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Abstract: The question raised in the title of the article is not philosophical. We do not expect general
answers of the form “to describe the reality surrounding us”. The question should actually be
formulated as a mathematical problem of applied mathematics, a task for new research. This question
should be answered in mathematically rigorous statements about the interrelations between the
properties of the operator’s kernels and the types of phenomena. This article is devoted to a discussion
of the question of what is fractional operator from the point of view of not pure mathematics, but
applied mathematics. The imposed restrictions on the kernel of the fractional operator should actually
be divided by types of phenomena, in addition to the principles of self-consistency of mathematical
theory. In applications of fractional calculus, we have a fundamental question about conditions of
kernels of fractional operator of non-integer orders that allow us to describe a particular type of
phenomenon. It is necessary to obtain exact correspondences between sets of properties of kernel
and type of phenomena. In this paper, we discuss the properties of kernels of fractional operators
to distinguish the following types of phenomena: fading memory (forgetting) and power-law
frequency dispersion, spatial non-locality and power-law spatial dispersion, distributed lag (time
delay), distributed scaling (dilation), depreciation, and aging.

Keywords: fractional calculus; fractional derivative; translation operator; distributed lag; time delay;
scaling; dilation; memory; depreciation; probability distribution

MSC: 26A33 Fractional derivatives and integrals; 34A08 Fractional differential equations; 60E05
Distributions: general theory

1. Introduction

Why do we need fractional derivatives and integrals of non-integer order? We are not interested in
the answer from the standpoint of philosophy or methodology of science. We are primarily interested
in the answer from the point of view of applied mathematics, theoretical physics, economic theory, and
other applied sciences. For application of fractional calculus [1–7], we want to have an answer in the
form of exact mathematical statements that is formulated in precise and strict form. To get such an
answer, it is required to formulate the question in mathematical form. The question should actually be
formulated as a mathematical problem of applied mathematics, as a task for new research.

We also do not plan to delve into the “linguistic” question of which operators might be called
fractional and which are not. The first author has already formulated their point of view on this
issue in articles [8–12]. There are also many important contributions to this discussion (for example,
see [13–16]). In this article, we do not plan to continue the discussion directly in this direction. We
want to direct our discussion in a different direction. However, we will make an important remark for
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this paper. Please note that the proposed principle “No nonlocality. No fractional derivative” [11]
cannot be turned into the principle "No memory. No fractional derivative". This is due to the fact
that nonlocality in time cannot be reduced only to memory (about the concept of memory, see for
example in articles [17,18]). It should also be noted here that the operators that describe the delay,
lag, and scaling continuously distributed over time cannot be attributed to fractional operators if the
distribution is described by probability density functions. These operators are integer order operators
with distributed delay, lag, and scaling.

The fractional calculus, which is the theory of integrals and derivatives of fractional order,
describes a wide variety of different types of operators with non-integer order [1–7]. Fractional calculus
allows us to describe various phenomena and effects in natural and social sciences. For example, we
should note the non-locality of power-law type, spatial dispersion of power type, fading memory,
frequency dispersion of power type, intrinsic dissipation, the openness of systems (interaction with
environment), fractional relaxation-oscillation, fractional viscoelasticity, fractional diffusion-waves,
long-range interactions of power-law type, and many others [19,20].

In applied mathematics, it is important to have a tool that allows you to adequately select the
type of fractional operators for the type of phenomena under consideration. It is necessary to have
clear mathematical criteria for associating fractional operators of non-integer orders and those types
of phenomena that they can describe. Differential and integral operators of non-integer orders are a
powerful tool for modeling and description of processes that characterized by fading memory and
spatial nonlocality. However, not all operators of non-integer orders can describe the effects of memory
(or non-locality).

We should emphasize that not all fractional derivatives and integrals can be used for modeling
the processes with memory. For example, the Kober and Erdelyi–Kober operators as well as the
Caputo–Fabrizio integral and derivatives cannot be applied to describe phenomena with memory
or spatial nonlocality. These operators can be applied only to describe processes with continuously
distributed scaling (dilation) and lag (delay), respectively [21,22]. We also can state that these operators
can be interpreted as derivatives and integrals of integer orders with scaling or lag, distributions of
which are described by some probability density functions [21,22].

In application of the differential and integral operators with non-integer orders, a fundamental
question arises about the correct subject interpretation of the different types of operators. Interpretation
is not in the form of a description of one of the particular manifestations of real processes, but by one
or another type of phenomena. We should clearly understand what type of effects and phenomena a
given fractional operator of non-integer order can describe.

It is necessary to understand what types of fractional operators, what types of phenomena can be
described in principle. The most important role in this description of phenomena must be understood
by what types of fractional derivatives and integrals of non-integer order, in principle, what types
(classes) of phenomena can describe.

In applications of fractional calculus, we can distinguish the following types (classes) of phenomena
by some properties of kernels:

• fading memory (forgetting) and power-law frequency dispersion;
• spatial non-locality and power-law spatial dispersion;
• distributed lag (time delay);
• dictributed scaling (dilation);
• depreciation and aging.

These types of phenomena can be described by fractional operators of non-integer orders with
some types of operator kernels. For these types of phenomena, we should have mathematical conditions
on the operator kernels, which uniquely identify one of types of these phenomena.

Let us give some examples of the correspondence between the some fractional derivatives
(or integrals) and the type of phenomena, which can be described by these operators in Table 1.
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Examples of these type of phenomena in physics are described in Handbook of Fractional Calculus
with Application [19,20].

Table 1. Examples of the correspondence between the some fractional derivatives (or integrals) and the
type of phenomena.

№ Type of Phenomena: Example of Fractional Operators:

1 Memory and Non-Locality in Time Caputo and Riemann–Liouville

2 Spatial Non-Locality and Spatial Dispersion Riess and Liouville

3 Distributed Time Delay and Lag Caputo–Fabrizio

4 Distributed Dilation and Scaling Kober and Erdelyi–Kober,
Gorenflo–Luchko–Mainardi

5 Distributed Depreciation and Aging Prabhakar and Kilbas–Saigo–Saxena

In this paper, we proposed the properties of operator kernels and corresponding types of
phenomena. In fractional calсulus, we do not have a list of correspondence between mathematical
properties of the operators kernels and types of effects and phenomena. Mathematically rigorous
conditions on the kernels of fractional differential and integral operators are necessary to distinguish
between different types of phenomena and processes.

First of all, we must clearly distinguish between types of fractional operators and types of
phenomena. This should not be just a list of examples of specific manifestations in the different sciences.
In fractional calculus, we should have correspondence between the types of phenomena and the types
of properties of operator kernels. In this article, we will explain in more detail the proposed approach
to the interpretation of fractional derivatives and integrals.

