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Abstract: In this article, we will apply some of the algebraic methods to find great moving solutions to
some nonlinear physical and engineering questions, such as a nonlinear (1 + 1) Ito integral differential
equation and (1 + 1) nonlinear Schrödinger equation. To analyze practical solutions to these problems,
we essentially use the generalized expansion approach. After various W and G options, we get several
clear means of estimating the plentiful nonlinear physics solutions. We present a process like-direct
expansion process-method of expansion. In the particular case of W′ = λG, G′ = µW in which λ
and µ are arbitrary constants, we use the expansion process to build some new exact solutions for
nonlinear equations of growth if it fulfills the decoupled differential equations.

Keywords: direct algebraic methods; nonlinear Ito integro-differential equation; dispersive nonlinear
schrodinger equation; exact solutions

1. Introduction

Nonlinear partial differential equations are statistical structures used to explain a phenomenon
happening among us worldwide. In several applications of science and engineering, nonlinear partial
differential equations occur. The same discovery of NPDEs has been carried out with several different
algebraic methods (see [1–35]). There are many authors searching for the oscillation criteria for
NPDEs see [36]. Many applications of the nonlinear phenomena of PDEs are discussed in [37–49].
Yang et al. [45] have determined the lump solutions to NODEs using the bilinear equation with the
logarithmic function. Zhang et al. [46] used an algebraic multigrid method for eigenvalue problems.
Ma et al. [47] used the transformed rational function methods to study the exact solutions to (3 + 1) the
dimensional Jimbo-Miwa equation. Li et al. proposed the primary form of the (W/G) extension [28].
They used this approach to research Vakhnenko’s nonlinear equation practical solutions. Gepreel [42]
improved (W/G) to study the exact solutions for nonlinear integro–differential equations. In this
paper, we illustrate that the improved (W/G) is generated in many direct methods for finding exact
solutions for NPDEs when the parameters take some special values. Many scholars employed an
evident expansion of the nonlinear physical problems (W/G) approach [28,29,42]. In this paper, we use
modified expansion (W/G), where W, G is random to evaluate evolutionary equations:

(i) The ODIDEs [43]:

utt + uxxxt + 3(2uxut + uuxt) + 3uxx

∫ x

−∞

utdx′ = 0. (1)

Equation (1) was presented by the scientist Ito in 1980. It is generalized to bi-linear KdV and
generally related to the model of Fokker–Planck.
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(ii) The HODSEs [44]:

iux −
S2

2
utt − i

S3

6
uttt −

S4

24
utttt + L2|u|2u + L4|u|4u = 0, (2)

where u is the varying slowly envelope of electromagnetic field, t is time, x is a distance along
the direction of propagation, S2, is dispersive velocity, S3, S4, 2nd, 3rd, and 4th-order dispersive
respectively while L4, L2 are non-linearity coefficients.

2. The (W/G)-Expansion Direct Method

Suppose the nonlinear partial differential equation

H(Q, Qt, Qx, Qtt, Qxx, Qxt . . .) = 0 , (3)

where H is a function in Q and its partial derivatives.
Step 1. Let the wave transformation is:

Q = F(θ), θ = x−Kt, (4)

where K is the wave velocity constant. Equations (3) and (4) lead to get:

H(F, F′, F′′ , . . .) = 0 , (5)

Step 2. Suppose

F(θ) =
β∑
δ=0

aδ

(
W(θ)

G(θ)

)δ
, (6)

aδ(δ = 0, 1, . . . , β) are constants and g(θ), w(θ) satisfy condition:(
W(θ)

G(θ)

)′
= A + B

(
W(θ)

G(θ)

)
+ C

(
W(θ)

G(θ)

)2

, (7)

Or
W′G−WG′ = AG2 + BWG + CW2, (8)

where A, B, C are arbitrary constants.
Step 3. Determine β by equating the power of highest order and the power of nonlinear term(s)

in (5).
Step 4. Compensating Equation (6) into (5) along with (7). Setting the coefficients of (W/G)δ,

(δ = 0, 1, . . . , β) to be zero, yield a set of over-determine equations for aδ(δ = 0,1, . . . , β) and K.
Step 5. Solving system of equations in step 4 to find aδ(δ = 0, 1, . . . , β) and K.
Step 6. From the general solutions of algebraic equations and the exact solutions of Equation (8),

we construct the exact solutions to evolution equations. A general solution to a general Riccati,
Equation (8) was given by three Formulas (40)–(42) in an earlier reference [48].

