need to cover this section ( m, n ) in two connected time periods are T1 and T2, respectively,
and tB is the boundary time of the two time periods. It should be noted that Tx stands for time period
and tx stands for time point. The walking time of the visitor in the section (m, n) is different for different
time periods. The arrival time at node m is tm, the queuing time at node m is αm, the time spent at the
attraction at node m is βm, and the departure time for node m is rm (rm = tm + αm + βm). If rm ≤ tB −T1,
the walking time to cover this section in the preceding period is T1; if rm ≥ tB, the whole walking
process is completed in the following period, and the corresponding walking time is T2. Only when
tB − T1 < rm < tB is the walking time between T1 and T2. Assume that the walking distances of the
visitor in the preceding and the following time periods are d1 and d2, d1 corresponds to the travel
distance of tourists in T1 period, and d2 corresponds to the travel distance of tourists in T2 period.
The total walking time is d1

(T1
d

)
+ d2

(T2
d

)
. Subsequently, the time is tB − rm for visitors to cover d1,

and the time for visitors to cover d2 is:

d2

d
T2 =

d− d1

d
T2 =

d− d
T1
(tB − rm)

d
T2 =

(
1−

tB − rm

T1

)
T2

Therefore, the total walking time from the node m to the node n is tB − rm + (1− tB−rm
T1

)T2 , and the
arrival time for node n is:

tn = rm + tB − rm + (1−
tB − rm

T1
)T2 = tB + (1−

tB − rm

T1
)T2 =

T2

T1
rm + (1−

T2

T1
)tB + T2 (1)

As can be seen from the Equation (1), the time tn for arriving at the node n is an increasing function
of the departure time rm.
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Assume that the playing time in one day is divided into P time periods, then [tB,p, tB,p+1] represents
the time period p(p ∈ [1, P]). After the visitor arrives at attraction m, the queuing time and the time
spent at the attraction are allowed before the visitor departs from attraction m. Let Tmn, p be the walking
time from node m to node n during period p (regardless of the period crossing), and let umn, p be the
time that the visitor walks from node m to node n. For any section (m, n), there are two possibilities:

1. The visitor walks from node m to node n without crossing the time period p(p = 1, 2, . . . , P);
2. The visitor walks from node m to node n, crossing from period p to period p+ 1(p = 1, 2, . . . , P− 1).

The corresponding mathematical formulations are as follows:

umn,p =

 Tmn,p , rm < tB, p+1 − Tmn,p , p = 1, 2, . . . , P(
Tmn,p+1

Tmn,p
− 1

)
rm +

(
1−

Tmn,p+1
Tmn,p

)
tB,p+1 + Tmn,p+1 , tB,p+1 − Tmn,p ≤ rm < tB,p+1, p = 1, 2, . . . , P− 1

2.2. Model

Based on the questions raised, we consider the following assumptions:

• The queuing time of attractions is acquired according to the real queuing time of the attraction
(e.g., Disney Resort and Universal Studios).

• The time spent at each attraction is given in advance.
• Routes exist between any two attractions.
• The preference of visitors for each attraction is pregiven.

The time-dependent theme park routing problem model contains the following parameters:

N: Set of attractions
m: Index of attraction m, m∈N
TE: Entrance time
TD: Departure time
P: The number of time periods in one day
p: Index of the time period, p ∈ [1, P]
c1, c2, c3 : Weights of the functions Z1, Z2, Z3, in which the sum of three weights is equal to 1
Xm: If attraction m is selected, Xm = 1; otherwise, Xm = 0, which is a decision variable
Ymn,p: The route from node m to node n with the visitor departs from node m in period p is
selected, it takes 1; 0 otherwise
αm: Queuing time for attraction m
βm: Playing time spent at attraction m
umn,p: Walking time of visitor departing node m in time period p to node n
Tmn,p: Time for visitor walking from node m to node n in period p (regardless of the time
period crossing)
rm: Departure time for attraction m
tm: Arrival time for attraction m
em: Utility that the customer obtained from node m
λ1, λ2, λ3: The conversion factors of utility in term of cost

There are three objectives involved: maximize the number of attractions, maximize the satisfaction
of the visitors, and minimize walking time and queuing time.

1. Most tourists want to enjoy as many attractions as possible in the theme park within a limited time.
Therefore, we consider the maximum number of attractions visited in a day, and the calculation
formula is as follows:

Z1 = c1

∑
m∈N

Xm
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2. Most tourists hope to get as much satisfaction as possible in the theme park within a limited time.
Therefore, we consider the maximum satisfaction of tourists in a day, the formula is as follows:

Z2 = c2

∑
m∈N

emXm

3. For most tourists, they want to spend as much time as possible on each attraction, instead of
moving on and queuing to find other attractions. Therefore, we considered the minimum walking
time and the queuing time between attractions in a day; the calculation formula is as follows:

Z3 = −c3

(∑
m∈N

αmXm +
∑

m,n∈N

∑P

p=1
umn,pYmn,p

)
Finally, the overall mathematical model is established as follows:

Max λ1 Z1 + λ2 Z2 + λ3Z3 (2)

TE +
∑
m∈N

αmXm +
∑

m,n∈N

∑P

p=1
umn,p Ymn,p +

∑
m∈N

βm Xm ≤ TD (3)

∑
m ∈ N
m , n

∑P

p=1
Ymn,p = 1, n ∈ N (4)