2. Formulation of Mathematical Problem

This article does not claim to be a general consideration of fractional derivatives and integrals. To
simplify the discussion of fractional operators, we will consider operators with respect to one variable
t, which will be interpreted as time. A discussion of the problem of the relationship between the
types of phenomena and the types of fractional operators will be constructed on the example of the
following operator (

D(K) f
)
(t) =

∫ t

t0

K(t, τ)
(
D

(n)
τ f (τ)

)
dτ, (1)

where
(
D

(n)
τ f

)
(τ) is differential operator of the integer order n, where n = 0, 1, 2, . . . , and K(t, τ) is a

kernel of the operator. For example, we can consider the standard derivative of the integer order n, i.e.,(
D

(n)
τ f

)
(τ) = f (n)(τ) =

dn f (τ)
dτn . (2)

In general, the kernel K(t, τ) depends on the order n and initial point t0, i.e., we should use Kn,t0(t, τ).
To simplify the notation, we will use K(t, τ), assuming that n and t0 are already fixed. Expression (1)
has a sense, if the integral (1) exists. In general, the function f (n)(τ) does not have to be continuous
function and the kernel K(t, τ) can have an integrable singularity of some kind.
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Remark 1. In general, we can consider other differential operators
(
D

(n)
τ f

)
(τ) of the integer order n instead

of the standard derivative f (n)(τ). For example, we can consider the operators (1), where differential operator(
D

(n)
τ f

)
(τ) is defined in the form.

(
D

(n)
τ f

)
(τ) =

n∏
k=0

(
1 + γ+ k + β−1τ

d
dτ

)
, (3)

which is used in the Gorenflo-Luchko-Mainardi (GLM) operator [23–25] with some parameters γ ∈ R and β > 0
of the kernel K(t, τ) (for details see Equations (1) and (12) in [24], and Equations (4) and (39) in [25]). This
operator is also known as the left-sided Caputo-type modification of the Erdelyi–Kober fractional derivative (see
Equation (12) in [24] (p. 362)). Please note that the GLM operator was introduced for the first time in [23] in
connection with the scale-invariant solutions of the time-fractional diffusion-wave equation (see Equation (58)
on [23] (p. 188)). The special form (3) is needed in order to make this operator a left-inverse operator to the
Erdelyi–Kober integral operator (see Equation (13) in [24] (p. 362)). Emphasize that the main property of any
generalized (fractional) derivative is to be a left-inverse operator to the corresponding generalized (fractional)
integral operator. Please note that the Kober and Erdelyi–Kober operators [1,4], as well as the Caputo–Fabrizio
operators [26–28], cannot be applied for modeling processes with fading memory or spatial nonlocality. These
operators can be used only to describe continuously distributed scaling (dilation) and lag (delay), respectively
(sections below). Therefore we also can state that these operators are interpreted as derivatives and integrals of
integer orders with scaling or lag, distributions of which are described by probability density functions.

Remark 2. We can also consider instead of
(
D

(n)
τ f

)
(τ) a fractional differential (or integral) operator

(
D

(α)
τ f

)
(τ)

of another type than the ones defined by the kernel K(t, τ). For example, we can use the Caputo fractional

derivative,
(
D

(α)
τ f

)
(τ) =

(
Dα

C,0+ f
)
(τ), and the kernel is the probability density function of the gamma

distriburion (for details, see the Section 7 of the article [29] and the papers [30–32]). Such a choice is necessary
to describe the simultaneous presence of two such phenomena as distributed lag and fading memory.

Let us give a formulation of a mathematical problem of applied mathematics, as task for new
research in fractional calculus that will be illustrated in this paper below.

Mathematical problem of fractional calculus in application: What conditions must the kernel
K(t, τ) of operator (1) have in order to describe one or another type of phenomena? It is necessary to
obtain exact correspondences between sets of properties of kernel and type of phenomena.

In this paper, we describe the conditions on the kernel K(t, τ), which allow us to use operator of
the form (1) to describe the following types of phenomena:

(Type I): Continuously Distributed Scaling (Dilation);
(Type II): Continuously Distributed Lag (Delay).
We also give some comments to the phenomena:
(Type III): Continuously Distributed Fading Memory;
(Type IV): Distributed Depreciation and Aging.
Let us give these conditions for phenomena of Types I and II in the form of the following statements.

The conditions on the kernel K(t, τ) for phenomenon of Types III and IV are discussed in the separate
sections of this paper.

Statement 1.

Let us assume that the kernel K(t, τ) of the operator (1) with t0 = 0 satisfies the following conditions

K(λt,λτ) = λ−1K(t, τ), (4)
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for all λ > 0, and the condition of non-negativity, and the normalization condition

K(1, x) ≥ 0,
∫ 1

0
K(1, x) dx = K < ∞ (5)

for all x ∈ (0, 1), where K is a finite positive constant. In this case, operator (1) can be represented (by
using the change of variable τ→ x = τ/t ) in the form

(
D(K) f

)
(t) = K

∫ 1

0
ρ1(x) Sx

(
D

(n)
τ f (τ)

)
dx (6)

with a numerical factor K, where ρ1(x) = K(1, x)/K is the probability density function that satisfies the
condition of non-negativity and the normalization condition

ρ1(x) ≥ 0,
∫ 1

0
ρ1(x) dx = 1, (7)

and Sx is the scaling (dilation) operator

Sx f (t) = f (t·x),

Sx

(
D

(n)
z f (z)

)
=

(
D

(n)
z f (z)

)
z=t·x

,

Sx f (n)(t) =
(

dn f (z)
dzn

)
z=t·x

.

(8)

Then operator (1) describes the continuously distributed scaling (dilations). In physics and
economics, the dilation is the change of scale of objects and processes.

Remark 3. Please note that using property (4) also allows us to write the operator (1) as the Mellin-type
convolution (

D(K) f
)
(t) =

∫ t

0
K
( t
τ

, 1
)(
D

(n)
τ f (τ)

)dτ
τ

, (9)

which differs from the Mellin convolution by the upper limit of t instead of infinity. Using the kernel

KH(x, 1) =
{

K(x, 1)
0

x > 1,
x ≤ 1.

(10)

The operator (7) can be represented in the form

(
D(K) f

)
(t) = KH ∗M f (n) =

∫
∞

0
KH

( t
τ

, 1
)(
D

(n)
τ f (τ)

)dτ
τ

, (11)

where ∗M is the Mellin convolution [33,34]. This representation allows us to propose a generalization the
operator (9) by using the of the Mellin convolution in the definition of these generalized operators [29].

Remark 4. Operators (1) and (2) with kernel, which satisfies the conditions (4) and (5), cannot be considered to
be fractional derivative of non-integer order for positive integer values of n. The correct interpretation of these
operators is integer order derivatives with the continuously distributed scaling (dilation). Please note that as a
basis for the definition of these operators, which actually are integer order operators, one can use expression (6)
with conditions (7) instead of Equation (1) with conditions (4) and (5).

To have fractional generalization of these operators there are two ways: (A) we can use a fractional

differential (or integral) operator
(
D

(α)
τ f

)
(τ) instead of

(
D

(n)
τ f

)
(τ); (B) we can also use the kernel ρ1(x),

which is not satisfied the normalization condition (7). In the work [29], we proposed a fractional
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generalization of this type of operators by the way (A) to describe processes with fading memory and
distributed scaling.