Fact 1. If G = 1, B = 0, and C = 1 this method equivalence the Tanh-function method, and
G = 1, and A, B, C are nonzero constants this method equivalent to the Riccati expansion function
method [4,5].

Fact 2. In [29,30] When W = G′, A = −µ, B = −λ, and C = −1. This method is equivalent to
(G′/G)-method [27].

Fact 3. When W = G′/G, B = 0. We have a direct method:

F(θ) =
β∑

k=0

ak

(
G′

G2

)k

, (9)



Mathematics 2020, 8, 2211 3 of 14

where ak(k = 0, 1, . . . , β) are constants, and G′′ satisfies the condition

G2G′′ − 2G(G′)2 = AG4 + C(G′)2, (10)

which appear in [29,30].
Fact 4. If we put W = GG′. We get

F(Θ) =

β∑
k=0

ak(G′)
k, (11)

where ak(k = 0, 1, . . . , β) are constants, and G′ satisfies NODE:

G′′ = A + BG′ + C(G′)2, (12)

which discussed in [29,30].
Fact 5. If

F(Θ) =

β∑
k=0

ak

(W
G

)k
, (13)

and
W′ = λG, G′ = µW, (14)

where λ, µ are nonzero, is called (W/G)-expansion method. From Facts 1–5, theoretically, the
transformed rational function method [47] gives us a rational function expansion around a solution to
an integrable ODE, which is the most general procedure to generate traveling wave solutions. A Riccati
equation is just one possibility, of choosing an integrable ODE.

Remark 1. 1. Ma et al. [47] have supposed the solutions of NODEs as u(r) = F(η), dη
dξ = T(η)

and F(η) =
P(η)
q(η) =

pmηm+pm−1η
m−1+...+p0

qnηn+qn−1ηn−1+...+q0
. They have discussed the exact solutions when T(η) = η and

T(η) = α+ η2 then integrate r- time to determine u. This method is one of the effective and powerful methods to
solve nonlinear ODEs. In the proposed method, trial equation is the generalized Riccati ODE (7) or (8), which
contains many parameters to get a different type of several traveling wave solutions. The transformed rational
function provides a way to construct traveling wave solutions, but not multiple wave solutions. Multiple wave
solutions can be computed by using the multiple exp-function method.

2. In [48], the authors supposed the solutions in the form u =
M∑

i=0
aivi(ξ), v′ = ε(1− v2), ε = ±1, the

trial equation satisfies the Bernoulli ODEs.
3. In [49], the authors construct the multiple solutions for NPDEs, which is a powerful method and

determining the one and two solutions. The multiple exp-function method [49] aims to solve PDEs, but not
integro–differential equations. Only one-wave and two-wave solutions are computed in [49], since N wave
solutions, for example, N-soliton solutions need more elaborate theoretical consideration [50].

3. Exact Solutions for Nonlinear Physical Problems

In this section, we use the (G′/G2)-expansion method, (G′)-direct method and (W/G)-expansion
method to discuss the analytical solutions for some of the nonlinear physical problems.

3.1. Abundant Solutions to of the (1 + 1)-IIDEs

We use the transformation
u(x, t) = Zx(x, t) (15)
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The transformation (15) changes the NIIDS (1) to

Zttx + Zxxxxt + 6ZxxZxt + 3ZxZxxt + 3ZxxxZt = 0 (16)

We take the transformation

Z(x, t) = M(Θ), Θ = x− kt, (17)

where k is a velocity nonzero constant. Therefore, Equation (17) leads to write Equation (16) to NODE:

k2M′′′
− kM(5)

− 6k(M′′ )2
− 6kM′M′′′ = 0. (18)

Using the integration, Equation (18) takes the form:

kM′ −M′′′
− 3(M′)2 + C1 = 0, (19)

where C1 is a constant.

