
mathematics

Article

Developing a New Robust Swarm-Based Algorithm
for Robot Analysis

Abubakar Umar 1 , Zhanqun Shi 1,*, Alhadi Khlil 1 and Zulfiqar I. B. Farouk 2

1 School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China;
201541201002@stu.hebut.edu.cn (A.U.); 201740000010@stu.hebut.edu.cn (A.K.)

2 School of Mechanical engineering, Tianjin University, Tianjin 300350, China; zulfiqarbibifarouk@yahoo.co.uk
* Correspondence: z_shi@hebut.edu.cn; Tel.: +86-2260438217

Received: 1 November 2019; Accepted: 2 January 2020; Published: 22 January 2020
����������
�������

Abstract: Metaheuristics are incapable of analyzing robot problems without being enhanced, modified,
or hybridized. Enhanced metaheuristics reported in other works of literature are problem-specific and
often not suitable for analyzing other robot configurations. The parameters of standard particle swarm
optimization (SPSO) were shown to be incapable of resolving robot optimization problems. A novel
algorithm for robot kinematic analysis with enhanced parameters is hereby presented. The algorithm
is capable of analyzing all the known robot configurations. This was achieved by studying the
convergence behavior of PSO under various robot configurations, with a view of determining new
PSO parameters for robot analysis and a suitable adaptive technique for parameter identification.
Most of the parameters tested stagnated in the vicinity of strong local minimizers. A few parameters
escaped stagnation but were incapable of finding the global minimum solution, this is undesirable
because accuracy is an important criterion for robot analysis and control. The algorithm was trained
to identify stagnating solutions. The algorithm proposed herein was found to compete favorably
with other algorithms reported in the literature. There is a great potential of further expanding the
findings herein for dynamic parameter identification.

Keywords: PSO; robot; manipulator; analysis; kinematic parameters; identification

1. Introduction

The quest for developing improved techniques for parameter identification of industrial robots has
resulted in the novel concept of a mutating particle swarm optimization (MuPSO) based algorithm for
analyzing multi-degree of freedom robot manipulators which was briefly introduced in [1], the research
sought to employ artificial intelligence, particularly population-based Evolutionary Algorithms (EA),
and computational methods for solving kinematic and dynamic problems of industrial manipulators.
A robot manipulator is an electro-mechanical device that depicts the upper human limb. It was
originally used in industrial workspaces to carry out tasks that were deemed boring, repetitive, highly
monotonous, or dangerous, and therefore not suitable for human labor. Recent applications of robot
manipulators include aeronautics and medicine, where the tolerance is very tight and human errors
could be fatal. A robot manipulator comprises of solid non-moveable links connected by joints which
allow either rotational or translational motion between successive links.

The increasing demand for robot manipulators has required that the manipulators become
more autonomous and therefore increased accuracy and stability. The kinematic problems of robot
manipulators were traditionally computed using analytical techniques which sometimes required
finding the derivative of computationally expensive functions. These problems were found to
sometimes possess multiple solutions or even no solution at all. Recently, swarm-based techniques
have been studied which promises improved computational efficiency.

Mathematics 2020, 8, 158; doi:10.3390/math8020158 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-9447-0059
http://dx.doi.org/10.3390/math8020158
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/2/158?type=check_update&version=2

Mathematics 2020, 8, 158 2 of 30

1.1. Swarm Intelligence

Evolutionary computation algorithms (EA) are stochastic optimization methods which have
proven suitable for solving complex structured optimization and combinatory problems typical of
robot analysis. They are biologically inspired population-based techniques that have relatively simple
structures which are robust and computationally efficient. A variety of these algorithms have been
developed over the years but based on simple implementation and the ability to readily combine with
other algorithms, the PSO algorithm stands out. PSO was initially introduced by [2], despite being
amongst the earliest EA algorithms, PSO remains relevant as it is still being improved, enhanced, and
modified for solving real-world optimization problems.

In additive manufacturing (3D printing), constructing over-hanging features can only be achieved
by introducing some support structures beneath the overhang which can be removed afterward to get
the desired shape, [3] used a hybrid variation of PSO with greedy algorithm to reduce the volume of
the support structure thereby save printing time, material and minimize budget. The recent hype in
groundbreaking fifth-generation (5G) wireless communication technology presents the need to improve
the quality of service with massive multiple-input multiple-output (MIMO) antenna arrays, [4] used a
contraction adaptive PSO to optimize the design and positions of antenna array elements. Inspired
by the success achieved by the proportional integral derivative (PID) controller in automation and
its vast industrial applications [5–7] attempted using PID techniques to improve the performance of
PSO. Reference [8] proposed the novel PID based strategy PSO (PBSPSO) algorithm based on the PID
controller which was found to improve convergence while reducing stagnation of the PSO algorithm.
A new variant of PSO with cross-over operation (PSOCO) was introduced by [9] which improved
divergent search abilities of the PSO while avoiding stagnation by implementing a new learning
model for the particles’ velocity formula and two cross-over operations, while [10] used PSO and
multi-objective PSO to develop a two-stage auto-tuning technique for PID controllers. Automation
of logistics, maintenance/support, storage, and others have led to rapid improvements in the vehicle
routing problem (VRP) algorithm. The pick-up and delivery problem (PDP) is an extension of the VRP
which collects goods from suppliers or pick-up points and conveys them to the delivery points, [11]
introduced a novel pick-up and delivery problem with transfers (PDPT) algorithm using a hybrid PSO
and local search algorithm to minimize distance and maximize profit. A PSO variant based on random
perturbation (RP-PSO) was used to identify the parameters of a model pressurized water reactor
nuclear power plant in [12]. The estimation of distribution algorithm (EDA) framework has been
demonstrated in [13] to have high performance despite little memory requirements, it was combined
with PSO in [14] and was used to estimate and preserve the distribution information of particles’
historical memories (personal best positions) to help the algorithm break out of local minimum
solutions. The particle swarm estimation of distribution algorithms (PSDA) was also implemented
in [15] for optimal-driven-projection of automated medical diagnosis and prognosis. Medical diagnosis
is a key process in clinical medicine for identifying diseases, reducing cost, and enhancing accuracy.
Enhanced algorithms were also exploited in [16–18] for diagnosis. Still, in medical sciences, minimally
invasive surgery is a cost-effective alternative to open surgery where specialized instruments are used
to operate by inserting them into several tiny punctures instead of one large incision. Reference [19]
combined PSO with a back-propagation neural network (BPNN) algorithm to optimize the target
position of the medical puncture robot.

1.2. Particle Swarm Optimization

The PSO consists of population members known as particles. Each particle refers to a bird in a
flock, fish in a swarm, or in this case a possible solution to an optimization problem. The algorithm is
initiated by populating it with n random particles, each particle has m dimensions, for the sake of robot
analysis, the dimensions would be regarded as the degree of freedom (DOF). The position and velocity
vectors of the ith particle can be defined as Xi and Vi in Equations (1) and (2) below. The position
and velocity of every particle in the swarm is updated according to Equations (3) and (4) through

Mathematics 2020, 8, 158 3 of 30

every iteration, the first part of the Equation (3) is the previous velocity which describes the particles
previous experience, the second part of the equation is the cognitive component which describes
the particles personal experience while the third part of the equation is the social component which
describes the entire swarms best experience. The inertia weight w is a learning coefficient associated
with the previous velocity, while c1 and c2 are learning coefficients associated with the cognitive and
social components respectively. The fitness function is a mathematical representation of the real-world
problem to be analyzed, it evaluates how well the particles adapt to the actual solution of the problem.
The leader of the swarm (fittest particle) is the particle that best adapts to the solution as it is updated
through every iteration. The algorithm keeps a record of the solution of the fittest particle and also
that of the best position achieved by each particle. The personal best position ever achieved by ith
particle and global best position of the swarm is defined as PiBest and GiBest in Equations (5) and (6).
The particles in the swarm would be seen to consistently move towards the solution of the problem
through every iteration by updating the particle’s position, Equation (4), towards these two best
memories (PiBest and GiBest).

Xi = (xi1, xi2, . . . , xim), (1)

Vi = (vi1, vi2, . . . , vim), (2)

Vi(t + 1) = w · r ·Vi(t) + c1 · r1(PiBest(t)) −Xi(t) + c2 · r2(GiBest(t) −Xi(t)), (3)

Xi(t + 1) = Xi(t) + Vi(t + 1), (4)

PiBest = (piBest, piBest, . . . , piBest), (5)

GiBest = (giBest, giBest, . . . , giBest), (6)

where rj is a randomly generated number between [0, 1] and j ε [0, 1, 2]. PSO has a high convergence
speed which is very desirable for robot applications, but this convergence speed sometimes results in
stagnation which is a major limitation of the PSO algorithm. The characteristic of the PSO algorithm
that allows it to define promising regions in search space is referred to as exploration while exploitation
allows it to refine solutions within the defined promising region. These are the major characteristics of
any PSO algorithm, a good algorithm balances these properties to find the best solution to a problem
while avoiding stagnation. The contributions of [20] showed that these properties can be tuned by
carefully selecting the value of w of the PSO algorithm. The concept of constriction coefficient was
introduced, setting the inertia weight at 0.712 while the cognitive and social coefficient were both
1.494. This version of the PSO has come to be known today as the standard PSO (SPSO). The biological
background of SPSO is believed to have evolved from the bird-like objects or BOIDS introduced by [21]
to simulate flocking birds or animals in virtual reality studios. The BOIDS was governed by three basic
rules; separation, alignment, and cohesion. The SPSO ignored the alignment and cohesion rules to
reduce computational cost and increase convergence speed. Reference [22] proposed re-incorporating
these rules reduces the convergence speed which is advantageous in pushing the algorithm out of
stagnation. The effects of topologies on PSO were studied in [23], the SPSO has a star topology, where
every individual is connected to other individuals such that information or direction of search is
communicated and implemented throughout the swarm. Observing that this topology allows too
much communication between the swarm particles and may be responsible for the quick convergence
and stagnation of the SPSO, Reference [24] investigated the circle, wheel, and random topologies which
isolate the individual particles of the swarm at different degrees so that information is communicated to
the swarm by the focal individual or short-cuts between the isolated groups thereby causing a buffering
effect which reduces the convergence speed of the swarm and improves search results. In [25], it was
shown that the success of individual particles is not as a result of only the particle with the best fitness
but by the influence of the entire swarm to a certain degree. An algorithm was presented that allowed
every particle to have a weighted influence on other particles, based on their fitness such that particles
with higher fitness exerted more influence. References [26,27] proposed the combination of SPSO with

Mathematics 2020, 8, 158 4 of 30

other computational search methods like conjugate gradient and steepest descent respectively. These
variations of PSO also aimed at slowing down the convergence speed by allowing the algorithm to
stop and search for promising regions in the local space, while [28] successfully merged PSO with ABC
for nonlinear statistical analysis.

Swarms are best suited for analyzing static search spaces with one global solution (unimodal).
In reality, most robot analysis problems contain more than one local solution (multimodal) and the search
space is sometimes dynamic, therefore maintaining diversity is crucial for the performance of PSO.
Various strains of PSO involving sub-swarms have been developed for this purpose, PSO was combined
with expanding neighborhood topology in [29] to solve the permutation flow-shop scheduling problem.
The algorithm is initiated with sub-swarms of small size neighborhoods, slowly expanding through
every iteration, absorbing other particles, taking advantage of both the global and local neighborhood
structures to increase the performance of the PSO algorithm. Competitive strategy was used in [30]
to manage convergence, while entropy measurement was employed to maintain the diversity of the
swarm. In [31], an adaptive multi-swarm competition PSO was proposed where the swarm is adaptively
divided into sub-swarms and a competition mechanism is used to maintain diversity in the swarms.
The sub-swarms slowly converge, adaptively reducing the number of swarms while balancing between
exploration and exploitation tendencies. Other algorithms that employed sub-swarms include [32–35].
Although multi-swarm based algorithms were found to be efficient for solving multimodal problems,
these algorithms have very high computational cost [33]. The new trends of adaptive SPSO where
the inertia weight and acceleration components are altered during the search process is capable of
improving exploration and exploitation tendencies with less computational cost [36]. In [37–40] the
parameters of the adaptive PSO were dependent on the quality of the solution and tailored to the
specific problem, the parameters were updated by comparing the values of the best particles (PiBest
and GiBest). This technique was found favorable in analyzing both static and dynamic search spaces
without incurring too much computational cost.

1.3. PSO and Robot Parameter Identification

Over the years, the use of PSO for robot parameter identification has been researched, a comparison
between the linear least squares (LLS) method and the PSO was presented in [41] for the dynamic
parameter identifications of a 3DOF Staubli RX-60 robot manipulator, where the PSO was found to
produce better results. Reference [42] combined the linear simplification of the LLS and the non-linear
optimization of the PSO for online and offline parameter identification of space robots. Space robots
encounter changes in their kinematic parameters while running in the orbit. The non-linear model is
first used for parameter identification in the offline mode while the LLS is used for online identification
in the follow-up mission knowing that the parameters would not change much. These works and other
similar research works exhibit the superiority of intelligent swarm-based techniques over traditional
methods. A hybridized genetic algorithm and PSO (GAPSO) was implemented by [43] for parameter
identification of a SCARA robot, [44] also implemented a hybridized BPNN and PSO for determining
the kinematic parameters of a 6DOF robot manipulator, while [45] investigated the performance of
seven PSO variants in solving the inverse kinematics of 2DOF robots. In [46,47], a combination of PSO
and simulated annealing (SA) was used to optimize the geometric structure of non-redundant 6DOF
manipulators. In [48] the Elitist Learning Strategy PSO (ELS-PSO) for dynamic parameter analysis of a
3DOF Staubli RX-60 robot manipulator. The Quantum-Behaved PSO (QPSO) was implemented for
parameter identification of a puma 560 robot by [49] in two steps by first optimizing the individual
joint parameters so that the identified values are close to the theoretical values, then all the joint
parameters are further optimized simultaneously around the previously converged values. During the
course of this research, it was observed that the solution for robot kinematic parameter identification
problem did not converge under the basic parameters of the PSO especially when there were more
than three degrees of freedom, and most published works implementing the PSO for robot parameter
identification either used lower DOF robots or the algorithms were enhanced, modified and hybridized

Mathematics 2020, 8, 158 5 of 30

usually for specific robot manipulators, these algorithms are often not applicable for other robot
configurations. Therefore, the concept of a novel Mutating PSO (MuPSO) algorithm was conceived for
analyzing robot kinematics. To the best of our knowledge, there has not been any research tailored at
determining the best range of PSO parameters to develop an algorithm for robot analysis, therefore
this work aims to develop a new PSO variant capable of analyzing all robot configurations and least
likely to fall into stagnation. This was achieved by first studying the behavior of PSO under various
robot configurations and determining a new range of parameters for robot kinematic analysis, then
a suitable adaptive technique was investigated and finally, the mutation function was implemented.
A total of 54 different PSO parameters were tested on 6 robot manipulators. The rest of this paper is
organized as follows; Section 2 presents the kinematic model of the robot configurations to be studied
and the fitness function for the algorithm was formulated. Experiments studying the behavior of
these robot configurations under various parameters were conducted in Section 3, the new adaptive
strategy is presented in Section 4, comparing it with other variations of PSO. The results are presented
in Section 5, the Mutation function was introduced in Section 6 and in Section 7 conclusions were
drawn, while Section 8 presents the future thrust.