∑
n ∈ N
n , m

∑P

p=1
Ymn,p = 1, m ∈ N (5)

∑
m, n ∈ N

m , n

∑P

p=1
Ymn,p ≤ |S| − 1, ∀S ∈ N, 2 ≤ |S| ≤ |N| − 1 (6)

Xm ∈ {0, 1}, m ∈ N, (7)

Ymn,p ∈ {0, 1}, m, n ∈ N, p ∈ [1, P] (8)

The objective Equation (2) can maximize the attractiveness and the practical value (satisfaction)
of the project and minimize queue time and walking time. Equation (3) ensures that the departure
time from the theme park shall not exceed the preset departure time. Equations (4)–(6) are general
constraints of TSP. The first two constraints restrict each scenic spot to be visited exactly once, and the
last constraint is the sub-trip elimination constraint. Equations (7) and (8) are the domain of variables.

3. Algorithm

In order to solve the model better, we use two different methods to compare.

3.1. Parthenogenetic Algorithm (PGA)

The parthenogenetic algorithm (PGA) is an improved GA which was put forward by Li and
Tong in 1999 [26]. Unlike classic GA, PGA performs its operations based on another chromosome
other than two chromosomes and does not include a crossover operator. Due to its professionalism,
PGA can successfully solve specific problems. Although PGA can overcome the “premature” problem
of conventional GA, it is more suitable for handling chromosomes of different lengths.

The algorithm uses new genetic operators, namely permutation operators, shift operators,
and inversion operators. They are characterized by simple genetic operations, which reduces
the requirement for initial population diversity and avoids “premature convergence”. Therefore,
this algorithm is very suitable for solving optimization problems.
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3.1.1. Solution Representation

In PGA, each solution is represented by a chromosome, and each chromosome contains
multiple variants, namely genes. Here, each gene represents the attraction of a theme park.
Different arrangements of attractions require different solutions. In this study, chromosomes can be
indicated as follows:

A =
(
c1, c2, c3, . . . , . . . , ci−1, ci, ci+1, . . . , c j−1, c j, c j+1, . . . , cn

)
where A is a chromosome, and ci(i ∈ {1, . . . , n}) expresses the gene.

3.1.2. Evolution Operators

(1) Permutation operator. In this study, the permutation operator includes two modes: the first
is a single-point translocation, where the positions of two genes on the same chromosome can be
interchanged; the second is a multi-point translocation, where the positions of two genes on the
same chromosome are exchanged. The replacement operators of the above two modes can generate
new chromosomes according to the replacement probability. Examples of single-point transposition
and multi-point transposition are as follows. Note that B and B’ are produced by single-point and
multiple-point translocation of A chromosome, respectively.

A =
(
c1, c2, c3, . . . , ci−1, ci, ci+1, . . . , c j−1, c j, c j+1, . . . , cn

)
⇓

B =
(
c1, c2, c3, . . . , ci−1, c j, ci+1, . . . , c j−1, ci, c j+1, . . . , cn

)
B′ =

(
c1, c2, c3, . . . , ci−1, c j, ci+1, . . . , cn, ci, c j+1, . . . , c j−1

)
(2) Shift operator. The shift operator refers to randomly selecting a substring in the chromosome

according to the shift probability, the gene of the substring is shifted one bit backward, and the last gene
is located at the first position of the substring. Similarly, the shift operator includes two shift modes:
single-point shift and multi-point shift operation. In the example below, H is a chromosome including
multiple genes ki(i ∈ {1, 2, . . . n}). I and I’ are chromosomes obtained by performing single-point shift
and multi-point shift operations on H, respectively.

H = (k1, k2, k3, k4, k5, . . . , ki−2, ki−1, ki, ki+1, ki+2, . . . , kn)

⇓

I = (k4, k1, k2, k3, k5, . . . , ki−2, ki−1, ki, ki+1, ki+2, . . . , kn)

I′ = (k4, k1, k2, k3, k5, . . . , ki−2, ki+2, ki−1, ki, ki+1, . . . , kn)

(3) Inversion operator. The inversion operator refers to the process of continuously inverting the
head and the end genes in the substring of the chromosome according to the inversion probability,
wherein the selected substring and its length are randomly selected. Inversion operators can also be
divided into single-point inversion and multi-point inversion. For example, assume M is a chromosome
including multiple genes li(i ∈ {1, 2, . . . n}). Based on the operations of single-point and multi-point
inversions for chromosome M, we can obtain the chromosomes N and N’. The above procedures can
be seen as follows.

M =
(
l1, l2, l3, l4, l5, . . . , li−1, li, li+1, . . . , l j−1, l j, l j+1, . . . , ln

)
⇓

N =
(
l4, l3, l2, l1, l5, . . . , li−1, li, li+1, . . . , l j−1, l j, l j+1, . . . , ln

)
N′ =

(
l4, l3, l2, l1, l5, . . . , li−1, l j, l j−1,. . .,li+1, li, l j+1, . . . , cn

)
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3.1.3. Algorithm Flow

The procedures of the parthenogenetic algorithm are summarized as follows:
Step 1: Coding. Serial number coding is used in parthenogenetic algorithm.
Step 2: Initialization. A feasible solution is randomly generated as the initial population.
Step 3: Fitness function. The fitness function is the evaluation standard of the path plan,

which represents the survival ability of the genetic individual. Here, we set the objective function as
the fitness function.