3.1.1. (G′/G2)-Direct Method for (1 + 1)-NIIEs

In this part, we deduce the direct exact solution to Equation (19) by using (G′/G2)-expansion
method. Equating the power of the highest derivative with the power of nonlinear terms in (19), we
suppose the solution of Equation (19) has the following form:

M(Θ) = r0 + r1

(
G′

G2

)
, (20)

where r0 and r1 are constants and G(Θ) satisfies Equation (10). Equation (20) is a solution to
Equation (19) when

r1 = −2C, k = −4AC, C1 = 0, (21)

where r0, C and A are nonzero arbitrary constants. The general solutions of Equation (10) lead to
discuss the following families:

Family 1. If. CA > 0,

G(Θ) =
2C

ln
[

C
A

(
A1SIN

(√
ACΘ

)
−A2COS(Θ)

)2
] , (22)

and
G′

G2 =

√
A
C

A1COS
(√

ACΘ
)
+ A2SIN

(√
ACΘ

)
A1SIN

(√
ACΘ

)
−A2COS

(√
AC Θ

) . (23)

Consequently, periodic wave for the (1+1)-IIDEs (1) takes the form:

u1(t, x)

=
−(2AC(A1

2+A2
2))

((A1
2−A22)COS2(

√
AC(x+(4AC)t))+2A1A2SIN(

√
AC(x+(4AC)t))COS(

√
AC(x+(4AC)t))−A1

2)
(24)

Family 2. If. CA < 0,

G(Θ) = −
2C

2
√
|AC|Θ − ln

[
C

4A

(
A1e2

√
|AC|Θ −A2

)2
] , (25)
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In this family, the solitary wave solution for (1+1) IIDEs (1) takes the form:

u2(t, x) = −
8|AC|A1e2

√
|AC|(x+(4AC)t)A2(

A1e2
√
|AC|(x+(4AC)t) −A2

)2 (26)

3.1.2. Modified (G′)-Expansion Method for the (1 + 1)-IIDEs

In this subsection, we deduce the different types of exact solutions to (19) using (G′)-expansion
method. We suppose the solution of Equation (19) has the following form:

M(Θ) = r0 + r1G′, (27)

where r0 and r1 are constants and G(Θ) satisfies (12). Equation (27) along with the condition (12) is a
solution of Equation (19) when

r1 = −2C, k = −4AC + B2, C1 = 0. (28)

The general solutions of (12) leads to discuss the following families:
Family 3. If. ∆ = 4AC− B2 > 0,

G(Θ) =
1

2C

[
ln

(
1 + Tan2

(1
2

√

∆Θ
))
− BΘ

]
. (29)

Consequently, periodic wave solution to (1+1)-IIDs (1) takes the form:

u3(t, x) = −
1
2

(
4AC− B2

)(
1 + Tan2

(1
2

√
4AC− B2

(
x−

(
−4AC + B2

)
t
)))

(30)

The solution (30) is bright soliton solution see Figure 1.
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Figure 1. The periodic soliton solution (30) of Equation (1) and its projection at t = 0 when A = 3, C =

4, B = 1.

Family 4. If. ∆ = 4AC− B2 < 0,

G(Θ) =
1

2C

[
ln

(
Tanh2

(1
2

√

−∆Θ
)
− 1

)
− BΘ

]
, (31)

Consequently, the hyperbolic solution of the (1+1)-IIDEs (1) takes the form:

u4(t, x) = −
1
2

(
4AC− B2

)(
1− Tanh2

(
1
2

√
−(4AC− B2)

(
x−

(
−4AC + B2

)
t
)))

. (32)

The solution (32) is bright soliton solution see Figure 2.
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Figure 2. The bright soliton solution (32) of Equation (1) and its projection at t = 0 when A =

1, C = 1, B = 4.

3.1.3. Modified (W/G)-Expansion Method for the (1 + 1)-DIIDEs

We use a new direct method, namely (W/G)-expansion method to find the solution of
Equation (19). Let

M(Θ) = r0 + r1

(W
G

)
, (33)

where r0 and r1 are constants and W(Θ), G(Θ) satisfies the decouple differential Equation (14).
Equation (33) along with condition (14) is a solution of Equation (19) when

r1 = 2µ k = 4λµ, C1 = 0, (34)

There are many families, as follows:
Family 5. If. λ > 0 and µ > 0, then Equation (14) leads to:

(W
G

)
=

√
λ
√
µ

(
A1
√
µCosh

(√
λ
√
µΘ

)
+ A2

√
λSinh

(√
λ
√
µΘ

))(
A1
√
µSinh

(√
λ
√
µΘ

)
+ A2

√
λCosh

(√
λ
√
µΘ

)) , (35)