2. Kinematic Model of Robots

To determine a new set of parameters for robot analysis, the effect of four popular robot
configurations was studied under various parameters. The robot configurations include the Articulate,
Stanford, SCARA, and Dual-Arm robot configurations. These robot configurations were implemented
on six different robot manipulators; the articulate configuration was implemented on a 3DOF robot
manipulator because it is regarded as the most complex spatial robot configuration. The articulate
robot configuration was also implemented on two different 6DOF robot manipulators of different sizes
to study the effect of size on the PSO parameters.

2.1. Robot Configurations

Industrial manipulators usually have 6DOF as this gives the manipulator optimum dexterity,
allowing it to complete most tasks in an industrial workspace. A robot with less than 6DOF is deficient,
as it is easier to analyze and control but it cannot reach all the possible positions and orientations
in its workspace. A redundant robot possesses more than 6DOF, they are more flexible, capable of
maneuvering behind obstacles but more expensive to analyze and control. The SCARA manipulator
is an example of a deficient robot manipulator, articulate manipulators are usually 6DOF while the
dual-arm robot is a redundant manipulator (usually greater than 6DOF). It would be keen to note that
the presence of a prismatic joint in any robot configuration simplifies the analysis while complicating
the solution, it requires less computation but, like redundant configurations, there is a possibility of
having numerous or even infinite solutions to every problem. The joints and end-effector of robots are
always oriented along the z-axis of the coordinate frame.

• Scara Robot Configuration: The Selective Compliance Assembly Robot (SCARA) is one of the
earliest industrial manipulators patented in 1981, it is usually a 4- or 5-DOF manipulator with
all revolute joint, except one. In this analysis, a 4DOF SCARA manipulator shall be analyzed.
The first joint of the manipulator being the prismatic joint, the other joints are revolute, parallel
to each other and pointing along the direction of gravity. The SCARA manipulator is shown in
Figure 1a and the DH-parameters are tabulated in Table 1.

• Articulate Robot Configuration: The articulate manipulator is the most popular robot
configurations used in industrial workspaces, its analysis and solutions are trivial, therefore a
very high accuracy can be achieved. All the joints of the articulated robot are revolute with the
first joint pointing along the direction of gravity.

The second third and fifth joints are parallel to each other and perpendicular to the first joint
axis. The fourth and sixth joints are coincident and perpendicular to all the other joints. Three

Mathematics 2020, 8, 158 6 of 30

articulated manipulators were used in this analysis, one 3DOF articulated manipulator and two
6DOF articulated manipulators with significantly different sizes. The 3DOF articulate manipulator
is configured exactly like the first three joints of the 6DOF articulate manipulator previously
described. Figure 1b shows the 3DOF while Figure 2a shows the 6DOF robot configurations, their
D-H parameters are tabulated in Tables 3–5.

• Stanford Robot Configuration: The Stanford manipulator is also a 6DOF manipulator with five
revolute joints and one prismatic joint. It is configured very much like the articulate arm except
that the third arm is prismatic. The Stanford manipulator is shown in Figure 2b with its detailed
D-H parameters defined in Table 2.

• Dual-Arm Robot Configuration: The dual-arm robot is the most dexterous of the manipulators
with a total of 17DOF which are all revolute. It is configured such that the first joint at the ‘base’ of
the structure is pointing along the direction of gravity. The third joint is parallel to the first joint
and coincident with the fourth joint. The fifth, seventh, and ninth joints are also coincident with
the third joint.

Mathematics 2019, 7, x FOR PEER REVIEW 6 of 33

The second third and fifth joints are parallel to each other and perpendicular to the first joint

axis. The fourth and sixth joints are coincident and perpendicular to all the other joints. Three

articulated manipulators were used in this analysis, one 3DOF articulated manipulator and two

6DOF articulated manipulators with significantly different sizes. The 3DOF articulate

manipulator is configured exactly like the first three joints of the 6DOF articulate manipulator

previously described. Figure 1b shows the 3DOF while Figure 2a shows the 6DOF robot

configurations, their D-H parameters are tabulated in Tables 2–4.

 Stanford Robot Configuration: The Stanford manipulator is also a 6DOF manipulator with five

revolute joints and one prismatic joint. It is configured very much like the articulate arm except

that the third arm is prismatic. The Stanford manipulator is shown in Figure 2b with its detailed

D-H parameters defined in Table 5.

 Dual-Arm Robot Configuration: The dual-arm robot is the most dexterous of the manipulators

with a total of 17DOF which are all revolute. It is configured such that the first joint at the ‘base’

of the structure is pointing along the direction of gravity. The third joint is parallel to the first

joint and coincident with the fourth joint. The fifth, seventh, and ninth joints are also coincident

with the third joint.

(a)

(b)

Figure 1. (a) 4DOF SCARA arm. (b) 3DOF Articulate arm.

Table 1. D-H Parameters for 4DOF SCARA arm.

Joint Link Off-Set Joint Displacement 1 Off-Set Displacement 2

1 0 Variable (0–300) 0 0

2 350 0 Variable (−pi/2–pi/2) 0

3 350 0 Variable (−pi/2–pi/2) 0

4 0 200 Variable (−pi/2–pi/2) 0

For all DH parameters; 1 joint displacement is Theta, 2 off-set displacement of joint is Alfa, see

Equations (7) and (8).

Table 2. D-H Parameters for 3DOF articulate arm.

Joint Link Off-Set Joint Displacement Off-Set Displacement

1 70 200 Variable (−pi/2–pi/2) −pi/2

2 150 0 Variable (−pi/2–pi/2) 0

3 150 0 Variable (−pi/2–pi/2) 0

Figure 1. (a) 4DOF SCARA arm. (b) 3DOF Articulate arm.

Table 1. D-H Parameters for 4DOF SCARA arm.

Joint Link Off-Set Joint Displacement 1 Off-Set Displacement 2

1 0 Variable (0–300) 0 0
2 350 0 Variable (−pi/2–pi/2) 0
3 350 0 Variable (−pi/2–pi/2) 0
4 0 200 Variable (−pi/2–pi/2) 0

For all DH parameters; 1 joint displacement is Theta, 2 off-set displacement of joint is Alfa, see Equations (7) and (8).

Table 2. D-H parameters for 6DOF Stanford arm.

Joint Link Off-Set Joint Displacement Off-Set Displacement

1 154 412 Variable (−pi/2–pi/2) −pi/2
2 0 0 Variable (−pi/2–pi/2) 0
3 0 Variable (50–154) −pi/2 −pi/2
4 0 0 Variable (−pi/2–pi/2) pi/2
5 0 0 Variable (−pi/2–pi/2) −pi/2
6 0 263 Variable (−pi/2–pi/2) 0

Mathematics 2020, 8, 158 7 of 30

Table 3. D-H Parameters for 3DOF articulate arm.

Joint Link Off-Set Joint Displacement Off-Set Displacement

1 70 200 Variable (−pi/2–pi/2) −pi/2
2 150 0 Variable (−pi/2–pi/2) 0
3 150 0 Variable (−pi/2–pi/2) 0

Table 4. D-H Parameters for 6DOF articulate arm.

Joint Link Off-Set Joint Displacement Off-Set Displacement

1 64.5 170 Variable (−pi/2–pi/2) −pi/2
2 305 0 Variable (−pi/2–pi/2) 0
3 0 0 Variable (−pi/2–pi/2) pi/2
4 0 −220 Variable (−pi/2–pi/2) −pi/2
5 0 0 Variable (−pi/2–pi/2) pi/2
6 0 −36 Variable (−pi/2–pi/2) 0

Table 5. D-H parameters for large 6DOF articulate arm

Joint Link Off-Set Joint Displacement Off-Set Displacement

1 300 320 Variable (−pi/2–pi/2) −pi/2
2 700 0 Variable (−pi/2–pi/2) 0
3 0 0 Variable (−pi/2–pi/2) −pi/2
4 0 697.5 Variable (−pi/2–pi/2) pi/2
5 0 0 Variable (−pi/2–pi/2) −pi/2
6 0 127.5 Variable (−pi/2–pi/2) 0

Mathematics 2019, 7, x FOR PEER REVIEW 7 of 33

Table 3. D-H Parameters for 6DOF articulate arm.

Joint Link Off-Set Joint Displacement Off-Set Displacement

1 64.5 170 Variable (−pi/2–pi/2) −pi/2

2 305 0 Variable (−pi/2–pi/2) 0

3 0 0 Variable (−pi/2–pi/2) pi/2

4 0 −220 Variable (−pi/2–pi/2) −pi/2

5 0 0 Variable (−pi/2–pi/2) pi/2

6 0 −36 Variable (−pi/2–pi/2) 0

(a)

(b)

Figure 2. (a) 6DOF articulate arm. (b) 6DOF Stanford arm.

Table 4. D-H parameters for large 6DOF articulate arm

Joint Link Off-Set Joint Displacement Off-Set Displacement

1 300 320 Variable (−pi/2–pi/2) −pi/2

2 700 0 Variable (−pi/2–pi/2) 0

3 0 0 Variable (−pi/2–pi/2) −pi/2

4 0 697.5 Variable (−pi/2–pi/2) pi/2

5 0 0 Variable (−pi/2–pi/2) −pi/2

6 0 127.5 Variable (−pi/2–pi/2) 0

Table 5. D-H parameters for 6DOF Stanford arm.

Joint Link Off-Set Joint Displacement Off-Set Displacement

1 154 412 Variable (−pi/2–pi/2) −pi/2

2 0 0 Variable (−pi/2–pi/2) 0

3 0
Variable

(50–154)
−pi/2 −pi/2

4 0 0 Variable (−pi/2–pi/2) pi/2

5 0 0 Variable (−pi/2–pi/2) −pi/2

6 0 263 Variable (−pi/2–pi/2) 0

Figure 2. (a) 6DOF articulate arm. (b) 6DOF Stanford arm.

The fourth, sixth, and eight joints are parallel to each other and perpendicular to the first joint
while the second joint is perpendicular to all the other joints. Figure 3 illustrates the dual-arm robot
manipulator while Table 6 shows the D-H parameters of the robot.

Mathematics 2020, 8, 158 8 of 30

Mathematics 2019, 7, x FOR PEER REVIEW 8 of 33

The fourth, sixth, and eight joints are parallel to each other and perpendicular to the first joint

while the second joint is perpendicular to all the other joints. Figure 3 illustrates the dual-arm robot

manipulator while Table 6 shows the D-H parameters of the robot.

Figure 3. 17DOF dual-arm.

Table 6. D-H parameters for 17DOF dual-arm.

Joint Link Off-Set Joint Displacement Off-Set Displacement

1 0 400 th1 pi/2

2 0 200 Variable (−pi/2–pi/2) (a) pi/2

 −200 Variable (−pi/2–pi/2) (b) −pi/2

3 0 0 pi/2) (a) 0

 0 −pi/2) (b) 0

4 0 0 Variable (−pi/2–pi/2) (a) −pi/2

 0 Variable (−pi/2–pi/2) (b) pi/2

5 0 150 Variable (−pi/2–pi/2) (a) pi/2

 −150 Variable (−pi/2–pi/2) (b) −pi/2

6 0 0 Variable (−pi/2–pi/2) (a) −pi/2

 0 Variable (−pi/2–pi/2) (b) pi/2

7 0 150 Variable (−pi/2–pi/2) (a) pi/2

 −150 Variable (−pi/2–pi/2) (b) −pi/2

8 0 0 Variable (−pi/2–pi/2) (a) −pi/2

 0 Variable (−pi/2–pi/2) (b) pi/2

9 0 150 Variable (−pi/2–pi/2) (a) 0

 −150 Variable (−pi/2–pi/2) (b) 0

2.2. Fitness Function

The homogeneous matrix of each successive pair of frames can be obtained using the formula in

(7) below from the D-H parameters. the transformation matrix T for the robot manipulator's end effector

is a product of post multiplication as shown in the formula in (8).






























1000

coscossincossinsin

sinsincoscoscossin

0sincos

1111

1111

1

kkkkkkk

kkkkkkk

kkk

k

k
d

d

a

T






, (7)

Figure 3. 17DOF dual-arm.

Table 6. D-H parameters for 17DOF dual-arm.

Joint Link Off-Set Joint Displacement Off-Set Displacement

1 0 400 th1 pi/2

2 0 200 Variable (−pi/2–pi/2) (a) pi/2
−200 Variable (−pi/2–pi/2) (b) −pi/2

3 0 0 pi/2) (a) 0
0 −pi/2) (b) 0

4 0 0 Variable (−pi/2–pi/2) (a) −pi/2
0 Variable (−pi/2–pi/2) (b) pi/2

5 0 150 Variable (−pi/2–pi/2) (a) pi/2
−150 Variable (−pi/2–pi/2) (b) −pi/2

6 0 0 Variable (−pi/2–pi/2) (a) −pi/2
0 Variable (−pi/2–pi/2) (b) pi/2

7 0 150 Variable (−pi/2–pi/2) (a) pi/2
−150 Variable (−pi/2–pi/2) (b) −pi/2

8 0 0 Variable (−pi/2–pi/2) (a) −pi/2
0 Variable (−pi/2–pi/2) (b) pi/2

9 0 150 Variable (−pi/2–pi/2) (a) 0
−150 Variable (−pi/2–pi/2) (b) 0

2.2. Fitness Function

The homogeneous matrix of each successive pair of frames can be obtained using the formula
in (7) below from the D-H parameters. the transformation matrix T for the robot manipulator’s end
effector is a product of post multiplication as shown in the formula in (8).

