. mathematics ﬁw\o\w

Article

Faber Polynomial Coefficient Estimates for
Bi-Univalent Functions Defined by Using
Differential Subordination and a Certain
Fractional Derivative Operator

Hari M. Srivastava 12%*{, Ahmad Motamednezhad *® and Ebrahim Analouei Adegani *
1 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
2 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 40402, Taiwan

Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,

AZ1007 Baku, Azerbaijan

4 Faculty of Mathematical Sciences, Shahrood University of Technology, P. O. Box 36155-316,

Shahrood 36155-316, Iran; a.motamedne@gmail.com (A.M.); analoey.ebrahim@gmail.com (E.A.A.)

Correspondence: harimsri@math.uvic.ca

Received: 29 December 2019; Accepted: 20 January 2020; Published: 1 February 2020 af;)e&i;(tfé);
Abstract: In this article, we introduce a general family of analytic and bi-univalent functions in the
open unit disk, which is defined by applying the principle of differential subordination between
analytic functions and the Tremblay fractional derivative operator. The upper bounds for the general
coefficients |a,| of functions in this subclass are found by using the Faber polynomial expansion.
We have thereby generalized and improved some of the previously published results.
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1. Introduction, Definitions and Preliminaries

Let A be a class of functions of the following (normalized) form:

fz) =z+ ) anz", 1)
n=2
which are assumed to be analytic in the open unit disk
U={z:z€C and |[z] <1}

Further, let S denote the subclass of functions contained in the class A of normalized analytic
functions in U, which are univalent in U.

We recall the well-established fact that every function f € S possesses its inverse f !, which is
defined by

flf@) =2z (z€0)

and
Ut =w (ll<ntinzy),
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where
g(w) = fHw) = w—aw?® + (245 — a3)w® — (5a5 — 5agaz +ag)w* + - -
=w+ ) A" (2)
n=2

Given a function f € A, we say that f bi-univalent in U if both f and f~! are univalent in U.
We denote by X the class of functions f € A, which are bi-univalent in U and have the Taylor-Maclaurin
series expansion given by (1). In the year 1967, Lewin [1] studied the bi-univalent function class £ and
derived the bound for the second Taylor-Maclaurin coefficient |ay| in (1).

The interested reader can find a brief historical overview of functions in the class X in the work
of Srivastava et al. [2], which actually revised the study of the bi-univalent function class X, as well
as in the references cited therein. Bounds for the first two Taylor-Maclaurin coefficients |a;| and |a3]
of various subclasses of bi-univalent functions were obtained in a number of sequels to [2] including
(among others) [3-12]. As a matter of fact, considering the remarkably huge amount of papers on the
subject, the pioneering work by Srivastava et al. [2] appears to have successfully revived the study of
analytic and bi-univalent functions in recent years.

The coefficient estimate problem for each of the Taylor-Maclaurin coefficients |a,| (n = 4) is
presumably still an open problem for a number of subclasses of the bi-univalent function class
2. Nevertheless, in some specific subclasses of the bi-univalent function class ¥, such general
coefficient estimate problems were considered by several authors by employing the Faber polynomial
expansions under certain conditions (see, for example, [13-33]). Here, in our present investigation of
general coefficient expansion problems, we begin by recalling several definitions, lemmas and other
preliminaries which are needed in this paper.

Historically, the Faber polynomials were introduced by Georg Faber (1887-1966) (see [34,35]).
It has played and it continues to play an important réle in various areas of mathematical sciences,
especially in Geometric Function Theory of Complex Analysis (see, for example, [36]). If we make use
of the Faber polynomial expansion of functions f € S of the form given by (1), the Taylor-Maclaurin
coefficients of its inverse map ¢ = f ! are expressible as follows (see, for details, [37,38]):

o

g(w) = f_l(w) =w+ Z % K;fl(aba’j/' < a)w”, 3)
n=2

where

Kn_ill = K;ill (a2/ as,- - /an)

_ (—Tl)! n—
= a2t

(—7’1)! n—4
T )m—ay 2 Mt

(2(=n+2))!(n —5)!