In this family, a solitary solution of Equation (1) is given by

u5(t, x) = −
2λµ

(
A2

1µ−A2
2λ

)
(
A1
√
µSinh(

√
λµ(4 λµ t− x)) −A2

√
λCosh

(√
λµ(4 λµ t− x)

))2 , (36)

Solution (36) is a dark soliton solution, see Figure 3.
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Figure 3. Dark soliton solution (36) of Equation (1) and its projection at t = 0 when µ =

0.4, λ = 0.5, A1 = 0.2, A2 = 0.1.
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Family 6. If. λ < 0 and µ < 0, then Equation (14) leads to:

(W
G

)
=

√
−λ
√
−µ

(
A1
√
−µCosh

(√
−λ
√
−µΘ

)
−A2

√
−λSinh

(√
−λ
√
−µΘ

))(
−A1
√
−µSinh

(√
−λ
√
−µΘ

)
+ A2

√
−λCosh

(√
−λ
√
−µΘ

)) , (37)

In this family, the solitary solution of Equation (1) is given by

u6(t, x) =
2λµ

(
A1

2µ−A2
2λ

)
(
A1
√
−µ Sinh(

√
−λ
√
−µ(4 λµt− x) + A2

√
−λCosh

(√
−λ
√
−µ(4 λµt− x)

))2 , (38)

where Θ = x− 4 λµt.
Family 7. If. λ > 0 and µ < 0, then Equation (18) leads to:

(W
G

)
=

√
λ
−µ

(
A1
√
−µCos

(√
−λµΘ

)
+ A2

√
λSin

(√
−λµΘ

))(
−A1
√
−µSin

(√
−λµΘ

)
+ A2

√
λCos

(√
−λµΘ

)) , (39)

Consequently, the periodic solution of Equation (1) takes the form:

u7(t, x)

=
−(2λµ(A1

2µ−A2
2λ))(

(A1
2µ+A22λ)Cos2

(√
−λµ(4 λµ t−x)

)2
+2A1A2

√
λSin

(√
−λµ(4 λµ t−x)

)
Cos

(√
−λµ(4 λµ t−x)

)√
−µ−A1

2µ
) (40)

The singular periodic solution (40) appears in Figure 4.
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Figure 4. Singular periodic solutions (40) of Equation (1) and its projection at t = 0 when
µ = −0.3, λ = 0.9, A1 = 0.4, A2 = 0.5.

3.1.4. Bright, Dark, and Singular, Solitary Solutions of (1 + 1)-DIIDs

In this subsection, we include some figures to illustrate the types of exact solutions to (1 + 1)
DIIDs. When the parameters are taken some special values, we graph special figures to illustrate the
optical solutions (see Figures 1–4).

In the above figures, we illustrate the periodic soliton solution as you are shown in Figure 1,
bright soliton solution in Figure 2, dark soliton solution appear in Figure 3 while the singular periodic
solutions in Figure 4 to the (1 + 1)-DIIDEs.
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3.2. Exact Solutions to Nonlinear Dispersive Schrodinger Equation (NDSE)

In this section, we study the solution of NDESs

iux −
S2

2
utt − i

S3

6
uttt −

S4

24
utttt + L2|u|2u + L4|u|4u = 0, (41)

where u is the varying slowly envelope of electromagnetic field, t is time, x is a distance along the
direction of propagation, S2, is dispersive velocity, S3, S4, 2nd, 3rd, and 4th-order dispersive respectively
while L4, L2 are non-linearity coefficients. Equation (41) has been discussed in [42] using first integral
and sub-equations ODE methods.

u(x, t) = %(Θ)e[i(kx−pt)], Θ = qx−ωt, (42)

where %(Θ) is a real function, and q, ω, k, and p are constants. Substituting transformation (42) into
Equation (41), we get:

S4ω4%(4) +
(
12S2ω2 + 12S3ω3p− 6S4ω2p2

)
%′′+

(
24k− 12S2p2

− 4S3p3+

S4p4
)
% − 24L2%3

− 24L4%5 = 0,
(43)

and
ω3(S3 − S4p)%′′′ +

(
6q− 6S2ωp− 3S3ωp2 + S4ωp3

)
%′ = 0, (44)