Tk
k−1 =


cosθk − sinθk 0 ak

sinθk cosαk−1 cosθk cosαk−1 − sinαk−1 −dk sinαk−1
sinθk sinαk−1 cosθk sinαk−1 cosαk−1 dk cosαk−1

0 0 0 1

, (7)

Tdo f
0 =


t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

0 0 0 1

 = T1
0T2

1 · · ·T
do f
do f−1, (8)

Mathematics 2020, 8, 158 9 of 30

A =


−0.5161 0.2261 0.8262 349.5064
0.7185 0.6394 0.2739 1419.7
−0.4663 0.7349 −0.4924 −516.5116

0 0 0 1

, (9)

fi j = ti j − ai j, (10)

Fitness =
n = 3∑

i

m = 4∑
j

(fi j − E), (11)

If the actual values of T read from sensors attached to the robot’s end-effector is given in A, then
the fitness function (Fitness) would be as described in Equations (10) and (11). Where k ε [1, 2, . . . , dof],
subscripts i, j ε [1, 2, . . . ,4] and E = 1 × 10−8. Most robots are usually fitted with encoders, gyroscopes,
and current controllers which can measure joint position, end-effector orientation, and actuator currents
(torque) respectively. There are a variety of sensors that can also be mounted manually on robots.

3. Determining New PSO Parameters

An experiment aimed at studying the behavior of all popular robot configurations on different
PSO parameters was performed to identify the best values of w and c that balances out exploration and
exploitation tendencies while ensuring convergence of results and also to determine the solutions with
the best computational efficiency. The initial value of w (wi) was set to 0.7, increasing with an interval of
0.4 to a final value (wf) at 1.5, such that w = 0.7:0.4:1.5. The initial value of c (ci) was set at 1.5, increasing
with an interval of 0.3 to a final value (cf) at 3.9, such that c = 1.5:0.3:3.9 as elaborated in Figure 4.
Then the experiment was repeated for c = 1.4:0.6:2.6 and w = 0.6:0.3:3.0. The 6 robot configurations were
tested with 54 sets of PSO parameters in 30 generations and 2000 iterations. The mutation function was
not implemented in this experiment, the results were tabulated and the performance of the PSO plotted.
In Table 7, the average and standard deviation of the best solutions after thirty runs and the solution
that best minimizes the problem were presented, the average number of iterations required to find
the best solution for each of the six robot manipulators was also presented at w = 0.7. Tables 8 and 9
present a similar set of results for w at 1.1 and 1.5, respectively. To ease comparison and visualization
of the results, a summary is presented in Table 10 showing the averages of normalized values obtained
in Tables 7–9 while Figure 5a–f shows a pictorial plot of the performance of PSO for each of the robot
manipulators. Similarly, Tables 11–14 and Figure 6a–f present the results and plots for the seco−nd
experiment. The minimum solution for each robot manipulator problem was reported in this analysis
because the average solutions (after 30 runs) usually reported in other works of literature does not
completely capture the results obtained from the experiment especially in the SCARA, Stanford and
dual-arm configurations where there is a possibility of multiple solutions to every problem. It can
be shown that the average best solution alone is not enough to make a good comparison between
the different scenarios. If the minimum solution presented in the tables represent the probability for
the given parameters to find the minimum solution whereas the average best solution represents the
probability for the solution to run into stagnation, then it can be shown that some parameters with
very competitive average solutions are not capable of finding the minimum (global best) solution.

Mathematics 2020, 8, 158 10 of 30

Mathematics 2019, 7, x FOR PEER REVIEW 10 of 33

run into stagnation, then it can be shown that some parameters with very competitive average

solutions are not capable of finding the minimum (global best) solution.

Figure 4. Flowchart of parameter selection experiment for the proposed PSO variant elaborating the

end conditions and mutation criterion.

While some other parameters with very poor average best solutions are capable of finding the

minimum solution. For example, the results for the SCARA robot configuration in Table 11 shows

that when c is 1.4 and w is between 2.4–2.7 the average best solution dominates the results obtained

when w was between 1.2–1.5, yet the solution of the former cannot find the global minimum solution,

and many more instances can be sited. Accuracy is very important in robot analysis, therefore the

best solution should be able to find the global minimum solution always, followed by the solution

that can find the global minimum at least once. Algorithms that may produce competitive averages

yet incapable of locating the global minimum are regarded as poor solutions. Therefore, the

minimum solution achieved by every pair of parameters was reported in the tables as the minimum

solution. The aggregate performance of the PSO presented in Table 10, and Table 14 is an average of

the normalized values obtained in the experiments such that the variables with higher normalized

Figure 4. Flowchart of parameter selection experiment for the proposed PSO variant elaborating the
end conditions and mutation criterion.

Mathematics 2020, 8, 158 11 of 30

Table 7. Performance of PSO when w = 0.7.

Robot Configuration
PSO Parameters

@ w = 0.7

c = 1.5 c = 1.8 c = 2.1 c = 2.4 c = 2.7 c = 3.0 c = 3.3 c = 3.6 c = 3.9

3DOF Articulate
Robot Arm

Average (Std) 1.1999 (0.996) 0.66662 (0.958) 0.99993 (1.017) 0.99993 (1.017) 0.8666 (1.008) 1.0666 (1.015) 0.99993 (1.017) 0.79994 (0.996) 0.8666 (1.008)
Minimum 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9

Iteration 74.8 74.1 74.333 74.4 75.233 75.867 77.133 78.4 81.333

4DOF SCARA Robot
Arm

Average (Std) 2.1333 (2.029) 1.7333 (2.016) 1.4667 (1.960) 2.1333 (2.029) 2.1333 (2.029) 2.2667 (2.016) 2.2667 (2.016) 1.7333 (2.02) 1.3333 (1.918)
Minimum 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10

Iteration 78.967 78.067 78.467 79.233 79.5 81.233 82.733 85.433 87.267

6DOF Stanford
Robot Arm

Average (Std) 2.4859 (2.145) 1.2563 (0.992) 1.2951 (1.049) 0.85651 (1.123) 0.28667 (0.751) 0.18892 (0.590) 0.10886 (0.509) 0.08696 (0.388) 0.015589 (0.0401)
Minimum 4.67 × 10−4 3.21 × 10−2 1.05 × 10−4 4.31 × 10−7 1.68 × 10−6 1.32 × 10−6 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9

Iteration 533.4 508.3 554.1 511.8 417.4 601.4 567.6 651.57 643.47

6DOF Articulate
Robot Arm (small)

Average (Std) 3.7837 (1.759) 1.5927 (1.237) 1.1403 (0.633) 0.80981 (0.506) 0.59953 (0.780) 0.24822 (0.412) 0.27092 (0.457) 0.17026 (0.385) 0.31949 (0.596)
Minimum 1.11 × 100 3.48 × 10−1 9.21 × 10−2 8.27 × 10−2 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9

Iteration 261.87 235.43 265.87 260.93 296.7 214.53 166.63 170.67 157.63

6DOF Articulate
Robot Arm (big)

Average (Std) 3.4266 (1.732) 2.9774 (1.649) 1.5511 (0.902) 1.3035 (1.180) 0.86441 (1.095) 0.43759 (0.784) 0.30934 (0.458) 0.35057 (0.680) 0.35187 (0.456)
Minimum 6.53 × 10−1 7.02 × 10−1 5.70 × 10−2 7.09 × 10−2 6.98 × 10−4 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9

Iteration 244.33 230.5 285.63 343.43 416.5 375.47 327.27 323.77 377.8

17DOF Dual-Arm
Robot Arm

Average (Std) 2.873 (2.307) 1.7774 (1.672) 0.71947 (0.803) 0.51867 (0.569) 0.25626 (0.425) 0.13317 (0.388) 0.14343 (0.469) 0.14844 (0.678) 0.13608 (0.419)
Minimum 2.35 × 10−2 1.81 × 10−2 3.90 × 10−3 1.99 × 10−4 4.43 × 10−5 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9

Iteration 326.07 378.17 364.87 390.77 451.3 437.33 447.07 457.43 468.83

Table 8. Performance of PSO when w = 1.1

Robot Configuration
PSO Parameters

@ w = 1.1

c = 1.5 c = 1.8 c = 2.1 c = 2.4 c = 2.7 c = 3.0 c = 3.3 c = 3.6 c = 3.9

3DOF Articulate
Robot Arm

Average (Std) 1.0666 (1.015) 1.1999 (0.996) 0.79994 (0.996) 0.99993 (1.017) 0.66662 (0.959) 1.3332 (0.959) 1.2666 (0.980) 1.1333 (1.008) 1.0666 (1.015)
Minimum 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9

Iteration 81.6 81.7 81.267 82.267 83.9 85.733 87.667 91.1 96.533

4DOF SCARA Robot
Arm

Average (Std) 2 (2.034) 2.2667 (2.016) 1.7333 (2.016) 2.1333 (2.03) 2.2667 (2.016) 1.8667 (2.03) 2.2667 (2.016) 2 (2.034) 2.2667 (2.016)
Minimum 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10

Iteration 88.667 87.7 88.633 90.133 91.6 93.367 97.767 101.97 106

6DOF Stanford
Robot Arm

Average (Std) 0.75869 (1.099) 0.71229 (1.079) 0.37784 (1.009) 0.27387 (0.758) 0.28313 (0.852) 0.02518 (0.059) 0.53394 (1.008) 0.19628 (0.561) 0.17413 (0.519)
Minimum 7.02 × 10−5 1.06 × 10−5 4.14 × 10−6 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9

Iteration 661.17 637.47 581.6 590.93 548.53 648.57 585.13 648.67 810.17

6DOF Articulate
Robot Arm (small)

Average (Std) 1.3059 (1.047) 0.71658 (0.695) 0.27506 (0.580) 0.46958 (0.945) 0.22999 (0.387) 0.32675 (0.611) 0.30032 (0.452) 0.46418 (0.779) 0.22069 (0.412)
Minimum 9.23 × 10−3 3.23 × 10−3 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9

Iteration 375.67 385.77 367.23 193.1 186.47 162.57 178.2 190.97 246.33

6DOF Articulate
Robot Arm (big)

Average (Std) 1.5539 (1.113) 0.82201 (0.625) 0.46599 (0.473) 0.30729 (0.433) 0.52439 (1.167) 0.49672 (0.635) 0.33982 (0.588) 0.48452 (0.488) 0.70028 (1.07)
Minimum 6.30 × 10−2 2.71 × 10−2 3.28 × 10−7 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9

Iteration 341.5 532.1 553.77 405.8 311.9 293.23 352.83 315.17 483.03

17DOF Dual-Arm
Robot Arm

Average (Std) 0.4248 (0.48) 0.09798 (0.131) 0.14656 (0.316) 0.11974 (0.248) 875.8 (4796.4) 0.068428 (0.151) 723.89 (3964.6) 0.18718 (0.324) 0.12041 (0.269)
Minimum 5.31 × 10−3 3.60 × 10−4 5.10 × 10−5 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9

Iteration 501.6 562.43 483.93 444.2 432 422.9 422.1 440 611.93

Mathematics 2020, 8, 158 12 of 30

Table 9. Performance of PSO when w = 1.5.

Robot Configuration
PSO Parameters

@ w = 1.5

c = 1.5 c = 1.8 c = 2.1 c = 2.4 c = 2.7 c = 3.0 c = 3.3 c = 3.6 c = 3.9

3DOF Articulate
Robot Arm

Average (Std) 0.8666 (1.008) 0.9999 (1.017) 0.9333 (1.015) 1.0666 (1.015) 0.7999 (0.996) 1.3999 (0.932) 1.0666 (1.015) 0.7333 (0.980) 1.1999 (0.996)
Minimum 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9

Iteration 93.633 94.333 95.1 97.6 101.53 104.93 111.3 119.9 130.03

4DOF SCARA Robot
Arm

Average (Std) 2.4 (1.993) 1.8667 (2.03) 2.1333 (2.03) 2 (2.034) 2.2667 (2.016) 2.5333 (1.960) 1.6 (1.993) 1.7333 (2.016) 2 (2.034)
Minimum 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10

Iteration 103.9 103.9 105.03 110.07 113.53 117 126.2 139.67 156.7

6DOF Stanford
Robot Arm

Average (Std) 0.0169 (0.048) 0.1762 (0.58) 0.0927 (0.387) 0.0793 (0.382) 0.2655 (0.69) 0.1456 (0.462) 0.1750 (0.603) 0.2623 (0.748) 0.0996 (0.241)
Minimum 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 5.86 × 10−9 6.77 × 10−9 6.72 × 10−7

Iteration 784.03 764.1 728.07 689.4 664.9 839.4 1143.2 1273.1 1667.7

6DOF Articulate
Robot Arm (small)

Average (Std) 0.4613 (0.735) 0.2363 (0.411) 0.3917 (0.629) 0.27185 (0.456) 0.7003 (0.841) 0.29195 (0.6) 0.38275 (0.474) 0.24172 (0.434) 0.42294 (0.499)
Minimum 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.90 × 10−9

Iteration 235.23 236.67 208.27 213.37 208.53 251.27 331.77 377.17 558.5

6DOF Articulate
Robot Arm (big)

Average (Std) 0.3755 (0.616) 0.3122 (0.429) 0.2982 (0.602) 0.54127 (0.736) 0.24539 (0.422) 0.33632 (0.472) 0.33908 (0.666) 0.54117 (0.492) 0.60112 (0.79)
Minimum 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.56 × 10−9 6.22 × 10−9

Iteration 490.57 434.43 405.5 375.57 438.6 509.8 695.57 935.57 1374.1

17DOF Dual-Arm
Robot Arm

Average (Std) 0.03969 (0.091) 0.1555 (0.349) 0.58298 (1.275) 0.12749 (0.280) 0.24011 (0.726) 0.25313 (0.850) 0.089832 (0.219) 0.31591 (0.629) 0.27926 (0.494)
Minimum 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.84 × 10−9 4.09 × 10−9

Iteration 566.6 419.9 412.63 538.6 571.17 587.53 911.87 945.53 1338

Table 10. Aggregate of performance for PSO for different values of inertia weight (w).