Step 4: Select. The resulting population is divided into several groups evenly. In this study,
every four individuals formed a group. The best individuals in each group will be directly retained as
the next generation population.

Step 5: Parthenon-genetic. Realize replacement, shift, and inversion operations. Among the
remaining individuals, random methods are used to select genes and gene strings. After that, the three
newly generated individuals in each group will be inherited to the next generation.

Step 6: Calculate the fitness of the newly generated population.
Step 7: Determine whether the termination conditions are met. When the maximum number of

iterations is reached, go to step 8. Otherwise, go to step 4.
Step 8: Return the optimal solutions and stop the algorithm.
The flow chart is shown in Figure 1:
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Figure 1. The flow chart of the parthenogenetic algorithm (PGA).

3.2. Annealing Parthenogenetic Algorithm (APGA)

The global optimization ability of genetic algorithm is strong, but the local optimization ability
is insufficient. The simulated annealing algorithm is strong in local optimization but weak in global
optimization ability. Therefore, the evolution mechanism of simulated annealing algorithm can be
integrated into genetic algorithm to enhance its local optimization ability [27].

The basic idea of simulated annealing algorithm was originated from the physical annealing
process in real life. The optimal solution is acquired by abstracting the process of cooling and heating
isothermals from the real physical annealing process. The local optimization ability of the algorithm is
ensured using a greedy strategy and its special Metropolis criterion [28].



Mathematics 2020, 8, 2193 8 of 20

Li Liu et al. [29] proposed a new method combining simulated annealing (SA) and genetic
algorithm (GA) to solve the problem of bus route design and frequency setting for a given road network
with fixed bus stops and driving demands.

The simulated annealing method has a fault-tolerant ability and can accept inferior solutions
with a certain probability. The probability is called the probability of the acceptance of the new
solution, and its degree is influenced by the current temperature and the fitness difference of new
and old solutions [30]. The general trend is that the lower the temperature, the lower the probability
of acceptance, the larger the difference, the lower the probability of acceptance. The above can be
represented by a mathematical formula, as shown in Equation (9):

P =

 1 E(xnew) < E(xold)

exp
(
−

E(xnew)−E(xold)
T

)
E(xnew) ≥ E(xold)

(9)

E(xnew) refers to the fitness of the new chromosome, and E(xold) refers to the fitness of the
individual parent chromosome. T is the current temperature, and an initial temperature and cooling
coefficient are set at the beginning of the genetic operation. As the iteration proceeds, the initial
temperature decreases continuously. At the end of the iteration, because the temperature is already
very low, the probability of accepting the new solution is almost zero. A random number between 0
and 1 is generated after acquiring the probability of acceptance. A new solution is not accepted if the
number is greater than the probability of acceptance P but accepted if it is smaller than P. The selection
method of the probability of acceptance is also called the Metropolis criterion.

Metropolis criterion based on a simulated annealing algorithm certainly accepts inferior solutions
while accepting elegant solutions so as to ensure population diversity and further avoid the possibility
that the algorithm is stuck in the optimal local solution.

Therefore, after the new solution is generated by the evolution operation of genetic algorithm,
the Metropolis criterion can be used to determine if the new solution is reserved; the optimization
steps are as follows:

Step 1: Encoding. A serial number encoding is adopted in the parthenogenetic algorithm.
Step 2: Initialization. Generate feasible solutions as the initial population randomly.
Step 3: Fitness function. Fitness function is the evaluation criterion of the path scheme, and it

represents the viability of genetic individuals. Here, we set the objective function as the fitness function.
Step 4: Selection. The resulting population is divided into several groups evenly. In this study,

every four individuals formed a group. The best individuals in each group were directly retained as
the next generation population.

Step 5: Parthenogenetic. Implement permutation, shift, and inversion operations. Among the
remaining individuals, random methods are used to select genes and gene strings. Then, inherit the
three newly generated individuals from each group to the next generation.

Step 6: Calculate the fitness of the newly generated population.
Step 7: Mix new and original populations. First, reserve the best individuals in the two populations

and calculate the average fitness. Then, select one among the mixed population (except for the optimal
individual) at random. If the individual is better than the average value, reserve it; otherwise,
check whether it meets the M criterion. If satisfied, reserve it. If not, discard it. Operate in this way
until the population of the quantity, which is the same as the original individuals, and then stop.

Step 8: Determine whether termination conditions are met. When the maximum iteration is
reached, go to Step 8. Otherwise, go to Step 4.

Step 9: Return the optimal solutions and stop the algorithm.
The algorithm flow chart is shown in Figure 2:
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Figure 2. The flow chart of annealing parthenogenetic algorithm (APGA).

4. Discussion Computation Results

In the experiment, we use two kinds of theme parks with different scales as examples. First,
we use the Tokyo Disney Sea with 28 attractions as a real-world problem to prove the effectiveness of
the model and algorithm. Second, to prove the stability of the model and algorithm, we expand the
scale of the experiment and randomly generate an example of a theme park with 60 attractions.