Remark 5. In our opinion, the Kochubei’s approach to general fractional calculus [35–37], which is based on
the Laplace convolution, can be applied to formulate new general fractional calculus, which will be based on
the Mellin convolution. Moreover, the general fractional operators (9) and (11) can be used to formulate a
generalization of the Luchko operational calculus [24,38], where the Mellin convolution will be used instead of
the Laplace convolution.

Statement 2.

Let us assume that the kernel K(t, τ) of the operator (1) with t0 = −∞ satisfies the
following condition

K(t, τ) = K(t− τ) (12)

for all t > τ, the condition of non-negativity and the normability (or the normalization) condition

K(x) ≥ 0,
∫
∞

0
K(x) dx = K < ∞ (13)

for all x ∈ (0,∞), where K is a finite positive constant. In this case, operator (1) can be represented (by
using the change of variable τ→ x = t− τ ) in the form

(
D(K) f

)
(t) = K

∫
∞

0
ρ2(x)Tx

(
D

(n)
τ f (τ)

)
dx (14)

with a finite positive constant K, where ρ2(x) = K(x)/K is the probability density function that satisfies
the condition of non-negativity and the normalization condition

ρ2(x) ≥ 0,
∫
∞

0
ρ2(x) dx = 1, (15)

and Tx is the translation (shift, lag) operator

Tx f (t) = f (t− x), Tx

(
D

(n)
τ f (τ)

)
=

(
D

(n)
z f (z)

)
z=t−x

. (16)

Then operators (1) describe the continuously distributed lag (time delay).

Remark 6. Given the above, we can state that the operator with kernel, which satisfies the conditions (12) and
(13), cannot be interpreted as fractional derivative of non-integer order for positive integer values of n. The
correct interpretation of this operator is integer order derivative with the continuously distributed lag [29].
As a basis for the definition of this operator, which is integer order operators, we can use expression (14) with
conditions (15) instead of Equation (1) with conditions (12) and (13).

To have a fractional generalization of this operator, there are two ways: (A) to use a fractional

differential (or integral) operator
(
D

(α)
τ f

)
(τ) instead of

(
D

(n)
τ f

)
(τ); (B) to use the kernel K(t, τ), for which

the normalization condition (15) is violated. In the work [29], we proposed a fractional generalization
of this type operators by the way (A) to describe processes with memory and distributed lag. The
fractional derivatives and integrals of non-integer orders, in which lag (time delay) is described by
continuous probability distributions, were proposed in [29] (pp. 148–154), and used in macroeconomic
models [30–32]. An example of fractional operators with distributed lag is also suggested in the
Section 7 of the paper [29] (pp. 148–154).
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Remark 7. Please note that general operators of type (1) with the kernel (12) and without the condition (8) were
considered by Anatoly N. Kochubei in works [35–37]. These works suggested concept of a general fractional
calculus by using the differential operator based on Laplace convolution. Kochubei proposed the mathematical
conditions on kernel of general fractional derivative, which lead to the fact that this general operator has a right
inverse operator (a kind of a general fractional integral).

3. Continuously Distributed Scaling (Dilation): Erdelyi–Kober Operators

As a generalization of the Riemann–Liouville fractional integral was proposed by Herman Kober.
The Kober fractional integral [4] (p. 106), of the order α > 0 is defined as

(
IαK;0+;η f

)
(t) =

t−α−η

Γ(α)

∫ t

0
τη (t− τ)α−1 f (τ)dτ, (17)

where η ∈ R. If function f (t) ∈ Lp(R+), with 1 ≤ p < ∞, and η > (1− p)/p, the operator (17) is
bounded [1] (p. 323). For η = 0, operator (17) can be expressed through the Riemann-Liouville
integration by the expression (

IαK;0+;1 f
)
(t) = t−α (IαRL,0+ f )(t). (18)

Changing the variable of integration by τ→ x = τ/t , the Kober operator (17) takes the form

(
IαK;0+;η f

)
(t) =

1
Γ(α)

∫ 1

0
xη(1− x)α−1 f (x t)dx. (19)

Expression (19) allows us to use the probability density function (p.d.f.) of the beta distribution in
the form

ρα;β(x) =
1

B(α, β)
xα−1(1− x)β−1 for x ∈ [0, 1], (20)

and ρα;β(x) = 0 if x < [0, 1], where B(α, β) is the beta function. Using (20), the Kober fractional integral
is represented by the equation

(
IαK;0+;η f

)
(t) = KEK

∫ 1

0
ρη+1;α(x) f (x·t)dx (21)

with the constant

KEK =
Γ(η+ α+ 1)
Γ(η+ 1)

. (22)

We note that expression (21) contains f (x·t) instead of f (x). Therefore the variable x > 0 can be
interpreted as a random variable, which describes scaling (dilation) with the gamma distribution. Using
the scaling operator Sx: Sx f (t) = f (x·t), the Kober fractional integral (17) is represent by the equation

(
IαK;0+;η f

)
(t) = KEK

∫ 1

0
ρη+1;α(x)(Sx f (t))dx, (23)

where KEK is defined by Equation (22). Equation (23) leads to the interpretation of the Kober operator
as an expected value, where x > 0 is a random variable that describes the scaling and has the beta
distribution up to numerical factor (22).

As a result, expression (23) gives a possibility to state that the Kober operator (17) can be interpreted
as a continuously distributed dilation operator, in which the scaling variable has the beta distribution
up to a constant factor (22).

The proposed interpretation of the Kober operator (17) allows us to generalize this operator
by using other the probability density function instead of the beta distribution (20) and other lower
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and upper limits of integral in Equation (23). For example, the generalized operator of continuously
distributed scaling (dilation) is define [29] by the expression

(
D(ρ;S) f

)
(t) =

∫
∞

0
ρ(x)

(
Sx

(
D

(n)
t f

)
(t)

)
dx, (24)

where n = 0, 1, 2, . . ., and ρ(x) ≥ 0 is the probability density function such that∫
∞

0
ρ(x)dx = 1. (25)

In Equation (24) it is assumed that the integral
∫
∞

0 ρ(x)
∣∣∣∣∣Sx

(
D

(n)
t f

)
(t)

∣∣∣∣∣ dx converges, where

D
(n)
x f (x) and ρ(x) are piecewise continuous or continuous functions on R. Here we can consider
D

(n)
t f (t) = f (n)(t).

The Erdelyi–Kober type operator [4] (p. 105), is defined by the equation

(
IαEK;0+;σ,η f

)
(t) =

σ t−σ(α+η)

Γ(α)

∫ t

0
τσ(η+1)−1 (tσ − τσ)α−1 f (τ)dτ, (26)

where α > 0 is the order of integration. To get the notation of the paper (see Equation (1) in p. 360, [24]),
we should change the indexes: σ→ β , α→ δ , η→ γ . In the case σ = 1, operator (26) is represented
in the form of the Kober operator (17). Operator (26) can be represented by the equation

(
IαEK;0+;σ,η f

)
(t) = KEK

∫ 1

0
ρEK(x)(Sx f (t))dx (27)

with the probability density function

ρEK(x) =
σ

B(η+ 1,α)
xσ(η+1)−1(1− xσ)α−1, (28)

and the constant factor KEK defined by Equation (22). For σ = 1, the function (28) described beta
distribution (20).