Robot Configuration
PSO Parameters

c = 1.5 c = 1.8 c = 2.1 c = 2.4 c = 2.7 c = 3.0 c = 3.3 c = 3.6 c = 3.9

3DOF Articulate
Robot Arm

w = 0.7 0.02513 0.14763 0.06318 0.06297 0.09043 0.04511 0.05457 0.09739 0.07168
w = 1.1 0.08921 0.06846 0.14458 0.09944 0.17200 0.04226 0.04449 0.05379 0.05053
w = 1.5 0.16746 0.14006 0.15103 0.12242 0.16699 0.06913 0.09608 0.14758 0.04076

4DOF SCARA Robot
Arm

w = 0.7 0.03849 0.08687 0.12197 0.03773 0.03696 0.01897 0.01468 0.06577 0.11672
w = 1.1 0.07029 0.04539 0.10203 0.05269 0.03619 0.07446 0.02166 0.0389 0.00224
w = 1.5 0.10249 0.15062 0.12251 0.12707 0.09746 0.07244 0.14586 0.10839 0.05263

6DOF Stanford
Robot Arm

w = 0.7 0.29170 0.31301 0.53404 0.58656 0.72349 0.68145 0.71189 0.69607 0.74687
w = 1.1 0.04599 0.28527 0.45162 0.55492 0.54350 0.77809 0.41407 0.60752 0.57449
w = 1.5 0.84829 0.52364 0.67211 0.69225 0.41774 0.58066 0.46007 0.30967 0.32558

6DOF Articulate
Robot Arm

(small)

w = 0.7 0.02935 0.44219 0.58987 0.63601 0.59946 0.74424 0.77674 0.79026 0.76129
w = 1.1 0.00654 0.35941 0.57088 0.55936 0.74264 0.68628 0.71899 0.60129 0.69970
w = 1.5 0.26829 0.44414 0.33662 0.42852 0.16347 0.36172 0.33072 0.37207 0.20066

6DOF Articulate
Robot Arm

(big)

w = 0.7 0.12076 0.15641 0.56486 0.50314 0.52856 0.62945 0.71490 0.68191 0.68178
w = 1.1 0.10744 0.38614 0.57372 0.67457 0.52483 0.65161 0.65997 0.67519 0.44003
w = 1.5 0.33744 0.43315 0.38945 0.25154 0.46242 0.39587 0.29945 0.22558 0

17DOF Dual-Arm
Robot Arm

w = 0.7 0.07612 0.26993 0.61418 0.68276 0.69043 0.71311 0.69829 0.66969 0.69280
w = 1.1 0.54493 0.75326 0.79984 0.81848 0.32351 0.82719 0.41427 0.82017 0.74995
w = 1.5 0.62593 0.55313 0.18953 0.55625 0.41449 0.38161 0.51477 0.33042 0.28333

Mathematics 2020, 8, 158 13 of 30

Table 11. Performance of PSO when c = 1.4.

Robot Configuration
PSO Parameters

@ c = 1.4

w = 0.6 w = 0.9 w = 1.2 w = 1.5 w = 1.8 w = 2.1 w = 2.4 w = 2.7 w = 3.0

3DOF Articulate
Robot Arm

Average (Std) 0.73328 (0.980) 0.79994 (0.996) 0.66662 (0.959) 1.2666 (0.980) 0.73328 (0.980) 0.93327 (1.015) 0.99994 (1.017) 0.73819 (0.978) 1.0239 (1.018)
Minimum 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 1.31 × 10−8 3.26 × 10−5 7.19 × 10−4

Iteration 74.3 78.033 83.933 93.667 111.1 163.37 232.83 194.1 148.43

4DOF SCARA Robot
Arm

Average (Std) 1.8667 (2.03) 1.7333 (2.016) 2.2667 (2.016) 2.2667 (2.016) 2 (2.034) 1.7333 (2.016) 2.1337 (2.03) 2.0962 (2.004) 3.1436 (2.001)
Minimum 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.75 × 10−10 1.55 × 10−6 1.79 × 10−3 1.40 × 10−2

Iteration 79.5 83.367 91 105.17 130.5 206.57 308.47 187.27 157.93

6DOF Stanford
Robot Arm

Average (Std) 2.5438 (1.583) 1.2003 (0.786) 0.52798 (0.625) 0.097716 (0.141) 0.35949 (0.813) 0.32893 (0.483) 0.77691 (0.806) 1.7795 (1.523) 2.3766 (1.732)
Minimum 1.51 × 10−1 9.36 × 10−2 3.03 × 10−4 5.80 × 10−9 5.91 × 10−9 3.63 × 10−7 4.73 × 10−2 3.86 × 10−3 5.43 × 10−2

Iteration 262.63 306.27 642.43 435.93 499.73 1470.9 1207.9 310.93 248.13

6DOF Articulate
Robot Arm (small)

Average (Std) 4.6704 (1.794) 2.1154 (1.661) 0.82515 (0.557) 0.22069 (0.412) 0.4114 (1.166) 0.51296 (0.829) 1.2454 (1.115) 4.4305 (2.404) 4.6366 (1.966)
Minimum 1.21 × 10−1 3.65 × 10−1 1.47 × 10−3 2.83 × 10−9 2.83 × 10−9 2.99 × 10−9 2.33 × 10−2 4.50 × 10−1 1.44 × 100

Iteration 235.63 275.37 484.83 287.63 285.87 966.1 958.5 195.5 149.53

6DOF Articulate
Robot Arm (big)

Average (Std) 4.1872 (1.933) 3.1769 (1.566) 1.2053 (0.941) 0.33989 (0.610) 0.44367 (0.68) 0.68313 (1.127) 4.4449 (2.091) 4.6878 (2.046) 5.856 (2.395)
Minimum 1.64 × 10−1 2.00 × 10−1 2.27 × 10−2 5.53 × 10−9 5.53 × 10−9 8.06 × 10−8 2.35 × 10−1 1.87 × 100 1.89 × 100

Iteration 215.27 302.93 744.57 518.87 555.8 1648.6 316.07 177.73 153.57

17DOF Dual-Arm
Robot Arm

Average (Std) 3.498 (2.36) 1.446 (1.482) 0.57004 (1.077) 0.32323 (1.048) 0.1926 (0.663) 0.31277 (0.748) 1.253 (1.894) 3.564 (2.658) 3.7033 (2.702)
Minimum 3.11 × 10−1 9.79 × 10−2 1.88 × 10−4 3.82 × 10−9 3.82 × 10−9 3.76 × 10−8 4.11 × 10−3 1.56 × 10−1 6.29 × 10−2

Iteration 372.1 390.1 749.33 641.27 717.17 1487.3 840.23 222.47 167.8

Table 12. Performance of PSO when c = 2.0.

Robot Configuration
PSO Parameters

@ c = 2.0

w = 0.6 w = 0.9 w = 1.2 w = 1.5 w = 1.8 w = 2.1 w = 2.4 w = 2.7 w = 3.0

3DOF Articulate
Robot Arm

Average (Std) 1.2666 (0.980) 1.0666 (1.015) 0.79994 (0.996) 1.1333 (1.008) 1.2666 (0.980) 1.1333 (1.008) 1.0668 (1.015) 0.87109 (1.009) 1.2906 (0.996)
Minimum 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.14 × 10−9 4.64 × 10−6 3.20 × 10−4 2.23 × 10−4

Iteration 72.2 77.133 83.2 94.767 116.83 188.97 234.67 177.8 160.8

4DOF SCARA Robot
Arm

Average (Std) 2.5333 (1.960) 1.6 (1.993) 1.4667 (1.960) 1.4667 (1.960) 1.3333 (1.918) 2.1333 (2.03) 1.7349 (2.017) 2.3599 (2.030) 2.766 (2.038)
Minimum 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 1.09 × 10−9 3.84 × 10−7 3.16 × 10−3 2.99 × 10−2

Iteration 76.533 82.733 91.7 105.2 135.63 241.73 241.67 168.1 172

6DOF Stanford
Robot Arm

Average (Std) 1.3284 (1.109) 0.81005 (0.726) 0.21514 (0.525) 0.14129 (0.178) 0.18694 (0.239) 0.35786 (0.465) 1.0369 (0.939) 3.3027 (8.697) 2.3353 (1.637)
Minimum 1.11 × 10−4 2.88 × 10−4 6.62 × 10−7 5.80 × 10−9 2.84 × 10−8 4.72 × 10−7 5.75 × 10−2 3.22 × 10−1 2.23 × 10−1

Iteration 262.17 343.6 482.7 407.93 686.8 1528.3 922.13 433.7 230.27

6DOF Articulate
Robot Arm (small)

Average (Std) 1.8589 (1.261) 0.77962 (0.727) 0.47691 (0.630) 0.29102 (0.703) 0.42741 (0.633) 0.37187 (0.476) 2.0606 (1.968) 4.4253 (1.984) 4.2691 (1.984)
Minimum 3.62 × 10−1 4.90 × 10−2 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 4.88 × 10−9 3.23 × 10−2 2.99 × 10−1 6.28 × 10−1

Iteration 274.63 288.7 248.77 224.4 302.47 1291.5 698.8 222.47 170.67

6DOF Articulate
Robot Arm (big)

Average (Std) 2.791 (1.543) 1.018 (0.532) 0.41474 (0.622) 0.34059 (0.61) 0.36141 (0.621) 1.1712 (1.458) 3.9099 (2.242) 4.9021 (2.015) 5.8541 (2.339)
Minimum 7.32 × 10−1 1.39 × 10−2 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 3.10 × 10−2 5.18 × 10−1 1.41 × 100 1.28 × 100

Iteration 217.1 339.4 518.1 430.33 600.13 1428.2 293.03 185 157.67

17DOF Dual-Arm
Robot Arm

Average (Std) 725.92 (3965.7) 0.56706 (0.482) 0.12174 (0.205) 0.10393 (0.219) 0.1511 (0.329) 0.28911 (0.646) 0.84244 (1.004) 3.791 (2.441) 3.6224 (2.501)
Minimum 1.03 × 10−1 2.38 × 10−3 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 2.09 × 10−4 7.55 × 10−3 5.07 × 10−1 9.86 × 10−2

Iteration 343.93 426.93 486.23 500.5 787.8 1574.7 676.1 205.9 172.47

Mathematics 2020, 8, 158 14 of 30

Table 13. Performance of PSO when c = 2.6.

Robot Configuration
PSO Parameters

@ c = 2.6

w = 0.6 w = 0.9 w = 1.2 w = 1.5 w = 1.8 w = 2.1 w = 2.4 w = 2.7 w = 3.0

3DOF Articulate
Robot Arm

Average (Std) 1.1333 (1.008) 0.66662 (0.959) 0.93327 (1.015) 0.93327 (1.015) 0.8666 (1.008) 0.9333 (1.015) 1.0005 (1.017) 0.9414 (1.012) 0.74984 (0.980)
Minimum 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.48 × 10−9 8.80 × 10−7 1.47 × 10−3 7.17 × 10−7

Iteration 72.833 79.533 86.8 99.633 132.5 240.2 178.6 139.67 126.83

4DOF SCARA Robot
Arm

Average (Std) 2.6667 (1.918) 1.4667 (1.960) 2.2667 (2.016) 2.2667 (2.016) 2.4 (1.993) 1.8667 (2.03) 1.8716 (2.03) 2.3128 (2.103) 2.5558 (1.99)
Minimum 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.75 × 10−10 9.97 × 10−10 4.60 × 10−6 1.37 × 10−4 9.94 × 10−3

Iteration 77.867 84.367 93.467 110.87 149.87 276.57 225.33 153.43 158.63

6DOF Stanford
Robot Arm

Average (Std) 0.4103 (0.361) 0.1916 (0.253) 0.1814 (0.25) 0.1011 (0.164) 0.3338 (0.887) 0.5239 (0.755) 1.2597 (0.836) 2.2256 (2.137) 2.3583 (1.831)
Minimum 5.62 × 10−5 2.36 × 10−8 5.80 × 10−9 5.80 × 10−9 4.34 × 10−6 1.70 × 10−2 7.80 × 10−2 1.55 × 10−1 7.98 × 10−2

Iteration 263.4 394.53 381.87 493.23 1202.9 1434.6 672.2 388.73 202.37

6DOF Articulate
Robot Arm (small)

Average (Std) 0.5845 (0.664) 0.39707 (0.609) 0.39503 (1.16) 0.23352 (0.413) 0.56577 (0.935) 0.66547 (0.888) 2.8483 (2.109) 4.8635 (2.095) 4.2852 (2.107)
Minimum 7.65 × 10−3 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 1.02 × 10−3 2.51 × 10−1 3.28 × 10−1 1.27 × 100

Iteration 321.03 240.93 174.77 233.2 407.57 1274.5 379.97 186.7 162.97

6DOF Articulate
Robot Arm (big)

Average (Std) 1.4178 (1.265) 0.42641 (0.437) 0.38365 (0.686) 0.41372 (0.678) 0.41043 (1.08) 1.603 (1.249) 4.4837 (2.419) 5.165 (1.76) 6.3959 (2.660)
Minimum 2.18 × 10−2 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.55 × 10−9 3.18 × 10−1 4.05 × 10−1 1.42 × 100 1.22 × 100

Iteration 233.9 473.1 344.93 443.6 1276.8 1122 225.47 181.97 139.43

17DOF Dual-Arm
Robot Arm

Average (Std) 0.2944 (0.450) 0.0372 (0.081) 0.0088 (0.035) 875.85 (4796.4) 0.2173 (0.630) 0.6797 (1.129) 1449.2 (5508.9) 3.3124 (2.753) 3.3555 (2.487)
Minimum 6.63 × 10−4 1.06 × 10−6 3.82 × 10−9 3.82 × 10−9 4.53 × 10−9 1.33 × 10−3 1.55 × 10−2 1.05 × 10−1 1.86 × 10−1

Iteration 335.73 496.2 504.8 536.53 1252.9 1246.7 434.8 209.63 162.83

Table 14. Aggregate of Performance for PSO for Different Values of Learning coefficient (c).