4.1. Real World Problem Instances

First, the Tokyo Disney Sea with 28 attractions is selected as the test object to verify the correctness
and the effectiveness of the proposed model and algorithm. In the network of attractions, 0 represents
the entrance (exit), and the remaining are attractions. For this problem, we focus on a visitor leaving the
entrance of the theme park, visiting the attractions, and then leaving the theme park. The purpose is to
increase the satisfaction of visitors and increase the utilization of park resources. Table 1 illustrates the
shortest walking distance between any two attractions. The time spent at the attraction, the queuing
time, and the degree of satisfaction for each attraction are provided in Table 2, and the satisfaction
for the attractions are generated from this interval [0,1]. In addition, the following assumptions
are established:

(i.) The entrance and the exit of the theme park are at the same location.
(ii.) The walking speed of visitors can be obtained by a function y = 105.49 × 10−0.002x (x ≥ 0),

where x represents time (in this experiment, x = 0 is 9 a.m., x = 30 is 9.30 a.m., and x = 180 is
12 p.m.), and y represents the corresponding speed.

(iii.) The time visitors spent at each attraction is composed of three parts: walking time, playing time
spent at the attractions, and queuing time.
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Table 1. Shortest distances among 28 attractions at Tokyo Disney Sea (m).

Attraction
Attraction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0 0 570 1180 390 1140 1130 760 1450 1140 1330 2400 2410 2530 2820 2640 3210 2680 3430 3330 2780 2840 2980 2120 2430 2920 3000 2760 1170 1170
1 570 0 610 720 1470 1460 1090 1780 1470 1660 2730 2740 2860 2250 2070 2640 2110 2760 2660 2210 2270 2410 1550 1860 2350 2430 2190 600 600
2 1180 610 0 1330 2080 2070 1700 2390 2080 2270 3030 2840 2960 2240 2060 2630 2100 2750 2650 2200 2260 2400 1540 1850 2340 2420 2180 590 590
3 390 720 1330 0 990 980 610 1300 990 1180 2250 2260 2380 2970 2790 3360 2830 3540 3480 2930 2990 3130 2270 2580 3070 3150 2910 1320 1320
4 1140 1470 2080 990 0 190 380 310 200 190 1260 1270 1390 1870 2050 2260 2650 2440 2540 2750 2810 2950 2570 2260 2890 2970 2730 2070 2070
5 1130 1460 2070 980 190 0 370 500 190 380 1450 1460 1580 2060 2240 2450 2840 2630 2730 2940 3000 3140 2760 2450 3080 3160 2920 2060 2060
6 760 1090 1700 610 380 370 0 690 380 570 1640 1650 1770 2250 2430 2640 3030 2820 2920 3130 3190 3330 2640 2640 3270 3350 3110 1690 1690
7 1450 1780 2390 1300 310 500 690 0 510 300 950 960 1080 1560 1740 1950 2340 2130 2230 2440 2500 2640 2260 1950 2580 2660 2420 2380 2380
8 1140 1470 2080 990 200 190 380 510 0 390 1460 1470 1590 2070 2250 2460 2850 2640 2740 2950 3010 3150 2770 2460 3090 3170 2930 2070 2070
9 1330 1660 2270 1180 190 380 570 300 390 0 1250 1260 1380 1860 2040 2250 2640 2430 2530 2740 2800 2940 2560 2250 2880 2960 2720 2260 2260

10 2400 2730 3030 2250 1260 1450 1640 950 1460 1250 0 190 310 790 970 1180 1570 1360 1460 1670 1730 1870 1490 1180 1810 1890 1650 2440 2535
11 2410 2740 2840 2260 1270 1460 1650 960 1470 1260 190 0 120 600 780 990 1380 1170 1270 1480 1540 1680 1300 990 1620 1700 1460 2250 2345
12 2530 2860 2960 2380 1390 1580 1770 1080 1590 1380 310 120 0 720 900 1110 1500 1290 1390 1600 1660 1800 1420 1110 1740 1820 1580 2370 2465
13 2820 2250 2240 2970 1870 2060 2250 1560 2070 1860 790 600 720 0 180 390 780 570 670 880 940 1080 700 390 1020 1100 860 1650 1745
14 2640 2070 2060 2790 2050 2240 2430 1740 2250 2040 970 780 900 180 0 570 600 750 850 700 760 900 520 210 840 920 680 1470 1565
15 3210 2640 2630 3360 2260 2450 2640 1950 2460 2250 1180 990 1110 390 570 0 930 180 280 830 1330 1470 1090 780 1410 1490 1250 2040 2135
16 2680 2110 2100 2830 2650 2840 3030 2340 2850 2640 1570 1380 1500 780 600 930 0 750 650 100 800 940 560 390 880 960 720 1510 1605
17 3430 2760 2750 3540 2440 2630 2820 2130 2640 2430 1360 1170 1290 570 750 180 750 0 100 650 1510 1650 1270 960 1590 1670 1430 2220 2315
18 3330 2660 2650 3480 2540 2730 2920 2230 2740 2530 1460 1270 1390 670 850 280 650 100 0 550 1450 1590 1210 1040 1530 1610 1370 2160 2255
19 2780 2210 2200 2930 2750 2940 3130 2440 2950 2740 1670 1480 1600 880 700 830 100 650 550 0 900 1040 660 490 980 1060 820 1610 1705
20 2840 2270 2260 2990 2810 3000 3190 2500 3010 2800 1730 1540 1660 940 760 1330 800 1510 1450 900 0 140 720 550 240 260 80 1670 1765
21 2980 2410 2400 3130 2950 3140 3330 2640 3150 2940 1870 1680 1800 1080 900 1470 940 1650 1590 1040 140 0 860 690 200 120 220 1810 1905
22 2120 1550 1540 2270 2570 2760 2640 2260 2770 2560 1490 1300 1420 700 520 1090 560 1270 1210 660 720 860 0 310 800 880 640 950 1140
23 2430 1860 1850 2580 2260 2450 2640 1950 2460 2250 1180 990 1110 390 210 780 390 960 1040 490 550 690 310 0 630 710 470 1260 1355
24 2920 2350 2340 3070 2890 3080 3270 2580 3090 2880 1810 1620 1740 1020 840 1410 880 1590 1530 980 240 200 800 630 0 80 160 1750 1845
25 3000 2430 2420 3150 2970 3160 3350 2660 3170 2960 1890 1700 1820 1100 920 1490 960 1670 1610 1060 260 120 880 710 80 0 240 1830 1925
26 2760 2190 2180 2910 2730 2920 3110 2420 2930 2720 1650 1460 1580 860 680 1250 720 1430 1370 820 80 220 640 470 160 240 0 1590 1685
27 1170 600 590 1320 2070 2060 1690 2380 2070 2260 2440 2250 2370 1650 1470 2040 1510 2220 2160 1610 1670 1810 950 1260 1750 1830 1590 0 190
28 1170 600 590 1320 2070 2060 1690 2380 2070 2260 2535 2345 2465 1745 1565 2135 1605 2315 2255 1705 1765 1905 1140 1355 1845 1925 1685 190 0
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Table 2. Playing time, queuing time, and satisfaction degree for each attraction in Tokyo Disney Sea.