As a result, the Erdelyi–Kober and Kober operators are operators of integer orders with
continuously distributed scaling (dilation). We should note that the fractional generalizations of these
operators, which can be applied to describe simultaneously action of distributed scaling and fading
memory, were proposed in [29].

As a result, we can state that the operators (1) with kernels (4) and (5), the operators (6) with
different probability density functions (7), and operators (23), (24), (27) can be applied to describe
continuously distributed scale phenomena in economics, physics, and other sciences.

4. Continuously Distributed Delay (Lag): Caputo–Fabrizio Operator

The Caputo–Fabrizio operator is proposed in [26–28]. The Caputo–Fabrizio operator D(α)
CF of the

non-integer order α ∈ (0, 1) is defined (see Equation (2.2) of [26] (p. 74)) by the equation

(
D(α)

CF f
)
(t) =

m(α)

1− α

t∫
t0

exp
{
−

α
1− α

(t− τ)
}

f (1)(τ)dτ, (29)
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where f (1)(τ) = d f (τ)/dτ is the standard derivative of first order, m(α) is a “normalization” function.
For n > 1, the Caputo–Fabrizio operator of the order α+ n ∈ (n, n + 1) is defined (see, Equation (2.8)
of [26] (p. 76)) by the expression (

D(α+n)
CF f

)
(t) =

(
D(α)

CF f (n)
)
(t), (30)

where α ∈ (0, 1) and f (n)(τ) = dn f (τ)/dτn are the standard derivatives of integer order n ∈ N. The
Caputo–Fabrizio operator of the order α ∈ (n, n + 1) is defined (see, Equation (2.8) of [26] (p.76)) by the
expression (

D(α)
CF f

)
(t) =

m(α− n)
n− α+ 1

t∫
t0

exp
{
−

α− n
n− α+ 1

(t− τ)
}

f (n+1)(τ)dτ, (31)

where n = [α]. The Caputo–Fabrizio operators (31) of order α ∈ (n, n + 1) with t0 = −∞ can be
represented in the form(

D(α)
CF f

)
(t) =

λ m(α− n)
α− n

∫ t

−∞

exp
{
− λ (t− τ)

}
f (n+1)(τ)dτ, (32)

where
λ =

α− n
n− α+ 1

(33)

Changing the variable τ→ x = t− τ of integration in (32), Equation (32) takes the form(
D(α)

CF f
)
(t) =

λ m(α− n)
α− n

∫
∞

0
exp

{
− λx)

}
f (n+1)(t− x)dx. (34)

Equation (34) can be represented by expression (14) in the form(
D(α)

CF f
)
(t) = KCF

∫
∞

0
ρ(x)

(
Tx f (n+1)(t)

)
dx, (35)

where the positive constant KCF is

KCF =
m(α− n)
α− n

, (36)

and ρ(x) is the probability density function of the exponential distribution

ρ(x) = λ exp(− λ x), (37)

for x > 0 and ρ(x) = 0 for x ≤ 0, where λ > 0 is the parameter that is often called the rate parameter
or the speed of response [39] (p. 27). It is also used the parameter T = 1/λ as time-constant of
exponentially distributed lag. This parameter T is interpreted as the length of the time delay [39] (p.27).
The kernel (37) is actively used in economics to describe processes with distributed lag [39] (p. 26). We
should note that distribution (37) describes the time between events in a Poisson point process, which
is the continuous analogue of the geometric distribution. It is well-known that this distribution has the
key property of being memoryless.

In the work [22], it is proved that the Caputo–Fabrizio operator of the order β = n− 1/(λ+ 1),
coincides with derivative of integer order with exponentially distributed lag, where λ is the rate
parameter (33) of the distribution (37), and n = [β] + 1. Therefore, the Caputo–Fabrizio operator can
be interpreted as an integer order derivative with the exponentially distributed time delay.

The existence of the time delay is based on the fact that the processes have a finite speed, and the
change of the input does not lead to instant changes of output. In physical sciences it is well-known
that the finite speed of the process does not mean that there is memory in the process. Therefore
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continuously distributed lag cannot be considered to be a dependence of the state of as process on its
history. The time delay cannot be interpreted as a memory.

As a result, the Caputo–Fabrizio operators cannot be applied to modeling memory or spatial
nonlocality in processes, but this operator describes continuously (exponentially) distributed time delay.

The proposed interpretation of the Caputo–Fabrizio operator (35) allows us to generalize this
operator [29] by using other the probability density function instead of the exponential distribution
(37). For example, the generalized operator of continuously distributed scaling (dilation) is define [29]
by the expression (

D(ρ;T) f
)
(t) =

∫
∞

0
ρ(x)

(
Tx f (n)(t)

)
dx, (38)

where n = 0, 1, 2, . . ., and ρ(x) ≥ 0 is the probability density function such that∫
∞

0
ρ(x)dx = 1. (39)

In Equation (38) it is assumed that the integral
∫
∞

0 ρ(x)
∣∣∣∣(Tx f (n)(t)

)∣∣∣∣ dx converges, where f (n)(x)
and ρ(x) are piecewise continuous or continuous functions on R.

The fractional generalization of the Caputo–Fabrizio operator was proposed in [29] to take into
account various distributions of delay time and power-law fading memory in one operator.

5. Continuously Distributed Fading Memory

To describe memory (the fading memory), we can use operators (1), for which the normability
condition is not satisfied.

For example, the operator (1) with t0 = −∞ and the kernel

K(t, τ) =
1

Γ(n− α)
(t− τ)n−α−1 (40)

is the left-sided Caputo fractional derivative of the order α ≥ 0 (see Equation (2.4.15) [4] (p. 92) for
a = −∞) that is defined by the equation

(
Dα

C+ f
)
(t) =

1
Γ(n− α)

∫ t

−∞

(t− τ)n−α−1 f (n)(τ)dτ, (41)

where Γ(α) is the gamma function, and f (n)(τ) is the derivative of the integer order n = [α] + 1 for
non-integer values of α (and n = α for integer values of α). Changing the variable τ→ x = t− τ
operator (1) with the kernel (40) and t0 = −∞ can be represented in the form

(
D(K) f

)
(t) =

∫
∞

0
Kc(x)

(
Tx f (n)(t)

)
dx, (42)

where the kernel

Kc(x) =
xn−α−1

Γ(n− α)
(43)

cannot be interpreted as a probability density function since the normalization condition is violated∫
∞

0
Kc(x) dx =

(
xn−α

Γ(n− α+ 1)

)∞
0
= ∞ (44)

for non-integer values of α.
Let us describe some basic principles and properties of the kernel that should be taken into account

to describe memory.
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Principle of violation of normability. Processes with memory cannot be described by operators
(1) if the operator kernel can be considered to be a probability density function. In other words, the
memory function cannot be probability density function.