Robot Configuration
PSO Parameters

w = 0.6 w = 0.9 w = 1.2 w = 1.5 w = 1.8 w = 2.1 w = 2.4 w = 2.7 w = 3.0

3DOF Articulate
Robot Arm

c = 1.4 0.5347464 0.513582 0.542799 0.4086851 0.4952326 0.3911338 0.3028495 0.3943838 0.138528
c = 2.0 0.436254 0.461214 0.5109207 0.4312077 0.3887085 0.3308507 0.28977 0.1432765 0.158528
c = 2.6 0.4264314 0.53446 0.454324 0.4409674 0.4231626 0.2946653 0.3432588 0.1481972 0.461408

4DOF SCARA Robot
Arm

c = 1.4 0.5376697 0.546828 0.4982226 0.4867385 0.4851827 0.4469782 0.3308146 0.4031722 0.126061
c = 2.0 0.4513523 0.525295 0.5320692 0.5181073 0.5039198 0.308167 0.3458049 0.3372666 0.072116
c = 2.6 0.4515854 0.553144 0.46332 0.4475889 0.4025616 0.3336784 0.3793495 0.3910511 0.130394

6DOF Stanford
Robot Arm

c = 1.4 0.226814 0.561708 0.7481638 0.8958934 0.7622983 0.6479014 0.5237504 0.5460761 0.384375
c = 2.0 0.8245952 0.861384 0.889674 0.9174587 0.866636 0.7095383 0.6990268 0.1790552 0.565292
c = 2.6 0.8682516 0.881334 0.8852368 0.8841414 0.6511562 0.5787048 0.525432 0.1963255 0.371534

6DOF Articulate
Robot Arm

(small)

c = 1.4 0.4815013 0.579652 0.77219 0.8708856 0.7827311 0.6363195 0.565344 0.3842927 0.258683
c = 2.0 0.5388443 0.788992 0.8455001 0.8515363 0.8375048 0.6689601 0.4875258 0.3378529 0.225812
c = 2.6 0.8267822 0.860148 0.8079613 0.8933018 0.7801186 0.6103401 0.4797442 0.400593 0.248079

6DOF Articulate
Robot Arm

(big)

c = 1.4 0.5651641 0.628611 0.7344366 0.8431123 0.8258427 0.6031733 0.5129578 0.3123379 0.226712
c = 2.0 0.548103 0.837771 0.8250971 0.8449657 0.8131663 0.5386513 0.4502542 0.2929035 0.245574
c = 2.6 0.7761238 0.849648 0.8529644 0.8332735 0.6324973 0.5443506 0.4819496 0.3473131 0.257056

17DOF Dual-Arm
Robot Arm

c = 1.4 0.233272 0.621082 0.7357603 0.7733828 0.8050895 0.6597047 0.5956085 0.3511421 0.421283
c = 2.0 0.394751 0.93082 0.9227511 0.9204908 0.8748558 0.7497568 0.8885874 0.7158518 0.922621
c = 2.6 0.9320448 0.900978 0.8992706 0.5241844 0.7499339 0.7492772 0.3923669 0.8158875 0.716818

Mathematics 2020, 8, 158 15 of 30

Mathematics 2019, 7, x FOR PEER REVIEW 11 of 33

values have better performance, also a penalty was introduced when solving the average of

normalized values, where binary probability distribution was used to replace the normalized

minimum solution such that the solutions capable of finding the global minimum solution were

assigned the value 1 while other undesirable results were assigned the value 0.

P
er

fo
rm

an
ce

 R
an

k

Figure 5. Performance of PSO for different values of w (a) 3DOF articulate, (b) 4DOF SCARA, (c) 6DOF

Stanford, (d) small 6DOF articulate, (e) big 6DOF articulate, (f) 17DOF dual-arm.

0

0.2

(a)

Performance Plot of PSO Parmeters for Different Values Of Inertia Weight

0

0.2

(b)

0

1

(c)

0

1

(d)

0

1

(e)

0

0.5

1

1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9

(f)

Correction Factor
w=0.7 w=1.1 w=1.5

Figure 5. Performance of PSO for different values of w (a) 3DOF articulate, (b) 4DOF SCARA, (c) 6DOF
Stanford, (d) small 6DOF articulate, (e) big 6DOF articulate, (f) 17DOF dual-arm.

Mathematics 2020, 8, 158 16 of 30Mathematics 2019, 7, x FOR PEER REVIEW 12 of 33

P
er

fo
rm

an
ce

 R
an

k

Figure 6. Performance of PSO for Different Values of c for (a) 3DOF Articulate (b) 4DOF SCARA (c)

6DOF Stanford (d) 6DOF Articulate (e) Larger 6DOF Articulate (f) 17DOF Dual-Arm.

0

0.2

0.4

0.6

(a)

Performance Plot of PSO Parmeters for Different values of Learning

Coefficient (c)

0

0.2

0.4

0.6

(b)

0

0.5

1

(c)

0

0.5

1

(d)

0

0.5

1

(e)

0

0.5

1

0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

(f)

Inertia Weight

c=1.4 c=2.0 c=2.6

Figure 6. Performance of PSO for Different Values of c for (a) 3DOF Articulate (b) 4DOF SCARA (c)
6DOF Stanford (d) 6DOF Articulate (e) Larger 6DOF Articulate (f) 17DOF Dual-Arm.

While some other parameters with very poor average best solutions are capable of finding the
minimum solution. For example, the results for the SCARA robot configuration in Table 11 shows that
when c is 1.4 and w is between 2.4–2.7 the average best solution dominates the results obtained when
w was between 1.2–1.5, yet the solution of the former cannot find the global minimum solution, and

Mathematics 2020, 8, 158 17 of 30

many more instances can be sited. Accuracy is very important in robot analysis, therefore the best
solution should be able to find the global minimum solution always, followed by the solution that
can find the global minimum at least once. Algorithms that may produce competitive averages yet
incapable of locating the global minimum are regarded as poor solutions. Therefore, the minimum
solution achieved by every pair of parameters was reported in the tables as the minimum solution.
The aggregate performance of the PSO presented in Table 10, and Table 14 is an average of the
normalized values obtained in the experiments such that the variables with higher normalized values
have better performance, also a penalty was introduced when solving the average of normalized
values, where binary probability distribution was used to replace the normalized minimum solution
such that the solutions capable of finding the global minimum solution were assigned the value 1
while other undesirable results were assigned the value 0.

3.1. Observations

For the 3DOF Articulate robot configuration in Table 10, a random-like fluctuation in the
performance of the PSO can be observed. When w was at 0.7 the best result was achieved at c = 1.8,
it can also be observed that when w was increased to 1.1 the best results occurred at around c = 2.7
then when w was further increased to 1.5 the best result occurred at c = 1.5. However, Figure 5a shows
that the performance of the PSO increases with increasing w and decreasing learning coefficient (c).

The performance of the PSO is somewhat stable when c was between 1.8–2.4 and w at 1.5 was
found to be dominant. On the other hand, it can be seen from the Table 14 that the best result obtained
for the PSO was when w was 1.2 and c was 1.4, then when c was increased to 2.6 the best result was
observed at w = 0.9 which suggests that an improved result was achieved with an increasing c and a
decreasing w. Figure 6a shows that the performance of the PSO algorithm deteriorates with increasing
c. From Table 14 and Figure 6a, it can also be observed that the algorithm was stable when w was
between 0.6 and 1.2 with c = 1.4 being dominant.

From Table 7, that when w = 0.7 and c < 2.7, the PSO algorithm was incapable of finding the global
minimum solution for the higher DOF robots, likewise in Table 12 when c = 2.0 and w < 1.2. These
observations confirm that the standard PSO (SPSO) is only capable of analyzing robot manipulator
configurations with lower degrees of freedom. Because the dominant solutions are within the range of
the SPSO, but as the DOF increases, the dominant solutions would be seen to deviate from the range of
the SPSO.

In the 4DOF SCARA robot configuration, it can be observed from Table 10 that when w was equal
to 0.7, the best result was obtained at c = 2.1 when w was increased and c decreased, the performance
of the PSO was seen to increases as made evident in Figure 5b. The algorithm can be seen to be stable
when c is between 1.8–2.4 and w at 1.5 dominating other solutions. Likewise, from Table 14 and
Figure 6b, although it can be observed that the algorithm was stable when w was between 0.6–1.8 the
best solution was recorded when w was between 0.9–1.2. In the initial stages when w was small c = 1.4
was dominant, but as w increased, c = 2.0 became the dominant solution.

From Table 10 it would be observed that the best result obtained for a 6DOF Stanford robot
occurred when w = 0.7 and c = 3.9. When w was increased to 1.5 the best result was obtained with a
decreasing c at 1.5. From Figure 5c the performance of the algorithm can also be observed to deteriorate
with increasing w. the algorithm was stable when c was between 1.8–3.6 with w = 1.5 being the
dominant solution when c was small, then w = 0.7 becomes dominant when c increases beyond 2.4.
In Table 14 when c = 1.4 the best result for the 6DOF Stanford manipulator was obtained at w = 1.5,
this value decreases slightly with an increase in c such that at c = 2.6 the best result occurred at w = 1.2.
The algorithm was found stable between w = 0.6–1.5 and the solutions of c = 2.0 and c = 2.6 can be seen
to compete for dominance. The dominant solution would lay be between c = 2.0−2.6.

The trend of decreasing inertia weight (w) and increasing learning coefficient (c) is observed to
continue for the 6DOF Articulate manipulator configurations (both small and big) it can be seen from
Table 10 that the best results were obtained at c = 3.6 when w was 0.7 for both configurations, this

Mathematics 2020, 8, 158 18 of 30

value reduced to c = 1.8 and c = 2.7 for the small and big manipulators respectively while w increased
to 1.5. From Figure 5d,e, it can be observed that the algorithm remains stable when c was between
2.7–3.9 for both configurations with w = 0.7 being the dominant solution. It can also be observed from
both plots that the performance of the algorithm also deteriorated with increasing w. An even stronger
correlation is observed from Table 14 where the best results occurred at w = 1.5 for all values of c
with a slightly decreasing w observed in the larger Articulated robot configuration. From Figure 6d,e,
it would be seen that the algorithm is stable when w was between 0.9–1.8 and the dominant solution of
c lies between 2.0–2.6. It would, therefore, be safe to deduce that the size of the robot manipulator has
little effect on the PSO solution, therefore any PSO algorithm that can analyze a given configuration is
most likely able to analyze the different varieties of sizes within the same configuration.

From Table 8 when w = 1.1 at c = 2.3 and c = 3.3, fluctuating results were recorded in the dual-arm
configuration which is believed to be a result of stagnation in the algorithm.

Similar results were recorded in Table 13 when c = 2.6 at w = 1.5 and w = 2.4, and also in Table 12
when c = 2.0 at w = 0.6. Otherwise, in Table 10 the best results were obtained at c = 3.0 for w = 0.7 and
c = 1.5 when w increased to 1.5. the best result occurred with a decreased value of c at 1.5. Figure 5f
shows the performance of the algorithm deteriorates with an increasing w. although the algorithm
remained consistent for almost all values of c, a sharp deterioration can be observed when c was 1.5–2.1.
w = 0.7 is the dominant solution.

In Table 14 the best results were obtained when c = 1.4 at w = 1.8, the best results were further
observed to occur at a decreased w and increased c such that when c = 2.0 the best result was obtained
at w = 0.9 and when c = 2.6, the best result was obtained at w = 0.6 which also supports the theory of
decreasing w with an increasing c. From Figure 6f, the performance was stable when w was between
0.9–2.1 with c = 2.0 being the dominant solution.

3.2. Deductions

The performance of the PSO algorithm was seen to improve with a decreasing inertia weight
(w) and an increasing learning coefficient (c) in all the robot manipulator configuration except in the
3DOF Articulate manipulator. Fortunately, our analysis is more concerned with higher DOF robot
manipulators, therefore techniques for decreasing w and increasing c shall be investigated. From the
observations above for all robot manipulator configurations, the optimal w was 0.6–2.1 while c was
1.8–3.9. These best values were plotted and a fitted curve generated which shall be used to determine a
suitable adaptive technique in the next section.

4. Adaptive Computation Technique

In robot analysis, the multi-swarm variations of the PSO are best suited for trajectory analysis
especially in mobile robots where the robot would be required to track or follow a moving target.
Kinematic/dynamic analysis of industrial robots generally have static search spaces, so this solution is
not suitable considering the increased computational cost. Although the variation of the adaptive PSO
which is dependent on the best solution (PBest or GBest) seems most promising as demonstrated in [45]
but this requires knowledge of the established range of values for w and c that ensures exploitation
and exploration. It was previously observed that the robot optimization problem does not converge
under the conditions of basic parameters for most known EA. Therefore, this research was aimed at
establishing a new set of parameters that ensure convergence. As such, the time-dependent variation
of the Adaptive PSO shall be implemented for this analysis. Several time-varying algorithms have
been reported in theory. A few of which shall be implemented in the foregoing experiment, a total of
13 distinct PSO algorithms shall be used for the experiment.

Mathematics 2020, 8, 158 19 of 30

• PSO1: The linear decreasing inertia weight was reported in [40] where inertia weight (w) decreases
linearly from 0.9 to 0.4, the governing equation for updating the w is

witer = wmax −
wmin −wmax

tmax
× titer, (12)

citer = 2.05, (13)

where wmax and wmin are values of the initial and final inertia weight, tmax is the maximum number
of iterations while titer is the current iteration.

• PSO2–3: A non-linear decreasing inertia weight was also reported in [50] with w decreasing
linearly from 0.9 to 0.4. The governing equation for updating the inertia weight is

witer =
(tmax − titer)

n

tn
max

× (winitial −w f inal) + w f inal, (14)

Observe that when n = 1, the inertia weight would be linearly decreasing as shown in Figure 7a,
where n is a constant ranging from 0.9 to 1.3, the value n = 1.2 was reported as the recommended
value for n in [50] but n = 3 was found to be more suitable for robot analysis. Therefore,
the results for the two values n = 1.2 and n = 3.0 shall be presented in this experiment as PSO2 and
PSO3, respectively.

• PSO4: A novel non-linear decreasing w and non-linear increasing c is hereby proposed.
The parameters recorded for the best performance of PSO from the previous experiment were
plotted and a fitted curve generated as shown in Figure 8. The non-linear technique presented
in (15)–(17) exploits the experimental range of values for w and c, where n and m are problem
dependent variables.

witer = winitial × niter, (15)

c1 = 2.24, (16)

c2 =
cinitial

miter , (17)

If the maximum number of iterations is 3000, then the values of the coefficients n and m can be
easily determined. The parameter w in PSO4 shall be updated according on Equation (15) while c1
and c2 are updated according to Equation (16), where the learning coefficients are not adaptive
therefore a reduced computation cost can be achieved, while the parameters in PSO11 shall be
updated according to Equations (15)–(17) as originally proposed.