Attraction Playing Time (min) Satisfaction Degree Queuing Time (min)

1 Disney Sea Transit Steamer Line 7 0.1 10
2 Fortress Explorations 8 0.3 10
3 Venetian Gondolas 11.5 0.2 40
4 Turtle Talk 30 0.4 35
5 Tower of Terror 2 0.7 80
6 Disney Sea Electric Railway 2.5 0.2 20
7 Disney Sea Transit Steamer Line 13 0.2 20
8 Toy Story Mania 5 0.3 100
9 Big City vehicles 10 0.1 10
10 Aquatopia 2.5 0.2 25
11 Disney Sea Electric Railway 2.5 0.2 20
12 Nemo & Friends Sea Rider 5 0.4 45
13 Indiana Jones Adventure 3 0.8 80
14 Disney Sea Transit Steamer Line 6 0.2 30
15 Raging Spirits 1.5 0.7 110
16 Caravan Carousel 2.5 0.5 12
17 Jasmine’s Flying Carpets 1.5 0.5 15
18 Sindbad’s Storybook Voyage 10 0.4 15
19 The Magic Lamp Theater 23 0.4 25
20 Ariel’s Playground 10 0.3 10
21 Jumpin’s Jellyfish 1 0.5 20
22 Scuttle’s Scooters 1.5 0.5 20
23 Flounder’s Flying Fish Coaster 1 0.7 35
24 Blowfish Balloon Race 1.5 0.5 30
25 Mermaid Lagoon Theater 14 0.4 30
26 The Whirlpool 1.5 0.5 30
27 20,000 Leagues Under the Sea 5 0.6 30
28 Journey to the Center of the Earth 3 0.7 130

The opening and the closing times for the theme park are 09:00 and 18:00. The weights of
the objectives (c1, c2, c3 ) are set to 0.2, 0.5, and 0.3, respectively, and conversion factors of utility
(λ1, λ2, λ3) are set to 1, 10, and 0.1, respectively. The population size is set to 200, and the maximum
iteration is 200. The probabilities of the three genetic operators are generated randomly. This experiment
was implemented using MATLAB.

The evolution result of the PGA is shown in the Figure 3, where the best solution in the experiment
can be found when the iteration is 109, and the value of the fitness function is 36.0801.
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The obtained satisfaction route is 0-2-27-22-24-21-20-26-23-16-19-18-17-13-11-6-0. The details
of the results are illustrated in Table 3. The table contains seven items: recommended attraction,
recommended arrival time, queuing time, time spent at the attraction, departure time from the
attraction, walking time from this node to the next attraction, and the degree of satisfaction for selected
attractions. The total walking time of the travel route is 92 min, the total queuing time is 372 min,
the satisfaction of the tourists is 6.9, and the number of recommended attractions is 15.

Table 3. Results of the satisfaction route with PGA (28 attractions).

Attraction Arrival Time Queuing
Time (min)

Playing
Time (min)

Departure
Time

Walking Time
to the Next

Location (min)

Satisfaction
Degree

Entrance (0) 09:00 - - 9:00 11′15” -
2 09:11 10 8 9:29 5′38 0.3

27 09:35 30 5 10:10 9′8” 0.6
22 10:19 20 1′30” 10:40 7′44” 0.5
24 10:48 30 1′30” 11:20 1′57” 0.5
21 11:22 20 1 11:43 1′22” 0.5
20 11:44 10 10 12:04 1 0.3
26 12:05 30 1′30” 12:36 4′39” 0.5
23 12:41 35 1 13:17 3′53” 0.7
16 13:21 12 2′30” 13:35 1 0.5
19 13:36 25 23 14:24 5′34” 0.4
18 14:29 15 10 14:54 1′2” 0.4
17 14:55 15 1′30” 15:11 5′49” 0.5
13 15:17 80 3 16:40 6′14” 0.8
11 16:46 20 2′30” 17:08 17′15” 0.2
6 17:25 20 2′30” 17:47 8′ 0.2