The requirement of violation of the normability conditions is not enough for a comprehensive
description of fading memory. We should have conditions for the kernel of operator (1), which allow
us to use this operator to described memory.

Principle of causality. The main condition that must be satisfied for all types of memory is the
fulfillment of the causality principle. It is obvious that the operators that describe memory phenomena
should satisfy the causality principle. In mathematical form, the causality principle can be realized by
the Kramers–Kronig relations [18].

In addition to these relations, we can state that the right-sided fractional derivatives (for example
the Riemann–Liouville, Liouville, and Caputo-type) cannot be used to processes with the memory.
The right-sided fractional integrals and derivatives are defined for τ > t, where t is the present time
moment. Therefore these operators describe dependencies of processes on the future states. The
left-sided fractional operators describe the past states of the process.

Principle of memory fading. The important property of memory is the memory fading. The
principle of memory fading was first proposed by Ludwig Boltzmann, and then it was significantly
developed by Vito Volterra. This principle states that the increasing of the time interval leads to a
decrease in the contribution of impact to the response. The exact mathematical formulation of this
principle is given in [40–44], it is more complicated than that required for us in this paper, which
is restricted by the operators (1). Therefore we will use a simplified formulation of the principle of
memory fading [17].

Let us consider two functions f (τ) and y(t), which are interpreted as the impact and response
variables respectively, and we will assume that these functions are connected by the equation

y(t) =
∫ t

0
K(t, τ)

(
D

(n)
τ f (τ)

)
dτ. (45)

Let us assume thatD(n)
τ f (τ) is different from zero on a finite time interval τ ∈ [0, T], and which

is zero outside this interval (D(n)
τ f (τ) = 0 for t > T). This means that we consider H(T–τ)D(n)

τ f (τ)
instead ofD(n)

τ f (τ) in Equation (45) with times t ∈ [T,∞). Then Equation (45) gives

y(t) =
∫ T

0
K(t, τ)

(
D

(n)
τ f (τ)

)
dτ f or t < T. (46)

We see that for t > T there is no impact, but the response is different from zero (y(t) , 0 for t > T).
This means that the memory about the impact, which acts on time interval [0, T], is stored in the process.
Therefore, we can state that this process saves the history of changes of the impact. Using the mean
value theorem, there is a value ξ ∈ [0, T] and Equation (46) can be written as

y(t) = K(t, ξ)
(
D

(n)
τ f (τ)

)
τ=ξ

T. (47)

As a result, we can see that the behavior of the response y(t) is determined by the behavior of the
kernel K(t, τ) with fixed constant time τ = ξ. The behavior of the kernel K(t, τ) at infinite increase of t
( t→∞ ) and fixed τ determines the dynamics of the process with memory (See Table 2).
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Table 2. Examples of the correspondence between the type of memory and type of operator kernels.

Type of Memory Type of Kernel Fading (Dissipation)

Memory of Insignificant Events
∣∣∣∣∣ limt→∞

K(t, τ)
∣∣∣∣∣ = 0 Fading Memory

Memory of Significant Events 0 <
∣∣∣∣∣ limt→∞

K(t, τ)
∣∣∣∣∣ < ∞ Non-Fading Memory

Memory of Crises and Shocks
∣∣∣∣∣ limt→∞

K(t, τ)
∣∣∣∣∣ = ∞ Non-Fading Memory

Let us assume that there is the limit

lim
t→∞

K(t, τ) = K∞(τ) = K∞, (48)

for all τ, when τ < t. In this case, we can consider the three basic type of behavior of K(t, ξ) at infinity
t→∞ .

First Type (K∞ = 0): Memory of Insignificant Events (IE-memory). If the kernel tends to zero
(K(t, τ)→ 0) at t→∞ , then the process completely forgets about the impact that acts in the past.
Then the process that is described by Equation (47) is reversible (is repeated) in a sense. We can say
that the memory effects did not lead to irreversible changes of the process, since the memory about
the impact has not been preserved forever. Therefore this type of memory can be called “the memory
with complete forgetting” (or the memory of insignificant events). As a result, the mathematical
characteristic of processes with fading memory can be described by the operator kernels that satisfy
the following Principle of Memory Fading memory: Memory, which is described by the operator (45),
is fading if the kernel satisfies the condition

lim
t→∞

K(t, τ) = 0 (49)

for all fixed values of τ. The memory will be called the memory with power-law fading if there is
a parameter α > 0 such that the limit lim

t→∞
t−α K(t, τ) is a finite constant for fixed τ. For example, the

kernel (40) of the left-sided Caputo fractional derivative describes the power-law memory fading.
Second Type (0 <|K∞|< ∞ ): Memory of Significant Events (SE-memory). If the kernel K(t, τ)

tends to a finite limit at t→∞ , the impact leads to the irreversible consequences in the sense that the
memory of the impact is preserved forever. Therefore this type of memory can be called “the memory
with remembering forever” (or memory of significant events).

Third Type (K∞ = ∞): Memory of Crises and Shocks (CS-memory). Unbounded increase of
the kernel K(t, τ) at t→∞ (with fixed τ) characterizes an unstable process with memory. This kernel
cannot be used to describe stable processes. However, this type of kernels can be used in the various
models, which take into account the processes with crises and shocks (for example in economy), when
we can expect a manifestation of instability phenomena. The behavior of processes with memory at
time t is determined by the behavior of the operator kernel (memory function) in the previous time
instants τ < t. Therefore, an unbounded increase in the memory function at infinity ( t→∞ ) does not
lead us to the rejection of consideration of such operator kernels. For example, in this type of memory
one can assume that the operator kernel K(t, τ) is bounded for all τ < t for a fixed t < ∞. Therefore this
type of memory can be called “the memory of crises and shocks”.

Non-Monotony of Decrease. In general, the memory fading assumes a set of stronger restrictions
on the operator kernels. For example, it is assumed that the fading memory is described by operator
kernels, which tends to zero monotonically with increasing the time variable. This assumption means
that it is less probable to expect of strengthening of the memory with respect to the more distant
events. We should note that in economics the agents may remember sharp and significant changes of
the variables despite the fact that these changes were more distant past compared to weaker changes
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in the near past. For this reason, in economics we can use operator kernels without property of
monotonic decrease.

Principle of memory reversibility. In paper [17,18], we describe some general restrictions that
can be imposed on the structure and properties of memory. For example we consider the principle
of memory reversibility (the principle of memory recovery). The principle of memory reversibility
is connected with the principle of duality of accelerator with memory and multiplier with memory,
which is proposed in [45]. Mathematically this principle is based on the main property of any fractional
derivative to be a left-inverse operator to the corresponding fractional integral operator.

Remark 8. We should note that there is an addition restriction on the kernel of the operator (1). In general,
to have a self-consistent mathematical theory of the operators (1), the general fractional derivative (1) with
n = 1, 2, 3, . . . should be a left-inverse operator to the corresponding general fractional integral operator (1) with
n = 0. This requirement leads us to a relationship between the type of the operator kernels K(t, τ) and the order

(and type) of the operators
(
D

(n)
τ f (τ)

)
of integer order n = 1, 2, 3, . . .. For the kernel should depend on the order

, i.e., K(t, τ) = Kn(t, τ).