• PSO5–6: The concept of multi-stage decreasing inertia weight was introduced in [51], where w was
decreased linearly from 0.9 to 0.4 in three distinct stages. The inertia weight first decreases from the
initial value to a predetermined value wm where it remains constant for a while before decreasing
further to the final value. As shown in Figure 7b, five different scenarios were presented, and the
governing equation for updating the value of the inertia weight in each of the scenarios is given in
Equations (18)–(22)

t1 =
[

1
5 tmax, 2

5 tmax, 1
5 tmax, 2

5 tmax, 1
5 tmax, 2

5 tmax
]
, (18)

t2 =
[

4
5 tmax, 3

5 tmax, 4
5 tmax, 3

5 tmax, 4
5 tmax, 3

5 tmax
]
, (19)

wn =
[

4(wmax−wmin)
5 + wmin, 2.5(wmax−wmin)

5 + wmin, (wmax−wmin)
5 + wmin

]
, (20)

wm =
[

wn(1) wn(1) wn(2) wn(2) wn(3) wn(3)
]
, (21)

Mathematics 2020, 8, 158 20 of 30

w(i) =


(ws −wm)(t1(i) − t)/t1(i) + wm(i) 0 ≤ t ≤ t1

wm(i) t1 C t ≤ t2

(wm(i) −we)(tmax − t)/(tmax − t2(i)) + we t2 C t ≤ tmax

, (22)

The parameter for MLDIW5 was recommended in [51] for inertia weight but the parameters of
MLDIW3 were found to be more suitable for the robot analysis. The results for the two values
MLDIW5 and MLDIW3 shall also be presented as PSO4 and PSO5 respectively.

• PSO7: All the aforementioned algorithms exploited only the inertia weight, leaving the learning
factor constantly at 2.05. In [52] and [36], a linear decreasing and linear increasing inertia weights
were proposed respectively, both with decreasing cognitive component and increasing social
component, thereby these techniques exploited both the inertia weight and learning coefficients.
The technique reported in [52] shall be utilized in this experiment as it incorporates a linear
decreasing inertia weight which is in line with our objectives and its parameters are updated
according to Equation (12) above while the cognitive and social components shall be updated as

ccognitive =
(
cinitial − c f inal

) titer
tmax

+ c f inal, (23)

csocial =
(
c f inal − cinitial

) titer
tmax

+ cinitial, (24)

The inertia weight of PSO8–13 shall be updated according to the equations for PSO1–6 respectively,
while the learning coefficients shall be updated according to Equations (16) and (17). For the sake
of fair comparison, the adaptive values of w for all the aforementioned techniques shall decrease
from the initial value of 2.1 to a final value of 0.6, the cognitive component remains at 2.24 while
the social component is nonlinearly increasing from 1.8 to 3.9.

Mathematics 2019, 7, x FOR PEER REVIEW 24 of 33

The technique reported in [52] shall be utilized in this experiment as it incorporates a linear

decreasing inertia weight which is in line with our objectives and its parameters are updated

according to Equation (12) above while the cognitive and social components shall be updated as

  final
iter

finalinitialcognitive c
t

t
ccc 

max

, (23)

  initial
iter

initialfinalsocial c
t

t
ccc 

max

, (24)

The inertia weight of PSO8–13 shall be updated according to the equations for PSO1–6 respectively,

while the learning coefficients shall be updated according to Equations (16) and (17). For the

sake of fair comparison, the adaptive values of w for all the aforementioned techniques shall

decrease from the initial value of 2.1 to a final value of 0.6, the cognitive component remains at

2.24 while the social component is nonlinearly increasing from 1.8 to 3.9.

(a)

(b)

Figure 7. (a) Plot showing the rate of change of inertia weight at different values of n (b)

plot showing various techniques for multi-staged decreasing inertia weights.

Figure 8. Fitted curve of PSO parameters.

0

0.5

1

1.5

2

2.5

1

2
3
2

4
6
3

6
9
4

9
2
5

1
1
5
6

1
3
8
7

1
6
1
8

1
8
4
9

2
0
8
0

2
3
1
1

2
5
4
2

2
7
7
3

In
er

ti
a

W
ei

g
h

t

Iterations

Non-Linear Decreasing

Inertia Weight Title

n=0.9 n=1.2 n=3.0

0

0.5

1

1.5

2

2.5

1

2
0
1

4
0
1

6
0
1

8
0
1

1
0
0
1

1
2
0
1

1
4
0
1

1
6
0
1

1
8
0
1

2
0
0
1

2
2
0
1

2
4
0
1

2
6
0
1

2
8
0
1

In
er

ti
a

W
ei

g
h

t

Iterations

Multi-Stage Linear Decreasing

Inertia Weight

MLDIW_1 MLDIW_2

Figure 7. (a) Plot showing the rate of change of inertia weight at different values of n (b) plot showing
various techniques for multi-staged decreasing inertia weights.

Mathematics 2020, 8, 158 21 of 30

Mathematics 2019, 7, x FOR PEER REVIEW 24 of 33

The technique reported in [52] shall be utilized in this experiment as it incorporates a linear

decreasing inertia weight which is in line with our objectives and its parameters are updated

according to Equation (12) above while the cognitive and social components shall be updated as

  final
iter

finalinitialcognitive c
t

t
ccc 

max

, (23)

  initial
iter

initialfinalsocial c
t

t
ccc 

max

, (24)

The inertia weight of PSO8–13 shall be updated according to the equations for PSO1–6 respectively,

while the learning coefficients shall be updated according to Equations (16) and (17). For the

sake of fair comparison, the adaptive values of w for all the aforementioned techniques shall

decrease from the initial value of 2.1 to a final value of 0.6, the cognitive component remains at

2.24 while the social component is nonlinearly increasing from 1.8 to 3.9.

(a)

(b)

Figure 7. (a) Plot showing the rate of change of inertia weight at different values of n (b)

plot showing various techniques for multi-staged decreasing inertia weights.

Figure 8. Fitted curve of PSO parameters.

0

0.5

1

1.5

2

2.5

1

2
3
2

4
6
3

6
9
4

9
2
5

1
1
5
6

1
3
8
7

1
6
1
8

1
8
4
9

2
0
8
0

2
3
1
1

2
5
4
2

2
7
7
3

In
er

ti
a

W
ei

g
h

t

Iterations

Non-Linear Decreasing

Inertia Weight Title

n=0.9 n=1.2 n=3.0

0

0.5

1

1.5

2

2.5

1

2
0
1

4
0
1

6
0
1

8
0
1

1
0
0
1

1
2
0
1

1
4
0
1

1
6
0
1

1
8
0
1

2
0
0
1

2
2
0
1

2
4
0
1

2
6
0
1

2
8
0
1

In
er

ti
a

W
ei

g
h

t

Iterations

Multi-Stage Linear Decreasing

Inertia Weight

MLDIW_1 MLDIW_2

Figure 8. Fitted curve of PSO parameters.

5. Results

For this experiment, the swarm size was again maintained at 200, a total of 13 adaptive PSO
techniques were tested on all six robot manipulators with the maximum number of iterations for
each run set at 3000 and a total of 30 runs each. As earlier presented in previous tables, the solution
that best minimizes the problem (global minimum) was presented in Table 15 for every pair of robot
configuration and PSO technique, the average and standard deviation of the best solution after 30 runs
and the average number of iterations required to find the best solution are also presented. These values
were normalized, summed, averaged, then ranked (sorted) such that the solution with the least rank
possesses the best performance. The ranking of all tested PSO algorithms is presented in Table 16.
The first column of Table 16 presents the PSO techniques according to their ranks. The second to the
seventh column of Table 16 shows the individual ranks of all the PSO techniques against the six robot
manipulators. In the second column, under 3DOF Articulate robot configuration, PSO5 has the best
solution for the particular robot manipulator followed by PSO6, then PSO10 has the third-best solution,
etc. The last column of Table 16 is the sum of all ranks presented in columns 2–7, PSO13 having the
lowest total rank is considered the best result overall. During the course of the experiment, it was
observed that:

• Most algorithms stagnate above 1 × 10−3, also most of the algorithms tested were found to either
find the global minimum solution or run into stagnation. Accuracy is an important criterion for
robot analysis and control, some algorithms were found to sometimes avoid stagnation but still
incapable of finding the global minimum result even after 3000 iterations. This is an anomaly that
was unfavorable in this analysis because when taking averages, these solutions gave competitive
results, which is capable of confusing the algorithm. Therefore, another penalty was introduced
such that if a solution is found to escape stagnation yet incapable of finding the global minimum
solution, then the best solution for that run is recorded as 5.5. This signifies that the run gave bad
results, and this problem is easily captured when taking averages.

• It can be seen from Table 15 that using the parameters derived from the previous experiment
in place of the parameters of the PSO enhances the results as all the adaptive PSO techniques
implemented so far found the global minimum solution except in PSO5 and PSO12. When the robot
configuration has more than 4DOF PSO5 was not capable of finding the global minimum solution
while PSO12 could not find the global minimum for the 6DOF Stanford robot configuration. Since
almost all the algorithms were capable of finding the minimum solution, the quest was therefore
reduced to finding the algorithm with the least computations and less likely to fall into stagnation.

Mathematics 2020, 8, 158 22 of 30

Table 15. Performance of various adaptive PSO techniques for different robot configurations.

Robot Configuration
PSO Algorithms

PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7 PSO8 PSO9 PSO10 PSO11 PSO12 PSO13

3DOF
Articulate
Robot Arm

Minimum 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9

Average 1.0221 0.91104 0.9555 1.0666 1.0222 1.0444 1.0833 0.88883 0.89991 0.82216 1.0444 1.0888 0.84438
Std 1.0087 0.99104 1.0079 1.0132 1.0102 1.0017 1.104 1.001 1.0012 0.99385 1.0125 0.99689 0.99459

Iteration 342.95 337.83 314.22 329.42 222.5 222.63 427.43 330.79 323.28 305.74 320.52 300.66 312.12

4DOF
SCARA

Robot Arm

Minimum 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10

Average 1.8222 1.5555 2.1333 1.8222 2 1.9111 1.9556 2.1333 1.9111 1.7778 1.4667 1.5556 1.7333
Std 2.0066 1.9757 2.0175 2.019 1.9975 2.0129 2.0053 2.0205 2.0312 2.0206 1.9605 1.9822 2.0068

Iteration 383.48 377.17 343.6 363.21 226.72 227.24 526.11 371.67 357.73 337.02 352.49 326.02 346.79

6DOF
Stanford

Robot Arm

Minimum 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 0.00503 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 5.80 × 10−9 6.85 × 10−5 5.80 × 10−9

Average 0.73517 0.56363 1.4628 1.0201 1.4391 0.80209 0.57368 0.66049 0.7891 0.89401 0.48719 1.3465 0.36397
Std 1.501 1.4168 2.2052 1.7473 3.1713 1.228 1.3985 2.881 3.3545 1.7495 1.2585 2.2116 0.87091

Iteration 1296.4 1336.9 992.82 1216.1 612.91 746.29 1593.2 1355.6 1247.6 999.88 1187.5 1201.9 960.5

6DOF
Articulate
Robot Arm

Minimum 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 0.05314 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9

Average 0.40148 0.46231 0.40928 0.41159 1.1148 0.84461 0.32191 0.41798 0.37357 0.34845 0.50466 0.34546 0.47359
Std 0.54642 0.7966 0.66896 0.53455 0.85375 1.0268 0.55764 0.57991 0.77192 0.55917 0.97798 0.72753 0.65956

Iteration 730.8 683.83 530.39 643.9 541.98 590.92 1030.6 710.09 689.53 534.81 618.8 510.45 547.89

6DOF
Articulate
Robot Arm

Minimum 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 0.07665 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9 5.53 × 10−9

Average 0.57103 0.58342 0.4679 0.63143 1.5126 1.2445 0.59572 0.46228 0.52115 0.52637 0.47206 0.8547 0.47416
Std 0.77659 0.92347 0.64328 1.0937 1.1692 0.9791 0.72651 0.79572 0.9415 0.8635 0.87465 1.3579 0.7217

Iteration 1160.2 1083.9 938.25 966.36 604.29 548.72 1508.2 1175.9 1092.1 975.23 987.9 980.3 853.53

17DOF
Dual-Arm
Robot Arm

Minimum 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 0.00432 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9 3.82 × 10−9

Average 0.32223 241.76 0.4961 0.36216 0.54445 1016 0.33813 0.238 0.24413 0.75383 0.36512 0.67878 0.27086
Std 0.73876 1322.3 1.1388 0.88827 0.62487 3807.8 0.8389 0.48422 0.65331 1.4823 1.0622 1.5277 0.66004

Iteration 1156.6 1101.9 909.2 1021.2 721.7 947.77 1526.4 1162.5 1118.4 1038 1020.4 1042.9 926.02

Mathematics 2020, 8, 158 23 of 30

• The proposed algorithm in PSO11 was found to produce better results than the PSO techniques
reported in other works of literature and was only surpassed by PSO13 which is a modification of
PSO6 and contested keenly with PSO10 which is also a modification of PSO3.

• From the results presented in Table 16, it can also be deduced that varying both the inertia weight
and learning coefficient produces better results in adaptive PSO algorithms compared to only
varying the inertia weight.

• It would also be observed that the proposed algorithm (PSO11) does not perform well at lower
DOFs but performed better than PSO10 at higher DOF configurations. PSO13 perform well across
all robot configurations. producing the best result for all techniques tested in this experiment.

• In the NLDIW adaptive technique, although PSO2 was recommended in [50], it can be seen from
Table 16 that PSO3 performed better. Likewise, in the MLDIW adaptive technique, PSO5 was
recommended in [51] but PSO6 performed better for robot analysis.

• Modifying the adaptive PSO techniques presented in literature (PSO1–6) with a non-linear
increasing learning coefficient as defined in Equations (16) and (17) greatly improved the
performance of the PSO algorithm as it can be seen that the modified algorithms in PSO8–13

performed better than their counterparts with constant learning factors (PSO1–6).

Table 16. Ranking of the various adaptive PSO techniques.