Exit (0) 17:55 - - - - -

Then, the evolution results of the improved APGA are illustrated in Figure 4. Here, we set the
initial temperature to 90 and the cooling coefficient to 0.99. The best solution in the experiment can be
found when the iteration is 156, and the value of fitness function is 36.0801. The result is the same
as that of PGA, and the obtained satisfaction route is 0-2-27-22-24-21-20-26-23-16-19-18-17-13-11-6-0.
The details of the results are illustrated in Table 4. As with Table 3, the table also contains seven
items: recommended attraction, recommended arrival time, queuing time, playing time spent at the
attraction, departure time from the attraction, walking time from this node to the next attraction,
and the degree of satisfaction for selected attractions. The total walking time of the travel route is
92 min, the total queuing time is 372 min, the satisfaction of the tourists is 6.9, and the number of
recommended attractions is also 15.
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Table 4. Results of the satisfaction route with APGA (28 attractions).

Attraction Arrival Time Queuing
Time (min)

Playing
Time (min)

Departure
Time

Walking Time
to the Next

Location (min)

Satisfaction
Degree

Entrance (0) 09:00 - - 9:00 11′15” -
2 09:11 10 8 9:29 5′38 0.3

27 09:35 30 5 10:10 9′8” 0.6
22 10:19 20 1′30” 10:40 7′44” 0.5
24 10:48 30 1′30” 11:20 1′57” 0.5
21 11:22 20 1 11:43 1′22” 0.5
20 11:44 10 10 12:04 1 0.3
26 12:05 30 1′30” 12:36 4′39” 0.5
23 12:41 35 1 13:17 3′53” 0.7
16 13:21 12 2′30” 13:35 1 0.5
19 13:36 25 23 14:24 5′34” 0.4
18 14:29 15 10 14:54 1′2” 0.4
17 14:55 15 1′30” 15:11 5′49” 0.5
13 15:17 80 3 16:40 6′14” 0.8
11 16:46 20 2′30” 17:08 17′15” 0.2
6 17:25 20 2′30” 17:47 8′ 0.2

Exit (0) 17:55 - - - - -

By comparing the two results above, when there are 28 attractions, the best solution of the
two different algorithms can be found in a short time. In addition, we tested the two algorithms
15 times. For the same example, Table 5 includes the test results using the PGA 15 times, and the
second row is the optimal value of fitness function in the experiment corresponding to each test, and the
third row is the obtained satisfaction route. Table 6 illustrates the test result acquired using the APGA
15 times. From Tables 5 and 6, after being tested 15 times, the best solution was found once by using
the PGA, while the best solution of 36.0801 was found twice by using the APGA. Table 7 illustrates the
comparison results of the two different algorithms. The presented results are the best solution (Best),
worst solution (Worst), average solution (Average), and the standard deviation (Std).

Table 5. The results of 15 tests using the PGA (28 attractions).

Number The Optimal Value of
Fitness Function The Obtained Satisfaction Route

1 35.5772 0-2-16-18-17-13-14-23-20-21-25-24-26-22-27-1-0
2 35.611 0-6-13-17-18-19-16-20-21-24-26-23-22-27-2-1-0
3 35.611 0-6-13-17-18-19-16-24-21-20-26-23-22-27-2-1-0
4 35.9203 0-16-19-18-17-13-23-20-21-25-24-26-22-27-2-0
5 35.1115 0-2-27-22-24-21-20-26-16-18-17-23-13-5-0
6 35.611 0-6-13-17-18-19-16-24-21-20-26-23-22-27-2-1-0
7 35.9202 0-20-21-25-24-26-16-19-18-17-13-23-22-27-2-0
8 35.9216 0-2-16-19-18-17-13-23-20-21-25-24-26-22-27-0
9 35.5742 0-6-17-18-16-20-21-25-24-26-13-23-22-27-2-1-0

10 36.0801 0-2-27-22-24-21-20-26-23-16-19-18-17-13-11-6-0
11 35.5434 0-6-12-13-17-18-16-24-21-20-26-23-22-27-2-1-0
12 34.9208 0-16-19-18-17-13-23-21-25-24-26-22-27-2-1-0
13 35.5964 0-6-13-17-18-16-20-21-25-24-26-23-22-27-2-1-0
14 36.0655 0-6-11-13-17-18-16-20-21-25-24-26-23-22-27-2-0
15 35.611 0-6-13-17-18-19-16-24-21-20-26-23-22-27-2-1-0
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Table 6. The results of 15 tests using the APGA (28 attractions).

Number The Optimal Value of
Fitness Function The Obtained Satisfaction Route

1 35.9216 0-2-24-25-21-20-26-16-19-18-17-13-23-22-27-0
2 35.9202 0-20-21-25-24-26-16-19-18-17-13-23-22-27-2-0
3 35.9203 0-16-19-18-17-13-23-20-21-25-24-26-22-27-2-0
4 36.0655 0-6-11-13-17-18-16-20-21-25-24-26-23-22-27-2-0
5 35.9216 0-2-24-25-21-20-26-16-19-18-17-13-23-22-27-0
6 35.611 0-6-13-17-18-19-16-24-21-20-26-23-22-27-2-1-0
7 35.7652 0-1-2-27-22-24-21-20-26-23-16-18-17-13-11-7-6-0
8 36.08 0-6-11-13-17-18-19-16-26-24-21-20-23-22-27-2-0
9 35.9199 0-26-20-21-25-24-16-19-18-17-13-23-22-27-2-0