Provided S3 − S4p , 0. Differentiating Equation (44) and substituting the result into Equation (43),
we have ODE:

B1%
′′ + C1%+ D1%

3 + E1%
5 = 0, (45)

where the coefficients B1, C1, D1 and E1 are given by

B1 = S4ω4
(
6q− 6S2ωp− 3S3ωp2 + S4ωp3

)
−

(
S3ω3

− S4ω3p
)(

12S2ω2 + 12S3ω3p− 6S4ω2p2
)

C1 = −ω3(S3 − S4p)
(
24k− 12S2p2

− 4S3p3 + S4p4
)
, D1 = 24L2ω3(S3 − S4p),

E1 = 24L4ω3(S3 − S4p).
(46)

Balancing, the highest derivative %′′ with nonlinear term %5 in Equation (45), to get β = 1
2 .

Consequently, suppose the solution in the form:

% = [χ(Θ)]
1
2 , (47)

From (45) and (47), we have

B1

[
−

1
4
χ′

2 +
1
2
χχ′′

]
+ C1χ

2 + D1χ
3 + E1χ

4 = 0. (48)

3.2.1. The (g′/g2) Expansion Method to NDSEs

Balancing the nonlinear terms χχ′′ and χ4 in Equation (48), the solution of Equation (48) has
the form:

χ(Θ) = r0 + r1

(
G′

G2

)
, (49)

Equation (49), along with condition (10), is a solution of Equation (48), when

r0 = ±

√
−A
C

r1, C1 = ACB1, D1 = ±2

√
−A
C

B1C2

r1
, E1 = −

3
4

B1C2

r1
2 , (50)
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where r1, C and A are nonzero constant parameters. From the solutions of Equation (10) we have
following

Set 1. If. CA < 0, the solitary wave solution for NDSEs (2) takes the form:

u1(x, t) = e[i(kx−pt)]

±
√
−A
C

r1 +
r1

2C

2
√
|AC| −

4
√
|AC|A1e2

√
|AC|[qx−ωt]

A1e2
√
|AC|[qx−ωt] −A2


1
2

. (51)

The soliton solution (51) is shown in Figure 5.
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Figure 5. Solitary wave solution (51) of Equation (2) and its projection at t = 0 when A = −1, C =

2, k = 3, p = 2, q = 0.5,ω = 1, r1 = 3, A1 = 5, A2 = 6.

Set 2. If A = 0, C , 0, the rational traveling wave solution NDSE (2) takes the

u2(x, t) = e[i(kx−pt)]
[
−

A1r1

A1C [qx−ωt] + A2C

] 1
2

. (52)

3.2.2. (G′)-Expansion Method to NDSEs

The solution of Equation (48) has the following form:

%(Θ) = r0 + r1G′, (53)

G(Θ) satisfies Equation (12). Equation (53), along with condition (12), is a solution of Equation (48) when

r0 = ± 1
2C

(
±B +

√
−4AC + B2

)
r1, C1 = 1

4

(
4AC− B2

)
B1,

D1 =
B1C{2(± 1

2C )(±B+
√

−4AC+B2 )C−B}
r1

, E1 = − 3
4

B1C2

r1
2 ,

(54)
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where r1, A, B, and C are constant parameters, and −4AC + B2
≥ 0. The exact wave solution of

Equation (12) has the following families:
Set 3. If ∆ = 4AC− B2 < 0, the solitary wave solution to NDSEs (2) takes the form:

u3(t, x) = e[i(kx−pt)]
[
±

1
2C

(
±B +

√
−4AC + B2

)
r

−
r1
2C

[√
−4AC + B2 Tanh

(
1
2

√
−4AC + B2 [qx−ωt]

)
+ B

]] 1
2 ,

(55)

Set 4. If ∆ = 4AC− B2 = 0 the rational wave solution to NDSEs (2) takes the form:

u4(x, t) = e[i(kx−pt)]
[
±

Br1

2C
−

r1

C

(
1

[qx−ωt]
+

B
2

)] 1
2

. (56)

3.2.3. The (W/G)-Expansion Method for NDSEs

We take the solution of Equation (48) in the following form:

%(Θ) = r0 + r1

(W
G

)
. (57)