Rank PSO
Algorithms

3DOF
Articulate

Robot

4DOF SCARA
Robot

6DOF Stanford
Robot

6DOF
Articulate

Robot

6DOF
Articulate

Robot

17DOF
Dual-Arm

Robot
Sum of Ranks

PSO13 4 7 1 4 1 1 18
PSO10 3 6 4 2 4 9 28
PSO11 10 4 3 7 3 2 29
PSO9 5 9 8 6 6 3 37
PSO6 2 1 2 12 10 12 39
PSO3 7 11 11 3 2 7 41
PSO12 9 3 12 1 11 6 42
PSO4 12 8 10 5 5 4 44
PSO2 8 5 5 10 8 11 47
PSO8 6 12 7 8 7 8 48
PSO1 11 10 6 9 9 5 50
PSO5 1 2 13 13 13 13 55
PSO7 13 13 9 11 12 10 68

6. Mutation Function

Structural bias in population-based algorithms is a characteristic that confines the search in
a constrained search space. Replacing randomly selected samples with newly generated random
samples enhances unbiased coverage of the search space [53]. In the mutating PSO algorithm, when
the algorithm stagnates at a local optimum solution, a mutation operation is used to replace the swarm
with new samples. The mutation function is an artificial perturbation of the system used to push the
algorithm out of stagnation. The mutation probability was set at 100%, because if any solution from
the previous iteration should remain, then that solution shall be the global best solution for the next
iteration, therefore, the entire swarm would converge on that solution causing a recurring stagnating
cycle. Four variables and two end conditions were introduced to train the algorithm to identify a
stagnating solution. When the two conditions are satisfied, the algorithm terminates the iteration
signifying that the actual solution has been identified, while if only one condition is satisfied, it signifies
that the algorithm has run into stagnation and the mutation function is initiated. The abandonment
threshold (E) is the global minimum solution. The Fitness error (e) is the difference between the current
Fitness and the previous Fitness as elaborated in Equation (25), and the abandonment counter (q)
monitors the second differential of Fitness error. When the second differential of the Fitness error
becomes small than E then the algorithm is assumed to have slowed down, therefore, the condition in

Mathematics 2020, 8, 158 24 of 30

Equation (26) states that when the difference in e is less than E then q begins to count consecutively
through every iteration, and if the condition in (26) is broken then counter in q is reset to zero.

e = Fitnesst−1 − Fitnesst, (25)

q =

q + 1, i f , (ei−1 − ei) < E

0, Else
, (26)

f (MuPSO) =

end i f q ≥ Q and Fitness ≤ E

mutate i f q ≥ Q and Fitness > 1e−3
, (27)

The two end conditions in Equation (27) states that when q is equal to or greater than the
abandonment limit (Q) and E is less than 1 × 10−8 then the algorithm has found the global minimum
solution and should be terminated, but when only the first condition is met then this signifies that the
algorithm has run into stagnation. Q should be large enough so as not to prematurely terminate a
solution allowing the algorithm to break out of stagnation but must also not be too large to allow a
failed solution to continue. Table 17 shows the performance of the a few variants of PSO modified with
the mutating operator. The proposed mutating PSO algorithm is presented in the first column, followed
by the basic PSO (w = 1.0 and c = 2.05). The MLDIW-PSO with the enhanced parameters is in the third
column as Mu-MLDIW, while the basic MLDIW (w = 0.9–0.4) is in the fourth. Likewise, the NLDIW-PSO
with enhanced parameters is presented in the fifth column as Mu-NLDIW, and the basic NLDIW is in
the last column. All these algorithms were further enhanced with the mutating operation.

Observe that all the basic PSO algorithms were able to analyze the 3DOF articulate and 4DOF
SCARA manipulators, but unable to find the minimum solution for the higher DOF manipulators.
At lower DOFs, although the basic PSO algorithms gave better results, the results from the proposed
MuPSO are sufficient for robot analysis as seen in Table 18 where the joint parameters of the robots are
identified with an accuracy of three decimal places.

Converging results were not obtained for the Stanford and the Dual-arm configurations. In a
real experiment, the robot would be required to move from a known initial position and orientation
Ti to a final destination Tf, therefore introducing more constraints like minimizing the distance
traveled by joints or the energy consumption of joints may improve the convergence of prismatic and
redundant configurations.

Mathematics 2020, 8, 158 25 of 30

Table 17. Performance of the mutating particle swarm optimization.

Robot Configuration
PSO Algorithms

MuPSO PSO Mu-MLDIW MLDIW Mu-NLDIW NLDIW

3 DOF Articulate
Robot Arm

Min 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9 6.10 × 10−9

Average 6.78 × 10−9 6.10 × 10−9 6.93 × 10−9 6.10 × 10−9 6.23 × 10−9 6.10 × 10−9

std 1.21 × 10−9 7.90 × 10−21 1.37 × 10−9 7.48 × 10−21 3.15 × 10−10 6.45 × 10−21

Iteratn 354.83 169.03 271.93 122.8 333.83 160.07

4 DOF SCARA
Robot Arm

Min 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10 9.73 × 10−10

Average 1.78 × 10−9 9.73 × 10−10 1.48 × 10−9 9.73 × 10−10 1.07 × 10−9 9.73 × 10−10

std 2.07 × 10−9 2.90 × 10−21 1.55 × 10−9 1.57 × 10−21 2.94 × 10−10 2.19 × 10−21

Iteratn 375.1 144.2 375.9 193.13 344.27 108.67

6 DOF Stanford
Robot Arm

Min 5.80 × 10−9 0.002297 5.80 × 10−9 0.042038 5.80 × 10−9 0.22311
Average 0.18333 3.6594 2.74 × 10−5 36.556 3.6698 2.8953

std 1.0042 2.4823 0.00015 191.83 2.6327 5.7772
Iteratn 1893.9 3000 1615.7 3000 2577.1 3000

6 DOF Articulate
Robot Arm

(small)

Min 2.83 × 10−9 2.83 × 10−9 2.83 × 10−9 0.3014 2.83 × 10−9 0.78448
Average 2.84 × 10−9 22.959 2.83 × 10−9 3.1822 2.83 × 10−9 2.9146

std 2.13 × 10−11 119.19 1.36 × 10−12 2.6104 2.76 × 10−13 1.9617
Iteratn 641.47 2907.5 613.8 3000 540.97 3000

6 DOF Articulate
Robot Arm (big)

Min 5.53 × 10−9 0.002899 5.53 × 10−9 0.9546 5.53 × 10−9 0.66512
Average 5.53 × 10−9 1.021 5.61 × 10−9 621.59 0.44417 5538.1

std 4.36 × 10−12 0.93764 4.43 × 10−10 2520.5 1.4376 29995
Iteratn 1136.6 3000 1020.1 3000 1574.9 3000

17 DOF
Dual-Arm Robot

Min 3.82 × 10−9 0.006624 3.82 × 10−9 0.10807 3.82 × 10−9 0.00634
Average 0.000172 0.50215 0.18333 1212.1 0.5695 Inf

std 0.000942 1.1307 1.0042 5014.6 1.6748 NaN
Iteratn 1222.8 3000 1315 3000 1621.9 3000

Mathematics 2020, 8, 158 26 of 30

Table 18. Identified joint parameters for MuPSO and SPSO.

Robot Configurations
Identified Joint Parameters

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Ideal Parameters 80◦/(200 mm) 20◦ −60◦/(60 mm) 270◦ 50◦ 10◦

3DOF Articulate MuPSO (PSO) 80◦

(80)
20◦

(20◦)
−60◦

(−60◦) NA NA NA

4DOF SCARA MuPSO (PSO) 200 mm
(200 mm)

−17.124◦

(−57.156◦)
−34.876◦

(17.146◦)
−30◦

(−66.000◦) NA NA

6DOF Stanford MuPSO (PSO) 73.633◦

(52.043◦)
3.260◦

(−0.661◦)
60.396 mm

(34.905 mm)
−72.909◦

(−43.846◦)
56.575◦

(40.649◦)
−8.424◦

(−19.521◦)
6DOF Articulate

(small) MuPSO (PSO) 80.000◦

(80.903◦)
20.000◦

(18.656◦)
−60.001◦

(−57.726◦)
−89.998◦

(−54.286◦)
50.001◦

(27.956◦)
9.9983◦

(−16.874◦)
6DOF Articulate

(big) MuPSO (PSO) 80.000◦

(77.829◦)
20.002◦

(17.475◦)
−60.004◦

(−56.446◦)
−89.997◦

(−46.180◦)
50.001◦

(20.163◦)
9.9959◦

(−15.677◦)

In the ideal parameters’ row, the values in parenthesis represent prismatic joints where applicable.

Mathematics 2020, 8, 158 27 of 30

7. Conclusions

Research into developing an intelligent swarm-based algorithm for robot analysis and parameter
identification was proposed, experiments were performed to study the behavior of four popular
robot configurations under various PSO parameters, and two anomalies were identified from the
experimental results and successfully resolved. The anomalies were capable of masking poor solutions
as good solutions. In this experiment, all the strong local minimizers have been identified; the 3DOF
articulate configuration has only one strong local minimizer with Fitness = 2.0 at a position vector of
[80, −40, −60]T. The 4DOF SCARA configuration also has only one local minimizer at Fitness = 4.0 with
an infinite possibility of position vectors, while the other higher DOF robot configurations have at least
five minimizers each. The minimizers are very sensitive, they are shifted by the slightest change in
parameters therefore it is almost impossible to identify the stagnation points in real-time. An average
solution is capable of breaking out of weak local minimizer but even the best solutions are helpless in
the vicinity of a strong local minimizer. This is the basis of introducing the mutation function, to help
break algorithms out of stagnation.

Since the algorithm can be taught to identify stagnating solutions, then the best solutions either
find the global minimizer or stagnate at local minimum, but not linger without a solution. The two
anomalies observed were capable of disguising poor solutions and confusing the algorithm therefore
two penalties were introduced to help unmask poor solutions while distinctively identifying the best
solutions. Some correlations were observed between the robot configurations and the various PSO
parameters, a non-linear decreasing inertia weight and a non-linear increasing correction factor were
adopted based on the experimental results. A new range of adaptive parameters were identified
and implemented on the PSO algorithm. The algorithm was found to be capable of solving the
robot kinematic problem for all four robot configurations. Algorithms from other works of literature
were also modified with the newly identified adaptive parameters and compared with the proposed
algorithm for solving robot kinematic problems. The proposed algorithm was found to dominate
the other algorithms reported in the literature, succumbing to only the modified MLDIW-PSO that
had the best overall performance, surpassing the runner up with large margins while the modified
NLDIW and the proposed MuPSO algorithm closely contested the second position. More emphasis
is on higher DOF configurations, therefore, if the lower DOF manipulators are ignored, the MuPSO
would completely dominate the NLDIW-PSO in PSO10.

8. Future Thrust

The future aspirations of this work are to implement the algorithm in dynamic parameter
identification of these robot manipulators, and also to compare the performance of the proposed
algorithm with other metaheuristics on standard benchmark function. Testing the algorithm on
benchmark functions would hopefully shed more light on the complex phenomena of modeling and
control of non-linear dynamic systems. The algorithm described herein utilizes a time-dependent
adaptive technique, a solution dependent (PBest or GBest based) adaptive technique seems more
promising with better maneuverability, therefore since the range of parameters which ensure
convergence of the robot dynamic problem has been established, it would be worthwhile to investigate
a solution dependent algorithm for robot analysis. It has been established that even the best solution
runs into stagnation, studying the initial conditions of the randomly populated swarm may give
more insights on early identification of stagnating solutions so that the algorithm can be trained to
completely avoid them.

Author Contributions: Conceptualization, A.U. and Z.I.B.F.; Methodology, A.U. and Z.I.B.F.; Software, A.U.;
Validation, A.U., Z.I.B.F., and A.K.; Formal analysis, A.U.; Investigation, A.U.; Resources, A.K.; Data curation, A.U.
and A.K.; Writing—original draft preparation, A.U.; Writing—review and editing, A.U. and Z.S.; Visualization,
A.U., Z.S., and A.K.; Supervision, Z.S.; Project administration, Z.S.; Funding acquisition, Z.S. All authors have
read and agreed to the published version of the manuscript.

Mathematics 2020, 8, 158 28 of 30

Funding: This research was funded by the Natural Science Foundation of Hebei Province of China, grant
number F2017202243.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Umar, A.; Shi, Z.; Wang, W.; Farouk, Z.I.B. A Novel Mutating PSO Based Solution for Inverse Kinematic
Analysis of Multi Degree-Of-Freedom Robot Manipulators. In Proceedings of the 2019 IEEE International
Conference on Artificial Intelligence and Computer Applications, Dalian, China, 29–31 March 2019;
pp. 554–559. [CrossRef]

2. Kennedy, J.; Eberhart, R.C. Particle Swarm Optimization. In Proceeding of International Conference on Neural
Networks; IEEE Press: Perth, Australia, 1995; pp. 1942–1948. [CrossRef]

3. Zhu, L.; Feng, R.; Li, X.; Xi, J.; Wei, X. A Tree-Shaped Support Structure for Additive Manufacturing Generated
by Using a Hybrid of Particle Swarm Optimization and Greedy Algorithm. J. Comput. Inf. Sci. Eng. 2019, 19,
1–12. [CrossRef]

4. Zhang, X.; Lu, D.; Zhang, X.; Wang, Y. Antenna Array Design by a Contraction Adaptive Particle Swarm
Optimization Algorithm. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 1–7. [CrossRef]

5. Cai, X.; Cui, Z.; Zeng, J.; Tan, Y. Self-adaptive PID-controlled Particle Swarm Optimization. In Proceedings of
the Chinese Control Conference, Hunan, China, 26–31 July 2007; pp. 799–803. [CrossRef]

6. Cui, Z.; Cai, X.; Zeng, J.; Yin, Y. PID-Controlled Particle Swarm Optimization. Mult. Valued Log. Soft Comput.
2010, 16, 585–609.