10 35.9203 0-16-19-18-17-13-23-20-21-25-24-26-22-27-2-0
11 36.0801 0-6-11-13-17-18-19-16-24-21-20-26-23-22-27-2-0
12 35.9203 0-16-19-18-17-13-23-20-21-25-24-26-22-27-2-0
13 36.0801 0-2-27-22-24-21-20-26-23-16-19-18-17-13-11-6-0
14 35.9216 0-2-24-25-21-20-26-16-19-18-17-13-23-22-27-0
15 35.9202 0-20-21-25-24-26-16-19-18-17-13-23-22-27-2-0

Table 7. Comparison of different methods for solving time-varying theme park routing (TDTPRP)
(28 attractions).

Method Best Worst Average Std

PGA 36.0801 34.9208 35.645 0.31
APGA 36.0801 35.611 35.931 0.12

The test results indicate that both algorithms can be used to find the best solution within a short
time when resolving the path of a theme park with 28 attractions. However, the APGA is superior to
the PGA in terms of optimizing ability.

4.2. Randomly Generated Problem Instances

The results above demonstrate that both the PGA and the APGA mentioned in this paper can be
used to find the best solution within a short time when resolving small and medium-sized theme park
routing problems. Then, we expanded the test scale in the second test. We generated a theme park
with one entrance and 60 attractions at random within a 2000 × 2000 test environment, as illustrated
in Figure 5.
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14 35.9216 0-2-24-25-21-20-26-16-19-18-17-13-23-22-27-0 

15 35.9202 0-20-21-25-24-26-16-19-18-17-13-23-22-27-2-0 
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Figure 5. Scatter plot

One of the points serves as the entrance (exit), and the remaining 60 points are regarded as the
attractions. A visitor departing from the entrance of the theme park visits the attractions and then
leaves the theme park. We randomly generated a simulated theme park environment and assumed
that any two points are connected, and the distance between any two points is known. The time spent
at the attraction, the queuing time, and the degree of satisfaction for each project are provided where
the degree of satisfaction for the attractions are also generated from this interval [0, 1]. As with the
previous experiment, we chose to use the same function to calculate the walking speed of the visitors.

The opening and the closing times are set as 09:00 and 17:00. The weights of the objectives
(c1, c2, c3) are set to 0.2, 0.5, and 0.3, respectively, and conversion factors of utility (λ1, λ2, λ3) are set
to 1, 10, and 0.1, respectively. The population size is set to 200, and the maximum iteration is 200.
The probabilities of the three genetic operators are generated randomly.

The evolution results of the PGA are illustrated in Figure 6, where the best solution in the
experiment can be found when the iteration is 185, and the best value of fitness function is 34.0835.
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The obtained satisfaction route is 0-6-18-26-7-10-30-9-44-8-21-0. Details on the results are illustrated
in Table 8. The total walking time of the travel route is 61 min, the total queuing time is 282 min,
the degree of satisfaction of the tourists is 8.53, and the number of recommended attractions is 10.

Table 8. Results of the satisfaction route with PGA (60 attractions)

Attraction Arrival Time Queuing
Time (min)

Playing
Time (min)

Departure
Time

Walking Time
to the Next

Location (min)

Satisfaction
Degree

Entrance (0) 09:00 - - 9:00 10′55” -
6 09:11 29 18 9:58 6 0.94

18 10:04 24 14 10:42 4′58” 0.92
26 10:47 38 11 11:36 6′20” 0.93
7 11:42 12 12 12:06 1′14” 0.68

10 12:08 29 15 12:52 6′40” 0.8
30 12:58 35 9 13:42 1′6” 0.91
9 13:44 15 17 14:16 1′8” 0.97

44 14:17 34 8 14:59 11′8” 0.79
8 15:10 31 17 15:58 10′3” 0.89

21 16:08 35 16 16:59 1′ 0.7
Exit (0) 17:00 - - - - -

The evolution result of the improved APGA is illustrated in Figure 7, where the best solution in
the experiment can be found when the iteration is 160, and the best value of fitness function is 34.1492.
The obtained satisfaction route is 0-6-18-26-24-7-10-30-9-44-8-0. The details of the results are illustrated
in Table 9. The total walking time of the travel route is 65 min, the total queuing time is 272 min,
the satisfaction of tourists is 8.51, and the number of recommended attractions is 10.
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Table 9. Results of the satisfaction route with APGA (60 attractions)

Attraction Arrival Time Queuing
Time (min)

Playing
Time (min)

Departure
Time

Walking Time
to the Next

Location (min)

Satisfaction
Degree

Entrance (0) 09:00 - - 9:00 10′55” -
6 09:11 29 18 9:58 6 0.94

18 10:04 24 14 10:42 4′58” 0.92
26 10:47 38 11 11:36 5′40” 0.93
24 11:42 25 12 12:19 5′23” 0.68
7 12:24 12 12 12:48 1′15” 0.68

10 12:50 29 15 13:34 6′43” 0.8
30 13:40 35 9 14:24 1′6” 0.91
9 14:25 15 17 14:57 1′33” 0.97

44 14:59 34 8 15:41 11′14” 0.79
8 15:52 31 17 16:40 9′53” 0.89

Exit (0) 16:50 - - - - -

If there are 28 attraction projects, the two different algorithms can be used to find the relative
best solution within a short time successfully. However, when we increased the attractions to 60,
the computation time of the PGA was longer, and it was inferior to the APGA in terms of optimizing
ability. By comparing Figures 6 and 7, the PGA was stuck in a locally optimal solution in the 185th
generation, the best result was 34.0835, and it failed to reach the ideal result. By contrast, the APGA
overcame the weakness of being stuck in local optimization and tended to be stable in the 160th
generation. The best solution in this experiment was 34.1492.