Equation (57) along with the condition (12) is a solution of Equation (48) when

r0 = ±

√
λ
µ

r1, C1 = −λµB1, D1 = ±2

√
λ
µ

B1µ2

r1
, E1 = −

3
4

B1µ2

r1
2 , (58)

where a1, λ, µ are arbitrary nonzero constants and λµ ≥ 0. There are many families of the exact
solutions for Equation (12), discussed as the following families:

Set 5. If λ > 0 and µ > 0, the solution to NSDEs (2) takes the form:

u5(t, x) = e[i(kx−pt)]

±
√
λ
µ

r1 + r1

√
λ
µ


(
A1
√
µCosh

(√
λµ[qx−ωt]

)
+ A2

√
λSinh

(√
λµ[qx−ωt]

))(
A1
√
µSinh

(√
λµ[qx−ωt]

)
+ A2

√
λCosh

(√
λµ[qx−ωt]

)) 


1
2

. (59)

In the special case when A1 , 0 and A2 = 0, the singular solutions is given by

u6(t, x) = e[i(kx−pt)]

±
√
λ
µ

r1 + r1

√
λ
µ

coth
(√
λµ[qx−ωt]

)
1
2

. (60)

Moreover, when A2 , 0 and A1 = 0 the dark solutions is given by

u7(t, x) = e[i(kx−pt)]

±
√
λ
µ

r1 + r1

√
λ
µ

tanh
(√
λµ[qx−ωt]

)
1
2

. (61)

The soliton solution (61) is shown in Figure 6.
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Set 6. If λ < 0 and µ < 0, in this set, the exact solution Equation (12) is given by:

(
w
g

)
=

√
−λ
√
−µ

(
A1
√
−µcosh

(√
−λ
√
−µξ

)
−A2

√
−λsinh

(√
−λ
√
−µξ

))(
−A1
√
−µsinh

(√
−λ
√
−µξ

)
+ A2

√
−λcosh

(√
−λ
√
−µξ

)) (62)

Consequently, the solitary wave solution of Equation (2) has the following form:

u8(x, t) = e[i(kx−pt)],

±
√
λ
µ

a1 + a1

√
−λ
√
−µ


(
A1
√
−µcosh

(√
−λ
√
−µ [qx−ωt]

)
−A2

√
−λsinh

(√
−λ
√
−µ [qx−ωt]

))(
−A1
√
−µsinh

(√
−λ
√
−µ [qx−ωt]

)
+ A2

√
−λcosh

(√
−λ
√
−µ [qx−ωt]

)) 


1
2

(63)

If A1 , 0 and A2 = 0 the dark soliton solutions is given by

u9(x, t) = e[i(kx−pt)]

±
√
λ
µ

a1 − a1

√
−λ
√
−µ

coth
(√
−λ

√
−µ [qx−ωt]

)
1
2

, (64)

and A2 , 0 and A1 = 0 the bright soliton solutions is given by

u10(x, t) = e[i(kx−pt)]

±
√
λ
µ

a1 − a1

√
−λ
√
−µ

tanh
(√
−λ

√
−µ [qx−ωt]

)
1
2

, (65)

3.2.4. Bright and Singular Solitary Solutions to NDSEs

We include graphs to show the physical representation of the wave solutions when the constant
parameters are taken some special real number values; see Figures 5 and 6.

In the above figures, we illustrate the bright solution solutions as you are shown in Figure 5, and
the singular soliton solutions in Figure 6, to the NDSEs.
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4. Conclusions

We developed a modern straightforward approach for designing precise solutions to nonlinear
physics and engineering issues. Expanding (W/G) to nonlinear PDEs creates algebraic methods, for
instance. We used this framework to address different forms of wave movement solutions, including
optical solutions, a single wave solution, and wave sole solutions. We also used the suggested
approaches of physics and technology as a significant issue, such as (1 + 1), the Ito integrated
differential equation, and the Schrodinger non-linear, higher-order dispersion equation. This method
is generalized to many other methods, such as the (G′/G)-expansion method, the tanh function method,
and the Riccati expansion method, when the parameters are taken some special chosen. This method
can be used to study many nonlinear physical problems in Quantum mechanics and Fluid mechanics.
This way, questions that are more complicated will be addressed. We generated a diagram to display
the form of wave solutions available.
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