7. Lu, Y.; Yan, D.; Zhang, J.; Levy, D. A Variant with a Time Varying PID Controller of Particle Swarm Optimizers.
Inf. Sci. 2015, 297, 21–49. [CrossRef]

8. Xiang, Z.; Ji, D.; Zhang, H.; Wu, H.; Li, Y. A Simple PID-based Strategy for Particle Swarm Optimization
Algorithm. Inf. Sci. 2019, 502, 558–574. [CrossRef]

9. Chang, C.; Wu, X. An Improved Particle Swarm Optimization Algorithm. Adv. Intell. Sys. Comp. 2020, 928,
1406–1410. [CrossRef]

10. Zidan, A.; Tappe, S.; Ortmaier, T. Auto-tuning of PID Controllers for Robotic Manipulators using PSO and
MOPSO. Lect. Notes Electr. Eng. 2020, 495, 339–354. [CrossRef]

11. Peng, Z.; Al Chami, Z.; Manier, H.; Manier, M.-A. A Hybrid Particle Swarm Optimization for the Selective
Pickup and Delivery Problem with Transfers. Eng. Appl. Artif. Intell. 2019, 85, 99–111. [CrossRef]

12. Jiang, G.; Luo, M.; Bai, K.; Chen, S. A Precise Positioning Method for a Puncture Robot Based on a
PSO-Optimized BP Neural Network Algorithm. Appl. Sci. 2017, 7, 969. [CrossRef]

13. Iacca, G.; Caraffini, F.; Neri, F. Compact Differential Evolution Light: High Performance Despite Limited
Memory Requirement and Modest Computational Overhead. J. Comput. Sci. Technol. 2012, 27, 1056–1076.
[CrossRef]

14. Li, J.; Zhang, J.; Jiang, C.; Zhou, M. Composite Particle Swarm Optimizer with Historical Memory for
Function Optimization. IEEE Trans. Cybern. 2015, 45, 2350–2363. [CrossRef] [PubMed]

15. Santucci, V.; Milani, A.; Caraffini, F. An Optimisation-Driven Prediction Method for Automated Diagnosis
and Prognosis. Mathematics 2019, 7, 1051. [CrossRef]

16. Hu, J.; Chen, D.; Liang, P. A Novel Interval Three-Way Concept Lattice Model with Its Application in Medical
Diagnosis. Mathematics 2019, 7, 103. [CrossRef]

17. Hu, J.; Yang, Y.; Chen, X. A Novel TODIM Method-based Three-Way Decision Model for Medical Treatment
Selection. Int. J. Fuzzy Syst. 2017, 33, 3405–3417. [CrossRef]

18. Yao, J.T.; Azam, N. Web-based Medical Decision Support Systems for Three-Way Medical Decision Making
with Game-theoretic Rough Sets. IEEE Trans. Fuzzy Syst. 2015, 23, 3–15. [CrossRef]

19. Wang, L.; Zhao, J.; Liu, D.; Lin, Y.; Zhao, Y.; Lin, Z.; Zhao, T.; Lei, Y. Parameter Identification with the Random
Perturbation Particle Swarm Optimization Method and Sensitivity Analysis of an Advanced Pressurized
Water Reactor Nuclear Power Plant Model for Power Systems. Energies 2017, 10, 173. [CrossRef]

20. Clerc, M.; Kennedy, J. The Particle Swarm—Explosion, Stability, and Convergence in a Multi-Dimensional
Complex Space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]

21. Reynolds, W.C. Flocks, Herds, and Schools: A Distributed Behavioral Model; ACM: New York, NY, USA, 1987;
Volume 21, pp. 25–34. [CrossRef]

http://dx.doi.org/10.1109/ICAICA.2019.8873449
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1115/1.4043530
http://dx.doi.org/10.1186/s13638-019-1379-3
http://dx.doi.org/10.1109/CHICC.2006.4347492
http://dx.doi.org/10.1016/j.ins.2014.11.017
http://dx.doi.org/10.1016/j.ins.2019.06.042
http://dx.doi.org/10.1007/978-3-030-15235-2_195
http://dx.doi.org/10.1007/978-3-030-11292-9_17
http://dx.doi.org/10.1016/j.engappai.2019.06.006
http://dx.doi.org/10.3390/app7100969
http://dx.doi.org/10.1007/s11390-012-1284-2
http://dx.doi.org/10.1109/TCYB.2015.2424836
http://www.ncbi.nlm.nih.gov/pubmed/26390177
http://dx.doi.org/10.3390/math7111051
http://dx.doi.org/10.3390/math7010103
http://dx.doi.org/10.1007/s40815-017-0320-3
http://dx.doi.org/10.1109/TFUZZ.2014.2360548
http://dx.doi.org/10.3390/en10020173
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1145/37402.37406

Mathematics 2020, 8, 158 29 of 30

22. Cui, Z.; Shi, Z. Boids Particle Swarm Optimization. Int. J. Innov. Comput. Appl. 2009, 2, 78–85. [CrossRef]
23. Kennedy, J. Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm

Performance. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1931–1938. [CrossRef]

24. Kennedy, J. The Particle Swarm: Social Adaptation of Knowledge. In Proceedings of the 1997 International
Conference on Evolutionary Computation, Indianapolis, IN, USA, 13–16 April 1997; pp. 303–308. [CrossRef]

25. Mendes, R.; Kennedy, J.; Neves, J. Watch Thy Neighbor or How the Swarm Can Learn from Its Environment.
In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 24–26 April 2003;
pp. 88–94. [CrossRef]

26. Qteish, A.; Hamdan, M. Hybrid Particle Swarm and Conjugate Gradient Optimization Algorithm. In Advances
in Swarm Intelligence; ICSI 2010; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2010; Volume 6145, pp. 582–588. [CrossRef]

27. Qin, J.; Yin, Y.; Ban, X. A Hybrid of Particle Swarm Optimization and Local Search for Multimodal Functions.
In Advances in Swarm Intelligence; ICSI 2010; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2010; Volume 6145, pp. 589–596. [CrossRef]

28. De-los-Cobos-Silva, S.G.; Andrade, M.Á.G.; Lara-Velázquez, P.; García, E.A.R.; Mora-Gutiérrez, R.A.;
Ponsich, A. ABC-PSO: An Efficient Bioinspired Metaheuristic for Parameter Estimation in Nonlinear
Regression. In Advances in Soft Computing, Mexican International Conference on Artificial Intelligence MICAI
2016; Pichardo-Lagunas, O., Miranda-Jiménez, S., Eds.; Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2016; Volume 10062, pp. 388–400. [CrossRef]

29. Marinakis, Y.; Marinaki, M. Particle Swarm Optimization with Expanding Neighborhood Topology for the
Permutation Flowshop Scheduling Problem. Soft Comput. 2013, 17, 1159–1173. [CrossRef]

30. Guo, W.; Zhu, L.; Wang, L.; Wu, Q.; Kong, F. An Entropy-Assisted Particle Swarm Optimizer for Large-Scale
Optimization Problem. Mathematics 2019, 7, 414. [CrossRef]

31. Kong, F.; Jiang, J.; Huang, Y. An Adaptive Multi-Swarm Competition Particle Swarm Optimizer for Large-Scale
Optimization. Mathematics 2019, 7, 521. [CrossRef]

32. Ahmad, N.; Mohammed, M.E.; Reza, S. DNPSO: A Dynamic Niching Particle Swarm Optimization for
Multi-Modal Optimization. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation, Hong
Kong, China, 1–6 June 2008; pp. 26–32. [CrossRef]

33. Seo, J.H.; Im, C.H.; Heo, C.G.; Kim, J.K.; Jung, H.K.; Lee, C.G. Multimodal Function Optimization Based on
Particle Swarm Optimization. IEEE Trans. Magn. 2006, 42, 1095–1098. [CrossRef]

34. Blackwell, T.M. Particle swarms and population diversity. Soft Comput. 2005, 9, 793–802. [CrossRef]
35. Blackwell, T.; Branke, J. Multi-swarm Optimization in Dynamic Environments. In Applications of Evolutionary

Computing; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3005, pp. 489–500. [CrossRef]
36. Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-Organizing Hierarchical Particle Swarm Optimizer

with Time-Varying Acceleration Coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [CrossRef]
37. Qin, Z.; Yu, F.; Shi, Z.; Wang, Y. Adaptive Inertia Weight Particle Swarm Optimization. In Artificial Intelligence

and Soft Computing—ICAISC 2006; Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M., Eds.; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4029, pp. 450–459.
[CrossRef]

38. Yang, X.; Yuan, J.; Mao, H. A Modified Particle Swarm Optimizer with Dynamic Adaptation.
Appl. Math. Comput. 2007, 189, 1205–1213. [CrossRef]

39. Arumugam, M.S.; Rao, M.V.C. On the Improved Performances of the Particle Swarm Optimization Algorithms
with Adaptive Parameters, Cross-over Operators and Root Mean Square (RMS) Variants for Computing
Optimal Control of a Class of Hybrid Systems. Appl. Soft Comput. 2008, 8, 324–336. [CrossRef]

40. Pandey, B.B.; Debbarma, S.; Bhardwaji, P. Particle Swarm Optimization with varying Inertia Weight for
solving nonlinear optimization problem. In Proceedings of the International Conference on Electrical,
Electronics, Signals, Communication and Optimization, EESCO, Visakhapatnam, India, 24–25 January 2015.
[CrossRef]

41. Bingul, Z.; Karahan, O. Dynamic identification of Staubli RX-60 Robot using PSO and LS Methods.
Expert Syst. Appl. 2011, 38, 4136–4149. [CrossRef]

42. Xue-qian, W.; Hou-de, L.; Ye, S.; Bin, L.; Ying-chun, Z. Research on Identification Method of Kinematics for
Space Robot. Procedia Eng. 2012, 29, 3381–3386. [CrossRef]

http://dx.doi.org/10.1504/IJICA.2009.031778
http://dx.doi.org/10.1109/CEC.1999.785509
http://dx.doi.org/10.1109/ICEC.1997.592326
http://dx.doi.org/10.1109/SIS.2003.1202252
http://dx.doi.org/10.1007/978-3-642-13495-1_71
http://dx.doi.org/10.1007/978-3-642-13495-1_72
http://dx.doi.org/10.1007/978-3-319-62428-0_31
http://dx.doi.org/10.1007/s00500-013-0992-z
http://dx.doi.org/10.3390/math7050414
http://dx.doi.org/10.3390/math7060521
http://dx.doi.org/10.1109/CEC.2008.4630771
http://dx.doi.org/10.1109/TMAG.2006.871568
http://dx.doi.org/10.1007/s00500-004-0420-5
http://dx.doi.org/10.1007/978-3-540-24653-4_50
http://dx.doi.org/10.1109/TEVC.2004.826071
http://dx.doi.org/10.1007/11785231_48
http://dx.doi.org/10.1016/j.amc.2006.12.045
http://dx.doi.org/10.1016/j.asoc.2007.01.010
http://dx.doi.org/10.1109/EESCO.2015.7253658
http://dx.doi.org/10.1016/j.eswa.2010.09.076
http://dx.doi.org/10.1016/j.proeng.2012.01.498

Mathematics 2020, 8, 158 30 of 30

43. Feng, F.; Hu, H.; Guo, Z. Application of Genetic Algorithm PSO in Parameter Identification of SCARA Robot.
In Proceedings of the Chinese Automation Congress, CAC, Jinan, China, 20–22 October 2017; pp. 923–927.
[CrossRef]

44. Gao, G.; Lin, F.; San, H.; Wu, X.; Wang, W. Hybrid Optimal Kinematic Parameter Identification for an
Industrial Robot Based on BPNN-PSO. Complexity 2018, 1–11. [CrossRef]

45. Nizar, R.; Adel, M.A. Inverse Kinematics using Particle Swarm Optimization, a Statistical Analysis.
Procedia Eng. 2013, 64, 1602–1611. [CrossRef]

46. Sarosh, P.; Tarek, S. Task Based Synthesis of Serial Manipulators. J. Adv. Res. 2015, 6, 479–492. [CrossRef]
47. Sarosh, P.; Tarek, S. Using Task Descriptions for Designing Optimal Task Specific Manipulators. In Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 29
September–3 October 2015; pp. 3544–3551. [CrossRef]

48. Mizuno, N.; Nguyen, C.H. Parameters Identification of Robot Manipulator based on Particle Swarm. In
Proceedings of the 13th IEEE International Conference on Control and Automation, ICCA, Ohrid, Macedonia,
3–6 July 2017; pp. 307–312. [CrossRef]

49. Fang, L.; Dang, P. A step identification method of joint parameters of robots based on the measured pose of
end-effector. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 3218–3233. [CrossRef]

50. Chatterjee, A.; Siarry, P. Nonlinear Inertia Weight Variation for Dynamic Adaption in Particle Swarm
Optimization. Comput. Oper. Res. 2006, 33, 859–871. [CrossRef]

51. Xin, J.; Chen, G.; Hai, Y. A Particle Swarm Optimizer with Multi-Stage Linearly-Decreasing Inertia Weight.
In Proceedings of the International Joint Conference on Computational Sciences and Optimization, Sanya,
China, 24–26 April 2009; Volume 1, pp. 505–508. [CrossRef]

52. Wang, H.; Qian, F. Improved PSO-based Multi-Objective Optimization using Inertia Weight and Acceleration
Coefficients Dynamic Changing, Crowding and Mutation. In Proceedings of the 7th World Congress on
Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; pp. 4473–4478. [CrossRef]

53. Kononova, A.V.; Corne, D.W.; Wilde, P.D.; Shneer, V.; Caraffini, F. Structural Bias in Population-based
Algorithms. Inf. Sci. 2015, 298, 468–490. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/CAC.2017.8242898
http://dx.doi.org/10.1155/2018/4258676
http://dx.doi.org/10.1016/j.proeng.2013.09.242
http://dx.doi.org/10.1016/j.jare.2014.12.006
http://dx.doi.org/10.1109/IROS.2015.7353872
http://dx.doi.org/10.1109/ICCA.2017.8003078
http://dx.doi.org/10.1177/0954406215569589
http://dx.doi.org/10.1016/j.cor.2004.08.012
http://dx.doi.org/10.1109/CSO.2009.420
http://dx.doi.org/10.1109/WCICA.2008.4593644
http://dx.doi.org/10.1016/j.ins.2014.11.035
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Swarm Intelligence
	Particle Swarm Optimization
	PSO and Robot Parameter Identification

	Kinematic Model of Robots
	Robot Configurations
	Fitness Function

	Determining New PSO Parameters
	Observations
	Deductions

	Adaptive Computation Technique
	Results
	Mutation Function
	Conclusions
	Future Thrust
	References