Remark 9. General fractional calculus was proposed by Anatoly N. Kochubei in [35–37] and based on the use of
differential operators with Laplace convolution (the general Laplace-convolutional derivatives). The principle of
memory reversibility means that the general operators should have right inverse (a kind of a fractional integral).
We assume that the Kochubei approach to formulation of general fractional calculus, which is based on the Laplace
convolution, can be applied to formulate new fractional calculus based on Mellin convolution. The general
operators (the general Mellin -convolutional derivatives), which are based on Mellin convolution, and equations
with these operators can be used to describe the scaling (dilation) phenomena in physics and economics.

6. Properties of Kernels of Inverse Operators and Type of Phenomena

An addition restriction on the kernel of the operator (1) can be considered. The general operators
(1) with n = 1, 2, 3, . . . can be considered to be the general fractional derivative. The general operators (1)
with n = 0 can be considered to be general fractional integrals. In our opinion to have a self-consistent
mathematical theory, the general fractional derivative (1) with n = 1, 2, 3, . . . should be a left-inverse
operator to the corresponding general fractional integral operator (1) with n = 0. Therefore we
proposed the following principle for fractional calculus: Any type of generalized (fractional) derivative
should be a left-inverse operator to the corresponding type of generalized (fractional) integral operator.
This principle can be considered to be a requirement of the existence of a generalization of the
fundamental theorem of calculus, which is a theorem that links the concept of differentiating with the
concept of integrating.

Obviously, this principle, this requirement lead us to a relationship between the type of the
operator kernels Kn(t, τ) n = 1, 2, 3, . . . , and the type of the kernel K0(t, τ). Please note that this
requirement also leads us to a relationship between the type of the operator kernels Kn(t, τ) and

the order (and type) of the operators
(
D

(n)
τ f (τ)

)
of integer order n = 1, 2, 3, . . .First Question: In

connection with this principle, the natural question arises about the relationship between the properties
of the kernels of fractional operators, considered to be the fractional integrals and as the fractional
derivatives. In many cases, kernels belong to one type of functions. For example, the kernel of the
left-sided Caputo fractional derivative (see Equation (2.4.15) in p. 92, [4]) has the form

Kn(t, τ) =
1

Γ(n− α)
(t− τ)n−α−1 (50)

for = 1, 2, 3, . . . . This fractional derivative is the left-inverse operator for the left-sided
Riemann–Liouville fractional integral. The kernel of this integral is described by Equation (50)
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with n = 0 and negative α (see Equation (2.1.1) in [4] (p. 69)). The same situations we have for
the Erdelyi–Kober operator and other types of fractional operators. However, this is not true in the
general case.

Remark 10. In paper [17,18], we describe some general restrictions that can be imposed on the structure and
properties of memory. These restrictions are proposed as the principle of memory reversibility (the principle of
memory recovery). Mathematically this principle is based on the property of any fractional derivative to be a
left-inverse operator to the corresponding fractional integral operator.

Statement 3.

The generalized (fractional) derivative (1) with n = 1, 2, 3, . . . must be the left inverse operator
to the corresponding generalized (fractional) integral operator (1) with n = 0. However, the kernels
Kn(t, τ) with n = 1, 2, 3, . . . of operator (1) and the kernel K0(t, τ) of the fractional integral operator (1)
with n = 0 can belong to different types of functions.

To prove this statement, we give an example of fractional operators of distributed orders.
In general, the parameter α that is the order of the fractional derivative or integral and describes

the memory fading, can be distributed on an interval with some probability density function (the
weight function). In the simplest case, we can use the continuous uniform distribution (CUD). The
fractional integrals and derivatives of the uniform distributed order can be expressed thought the
continual fractional integrals and derivatives, which were suggested by Adam M. Nakhushev [46,47].
The operators of non-integer orders, which are left inverse to the continual fractional integrals and
derivatives, are proposed by Arsen V. Pskhu in [48,49]. Using the continual fractional integrals and
derivatives, which were suggested by Nakhushev, we can define the integral and derivatives of uniform
distributed order. These operators will be called the Nakhushev fractional integrals and derivatives.
The corresponding inverse operators are proposed by Pskhu and therefore operators, which are inverse
to fractional CUD fractional operators, will be called the Pskhu fractional integrals and derivatives.

In works of Pskhu [48,49] the notations D[α,β]
0+ and D−[α,β]

0+ are used for positive (0 < α < β) and
negative (α < β ≤ 0) values of α and β. In our opinion, this leads to confusion and misunderstanding
in applications. Therefore we will use new notations, which allow us to see explicitly the integration
and differentiation of the fractional orders.

The Nakhushev fractional integral can be defined (see Equation (5.1.7) of [49] (p. 136) and [48])
defined in the form

I[α,β]
N X(t) =

1
β− α

∫ β

α
IξRL,a+X(t)dξ =

∫ t

0
W(α, β, t− τ) X(τ)dτ, (51)

where we use the function

W(α, β, t) =
1

(β− α) t

∫ β

α

tξdξ
Γ(ξ)

. (52)

Using Equation (5.1.26) of [49] (p. 143), the Nakhushev fractional derivative can be written in
the form

D[α,β]
N X(t) =

(
d

dx

)n ∫ t

0
W(n− α, n− β, t− τ) X(τ)dτ, (53)

where β > α > 0. Please note that the Nakhushev fractional derivatives cannot be considered to
be inverse operators for the Nakhushev fractional integration. The Pskhu fractional derivatives are
inverse to the Nakhushev fractional integration and the Pskhu fractional integrals are inverse to the
Nakhushev fractional derivatives.
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The Pskhu fractional integral can be defined (see Equation (5.1.7) of [49] (p. 136), and [48]) by
the expression

I[α,β]
P X(t) = (α− β)

∫ t

0
(t− τ)β−1Eβ−α

[
(t− τ)β−α; β

]
X(τ)dτ, (54)

where β > α > 0. where Eα[z; β] is the Mittag–Leffler function that is defined by the expression

Eα[z; β] =
∞∑

k=0

zk

Γ(αk + β)
. (55)

Using Equation (5.1.7) of [49] (p. 136), we can define the Pskhu fractional derivative as

D[α,β]
P X(t) = (α− β)

(
d

dx

)n ∫ t

0
(t− τ)−α En−1

β−α

[
(t− τ)β−α; 1− α

]
X(τ)dτ, (56)

where β > α > 0 and the function Eµα[z; β] is defined by the equation

Eµα[z; β] =
∂
∂µ

(zµ Eα[z; β+ µ])

As a result, we have that the Nakhushev fractional derivatives cannot be considered to be
left-inverse operators for the Nakhushev fractional integrals [48,49]. Operators, which are left-inverse
operator for the Nakhushev fractional derivatives and integrals, are the Pskhu fractional integrals
and derivatives.