Similarly, we ran the two algorithms 15 times in the test. Table 10 illustrates the test results
acquired by using the PGA 15 times. Table 11 illustrates the test results acquired by the APGA. It can
be concluded from the results that, if the PGA was used for the solution, the positive solution rate was
0, which means no best solution was found in the solution process using 15 tests. The best solution was
found twice once the APGA was used, and Table 12 illustrates the comparison of the two algorithms.

Table 10. The results of 15 tests using the PGA (60 attractions)

Number The Optimal Value of Fitness Function The Obtained Satisfaction Route

1 32.5523 0-6-24-18-26-49-7-9-30-8-54-0
2 34.0835 0-6-18-26-7-10-30-9-44-8-21-0
3 34.0067 0-10-7-24-6-18-26-30-9-44-8-0
4 31.3534 0-6-18-26-7-30-9-8-34-54-0
5 32.1111 0-6-18-26-7-10-30-9-8-13-54-0
6 33.9866 0-6-18-26-7-10-44-30-9-8-42-0
7 32.2745 0-13-6-18-26-30-9-7-10-8-54-0
8 33.8962 0-24-7-10-44-9-30-26-18-53-6-0
9 32.1077 0-8-30-9-10-26-18-53-6-7-13-0
10 33.9753 0-24-26-18-6-7-10-30-9-44-8-0
11 32.4752 0-24-6-18-26-49-7-30-9-8-54-0
12 33.5624 0-42-8-9-30-10-7-26-18-6-21-0
13 32.4777 0-6-53-18-26-9-30-7-10-13-8-0
14 32.5079 0-8-13-10-7-9-30-26-18-53-6-0
15 33.2479 0-42-10-7-9-30-26-18-53-6-24-0
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Table 11. The results of 15 tests using the APGA (60 attractions)

Number The Optimal Value of Fitness Function The Obtained Satisfaction Route

1 34.1265 0-8-44-9-30-10-7-26-18-24-6-0
2 34.0955 0-6-18-26-24-7-10-44-9-30-8-0
3 34.0302 0-8-10-7-9-44-30-26-18-24-6-0
4 34.0905 0-8-44-9-30-10-7-26-18-6-21-0
5 34.1107 0-8-44-9-30-10-7-26-18-6-24-0
6 34.0365 0-8-44-9-30-10-7-26-18-24-6-0
7 34.1492 0-6-18-26-24-7-10-30-9-44-8-0
8 34.0681 0-6-24-18-26-10-7-9-30-44-8-0
9 34.1492 0-6-18-26-24-7-10-30-9-44-8-0
10 34.0142 0-6-18-26-10-7-30-9-44-8-42-0
11 34.1399 0-6-18-26-24-10-7-30-9-44-8-0
12 33.9915 0-6-18-26-7-10-44-9-30-8-42-0
13 34.0815 0-6-24-18-26-30-9-44-7-10-8-0
14 34.0679 0-24-6-18-26-30-9-44-7-10-8-0
15 34.1307 0-6-24-18-26-7-10-30-9-44-8-0

Table 12. Comparison of different methods for solving TDTPRP (60 attractions)

Method Best Worst Average Std

PGA 34.0835 31.3534 32.9746 0.86
APGA 34.1492 33.9915 34.0854 0.05

5. Discussion

In order to solve the problem of crowded queuing in large theme parks, improve visitor satisfaction,
and reduce congestion, a time-dependent theme park routing problem (TDTPRP) was proposed to
maximize the utility of the visitors and minimize queuing and walking times for selecting the optimal
attractions under the framework of the traveling salesman problem (TSP), where walking time was
treated as time-dependent and changed according to different time periods. This model can provide a
more accurate plan and plan for a single decision. To solve the proposed model and verify the feasibility
and the effectiveness of the model, we used a parthenogenetic algorithm and proposed an annealing
parthenogenetic algorithm. In the experimental stage, we conducted two experiments; the experimental
data were divided into real-world problems and randomly generated problems. First, we used the
Tokyo Disney Sea with 28 attractions as the real-world problem to prove the effectiveness of the model
and the algorithm. Second, to prove the stability of the model and the algorithm, we expanded the
scale of the experiment and randomly generated an example of a theme park with 60 attractions within
a 2000 × 2000 test environment. The results demonstrate that, when the experiment scale is small,
the general parthenogenetic algorithm and the annealing parthenogenetic algorithm have the same
excellent optimization ability, but the annealing parthenogenetic algorithm has better optimization
ability than the general parthenogenetic algorithm when the data scale was expanded.

For future research, there is space for further improvements. For example, the walking time is
dynamic, but to make it comparable to a realistic problem, the queuing time should also be constantly
changing. Moreover, at present, some theme parks offer tickets to skip queues, some of which are free
and some of which involve a fee. These factors could be considered in future research to continue to
develop the model, and with the improvement of the model, the design of the algorithm should also
continue to improve.
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