As a result, we proved that the kernels of the original and inverse operators can be of different types.
Second Question: If the kernels of generalized (fractional) derivative and the corresponding

generalized (fractional) integral operator can be described by functions of different types, then the
second natural question arises: Will these kernels describe the same types of phenomena? If the
operator cores are different, then what is the difference in the phenomena described by these different
types of cores? As a suggested answer on these questions, we can propose the following hypothesis.

Hypothesis of Duality: The kernels of the original and inverse operators of fractional calculus
should describe dual types of phenomena.

This hypothesis is based on an attempt to answer the second question in the framework of
economic interpretation, which is presented in the form of the principle of duality proposed in [45]. In
this principle we describe duality of two basic economic concepts: the accelerator with memory and
multiplier with memory (for details see [45]).

Remark 11. We assume that the Kochubei approach to formulation of general fractional calculus, which is based
on the Laplace convolution, can be applied to formulate new fractional calculus based on Mellin convolution. This
allows us to describe duality of the economic concepts of the accelerator with scaling and multiplier with scaling.

7. Memory with Lag: Distributed Lag Fractional Operators

In general, we can simultaneously take into account two different types of phenomena. For
example, we can simultaneously take into account lagging and memory phenomena. For this,
we proposed the distributed lag fractional calculus in [29]. Then this approach was applied to
macroeconomic models.

To illustrate this approach, let us assume that the joint action of two phenomena: the lag with
gamma distribution of delay time and the power-law fading memory. We will use the Caputo fractional
derivatives to describe power-law memory. The continuously distributed delay time is described by
the translation operator, where the delay time τ > 0 is a random variable that is distributed on positive
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semiaxis. We can prove that the composition of these operators is represented as the Abel-type integral
and integro-differential operators with the confluent hypergeometric Kummer function in the kernel.

The Caputo fractional derivative with gamma distributed lag is defined by the equation

(
Dλ,a;α

T;C;0+ f
)
(t) =

∫ t

0
Kλ,a

T (τ)
(
Dα

C,0+ f
)
(t− τ) dτ, (57)

where the kernel Kλ,a
T (τ) is the probability density function of the gamma distribution

Kλ,a
T (τ) =

 λa τa−1

Γ(a) exp(−λ τ)

0
i f τ > 0,
i f τ ≤ 0,

(58)

with the shape parameter a > 0 and the rate parameter λ > 0. If a = 1, the function (58) describes the
exponential distribution. Using the associative property of the Laplace convolution, the operators (57)
can be represented [29] in the form

(
Dλ,a;α

T;C;0+ f
)
(t) =

∫ t

0
Kλ,a;n−α

TRL (τ) f (n)(t− τ) dτ, (59)

where n− 1 < α ≤ n, and the kernel Kλ,a;n−α
TRL (t) has the form

Kλ,a;n−α
TRL (t) =

λa Γ(a)
Γ(a + n− α)

ta+n−α−1F1,1(a; a + n− α;−λt), (60)

where F1,1(a; b; z) is the confluent hypergeometric Kummer function that is defined (see [4] (pp.29–30))
by the equation

F1,1(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1 exp(zt)dt =

∞∑
k=0

Γ(a + k)Γ(c)
Γ(a)Γ(c + k)

zk

k!
, (61)

where a, z ∈ C, Re(c) > Re(a) > 0 such that c , 0,−1,−2, . . .. and series (61) is absolutely convergent
for all z ∈ C. It should be noted that the kernel (60) can be represented through the three parameter
Mittag-Leffler function Eγα,β(z), which is also called the Prabhakar function, by using the equation
F1,1(a; c; z) = Γ(c)Ea

1,c(z). The Laplace transform of fractional operator (59) has the form

(
L

(
Dλ,a;α

T;C;0+ f
)
(t)

)
(s) =

λa

(s + λ)a

sα(LY)(s) −
n−1∑
j=0

sα− j−1 f ( j)(0)

, (62)

where n− 1 < α ≤ n.
As a result, the kernel Kλ,a;n−α

TRL (τ) of the proposed special kind of the Abel-type fractional derivative
describes the joint phenomenon of the power-law fading memory and the continuously distributed
lag. Using Theorem 6.5 in [29] (pp. 145–146), and results of [31,32], we can describe the solution of the
fractional differential equation (

Dλ,a;α
T;C;0+y

)
(t) = ωy(t) + F(t), (63)

where the operator Dλ,a;α
T;C;0+ is defined by Equation (59), α > 0 is the order of the operators, the

parameters a > 0 and λ > 0 are the shape and rate parameters of the gamma distribution of delay time.
The solution of Equation (63) can be represented in the form

y(t) =
n−1∑
j=0

Sα− j−1
α,a [ω λ−a,λ|t]y( j)(0) +

1
ω

F(t) −
1
ω

∫ t

0
Sαα,a [ω λ

−a,λ
∣∣∣t− τ] F(τ)dτ, (64)
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with n = [α] + 1, and Sγ
α,δ [µ,λ

∣∣∣t] is the special function that is defined by the expression

Sγ
α,δ [µ,λ

∣∣∣t] = − ∞∑
k=0

tδ(k+1)−αk−γ−1

µk+1Γ(δ(k + 1) − αk− γ)
F1,1(δ(k + 1); δ(k + 1) − αk− γ,−λt), (65)

where F1,1(a; b; z) is the confluent hypergeometric Kummer function (61).
In the connection with a possibility of composition of two or more kernels of operators that describe

different phenomena, an important question arises about the following inverse mathematical problem.
How we can identify and separate actions of two different type phenomena in it simultaneously
action? In our opinion, the answer on this question is important to physics, mechanics, economics and
other sciences.

8. Operator Kernel Behavior at Zero and Interpretation

In general, the type of behavior of the operator kernel (1) at t→ 0 can be important to different
applications. We can assume the following type of behavior the kernel K(t).

(1) The operator kernel tends to zero while the argument t tends to zero

lim
t→0+

K(t) = 0. (66)

(2) The kernel K(t) tends to finite nonzero constant while the argument t tends to zero

lim
t→0+

K(t) = K(0) = const. (67)

(3) The kernel K(t) tends to infinity as the argument t tends to zero

lim
t→0+

K(t) = ±∞.

A lot of kernels of the fractional integral and derivatives demonstrate only the third (or first) type
of behavior at zero for non-integer orders. Let us describe some examples of the operator kernels that
have this type of behavior.

The kernel of the Riemann–Liouville fractional integral has the form

KRLI(t) =
1

Γ(α)
tα−1, (68)

where α > 0 [4] (p.69). We see that

KRLI(0) =


0
1
∞

i f
i f
i f

α > 1
α = 1

0 < α < 1
. (69)

This means that kernel of the Riemann-Liouville fractional integral can demonstrate three type of
behavior at zero (t = 0). However, the second type of behavior (KPI(0)=const) cannot be realized for
non-integer orders α > 0.

The kernel of the Caputo and Riemann–Liouville fractional derivatives has the form

KCD(t) = KRLD(t) =
1

Γ(n− α)
tn−α−1, (70)
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where n = [α] + 1, and n− 1 < α < n for non-integer values of order α [4] (pp.70–91). We see that

KCD(0) =


0
1
∞

i f
i f
i f

0 < α < n− 1
α = n− 1
α > n− 1

. (71)

This means that kernel of the Caputo and Riemann-Liouville fractional derivatives can demonstrate
only one (singular) type of behavior at zero (t = 0) for non-integer orders. The other two cases
(KCD(t) = 0 and KCD(0) = 1) are not implemented for the following reasons: (A) The case α = n− 1
cannot be used for the Caputo derivative since we have α = n for integer values of α (see Equation
(2.4.3) in [4] (p.91)). For this case, the Riemann–Liouville fractional derivative is standard derivative of
integer order. (B) The case 0 < α < n− 1 cannot be used by definition the Caputo and Riemann-Liouville
fractional derivatives that contains the condition n− 1 < α < n for non-integer values of order α. We
have a similar situation for the Erdelyi–Kober and Kober operators.

As a result, we see that the power-law kernels of fractional derivatives have significantly less
variability in the behavior properties at zero. Please note that the variety of properties of operator
kernel at zero is important for applications of these operators in economics and physics, for example.

Let us note that some important phenomena are described only by the kernels with second
type of behavior. For example, in economics this condition is used for the kernels that describe the
depreciation of fixed assets (of capital), depreciation of equipment, obsolescence, aging, wear and
tear [50] (p. 20). The kernel K(t− τ) characterizes the share of fixed assets put into operation at time
τ and continuing to operate at time t > τ. Obviously, in this case, the condition K(0) = 1 must be
satisfied. For this, economics often use the exponential functions and the probability density function
of the exponential distribution.

The kernels of the Riemann–Liouville, Caputo, Erdelyi–Kober fractional operators of non-integer
order cannot be used to describe the depreciation or aging phenomena in economy. To describe these
phenomena we can use the fractional operators with the Prabhakar function, the hypergeometric
function, the Kummer (confluent hypergeometric) function in the kernels. In the framework of
fractional calculus, these operators were proposed and described more than forty years ago in [51],
(see also [52,53]) for the Prabhakar function, [54,55] the Kummer (confluent hypergeometric) function,
and [56] (see also [1] (pp. 731–737)) for the hypergeometric function.

Please note that the operators with the Kummer (confluent hypergeometric) function in the kernels
can be interpreted as the joint effect of two phenomena: the memory with power-law fading and the lag
with gamma distribution of delay time. In the paper [29] (see Theorem 4.3 and Equation (4.48) p. 137;
see also Equations (4.53) and (6.7)), we use the operators with the Kummer (confluent hypergeometric)
function in the kernels that is Laplace convolution of the kernel of the Caputo fractional derivatives
and probability density function of the gamma distribution that describes the distribution of the delay
time τ > 0.

The kernel of the Prabhakar fractional integral has the form

KPI(t) = tµ−1Eγρ,µ[ωtρ] = tµ−1
∞∑

k=0

Γ(γ+ k)
Γ(γ)Γ(ρk + µ)

(ωtρ)k

k!
. (72)

We can see that the kernel (72) can demonstrate three type of behavior at zero

KPI(0) =


0
1
∞

i f
i f
i f

µ > 1
µ = 1

0 < µ < 1
(73)
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The kernel of the Kilbas–Saigo–Saxena fractional derivative [53] (that is also called the Prabhakar
fractional derivative), which is proposed in [53] and it is left-inverse operator for the Prabhakar
fractional integral, has the form

KPD(t) = tn−µ−1E−γρ,n−µ[ωtρ], (74)

where n ≥ [Re(µ)] + 1 with Re(µ) > 0. We should emphasize that in kernel (74), we can use all
positive integer values n ≥ [Re(µ)] + 1, where Re(µ) > 0 since n is defined as n = [µ+ ν] + 1 with
Re(µ), Re(ν) > 0 in Theorem 9 in [53] (p. 47)).

Using expression (74), we get the following properties of kernel (74) in the initial point

KPD(0) =


0
1
∞

i f
i f
i f

0 < µ < n− 1
µ = n− 1
µ > n− 1

. (75)

As a result, the kernel of the Kilbas–Saigo–Saxena fractional derivative can demonstrate three type
of behavior at zero. Please note that this operator remains a fractional operator and under condition
µ = n − 1. This behavior significantly distinguishes this operator from other fractional derivatives,
which usually have a singularity at zero.

Therefore to satisfy the initial conditions K(0) = 1 for the operator kernel, we can use the kernels
with the Prabhakar function. These kernels allow us to use the fractional integrals and derivatives with
the Prabhakar function in the kernel, which proposed in the works [51–53], to describe depreciation
processes in economics. In addition, we can state that the kernel KPI(t) is the complete monotonic
function for the case ω < 0, 0 < ρ,µ ≤ 1, 0 < γ ≤ µ/ρ. The property of the complete monotonicity is
important for the interpretation of operator kernels that describe standard depreciation phenomena.
However, we can assume that the requirement of complete monotonicity for depreciation kernels is
not necessary, when taking into account modernization of the equipment.

9. Conclusions

In this paper, we discussed an interpretation of fractional derivatives and integrals from the point
of view of applied mathematics, theoretical physics, and economic theory. We state that it is important
to connect all restrictions on the fractional operator kernels with types of phenomena, in addition to the
self-consistency of mathematical theory. In applications of fractional calculus, we have a fundamental
question about conditions of kernels of non-integer order operators that allow us to describe one or
another type of phenomena. It is necessary to obtain exact correspondences between sets of properties
of kernel and type of phenomena. In this paper, we describe some important properties of fractional
operator kernels that can determine the characteristic features of certain types of phenomena. We
consider the possible characteristic properties of kernels of fractional operators to distinguish the
following types of phenomena: fading memory (forgetting) and power-law frequency dispersion;
spatial non-locality and power-law spatial dispersion; distributed lag (time delay); distributed scaling
(dilation); depreciation and aging.

Let us briefly describe possible directions for application of the proposed approach.

a) We should note the power-law kernels function can be used to consider an approximation
of the generalized memory functions [57]. Using the generalized Taylor series in the
Trujillo-Rivero-Bonilla form for the memory function, we proved [57] that the equations with
memory functions can be represented through the Riemann–Liouville fractional integrals and the
Caputo fractional derivatives of non-integer orders for wide class of the kernels. We can also note
that the Abel-type fractional integral operator with Kummer function in the kernel (see Equation
(37.1) in [1] (p. 731), and [32]) can be represented as an infinite series of the Riemann–Liouville
fractional integrals.

b) We can have new types of phenomena in quantum theory, where we should take into account the
intrinsic dissipation, the openness of systems, an interaction with environment [58–61].
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c) We can expecte new types of phenomena in nonlinear, chaotic systems and for self-organization
processes [62–65], where we should take into account the new types of attractors, patterns
and effects.

At the same time, we emphasize that we have in mind not new regular applications of
fractional calculus to the description of various particular phenomena in various science. We
mean exact correspondence between the types of phenomena and the types of properties of fractional
operator kernels.
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