(=n)!
(=2n+5)!(n—6)

[as + (—n+2)a3] +

n—j
+). 4,V
=7

' a4 ~®lag + (—2n + 5)azay]

such that V; (7 < j = n) is a homogeneous polynomial in the variables a;,a3, - - - ,a, and expressions
such as (for example) (—n)! are symbolically interpreted as follows:

(—n)!'=T(1—n):=(-n)(-n—-1)(-n-2)--- (neNg:=NU{0} (N:={1,2,3,---})).
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In particular, the first three terms of K ", are given by
K2 =—2a,, K;3=3 (2a§ _ a3> and K3*=—4 (5a§ ~ Sayas + a4) .

In general, for any p € Z = {0,£1,£2,---}, an expansion of Kb is given below (see,
for details, [36,39]; see also [37,38,40] (p. 349))

p(p—1) » p! 3., ... p! n
2 P+ (p—23)!3! Dt (p—n)!n! D

KL = pa, 1 +

where (see, for details, [30,40])
D} = Dji(ay,a3,-- ).

We also have
mli(ag)H - - - (apqq)
]’ll! e ynl

where the sum is taken over all nonnegative integers y1, - - - , yt, satisfying the following conditions:

Dzn<a2ra3/"'/un+l) :Z ’ 4

P+ =m

M1+ 2up + - - +npy, =n.

It is clear that
DZ(”2/Q3/ e /an-i-l) = ag'

Definition 1. (see [41]) For two functions f and g, which are analytic in U, we say that the function f is
subordinate to g in U and write

fz)<g(z)  (z€0),

if there exists a Schwarz function w(z) which, by definition, is analytic in U with
w(0)=0  and lw(z)] <1 (zel)
such that

f@)=glw(z)) (z€l).

In particular, if the function g is univalent in U, then

f=g < f(0)=g(0) and f(U)C g(U).

Ma and Minda [42] unified various subclasses of starlike and convex functions for which either of
the quantities
zf'(2) zf"(2)
f(z) f(z)
is subordinate by a general superordinate function. For this purpose, they considered an analytic
function with positive real part in the unit disk U for which

and 1+

p0)=1 and ¢'(0) >0
and which maps U onto a region starlike with respect to 1 and symmetric with respect to the real axis.
Lemma 1. (see [41]) Let u(z) be analytic in the unit disk U with

u(0) =0  and lu(z)| <1
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and suppose that
=) pu2"  (zel). (5)
n=1

Then
lpn] =1 (n e N).

Lemma 2. (see [21]) Let
z)=) wpz" €A
n=1
be a Schwarz function so that |w(z)| < 1 for |z| < 1. If v =2 0, then

lws +ywi] £ 1+ (7 —1)|wi].

Definition 2. (see [43,44]) For a function f, the fractional integral of order -y is defined by

- L[ S©
PO =1y woge >0

where f(z) is an analytic function in a simply-connected region of the complex z-plane containing the origin
and the multiplicity of (z — &)~ is removed by requiring log(z — &) to be real when z — & > 0.

Definition 3. (see [43,44]) For a function f, the fractional derivative of order y is defined by

_ v 4 f©)
sz(z)—mE/O (Z—§)7d€ (0=7<1),

where the function f(z) is constrained, and the multiplicity of (z — §) ™" is removed, as in Definition 2.

Definition 4. (see [43,44]) Under the hypotheses of Definition 3, the fractional derivative of order n + -y is
defined by

DITf(:) = g {DIF@)}  (OSy<1ineM)

As consequences of Definitions 2—4, we note that

- I'(n+1)
D ’Yn: n—+y .
. 'z 71"(n+’y+1)z (neN; ¥>0)
and I D
n—+ _
D)z = ————— "7 ;0S¢ <1).
) F(n—’y+1)z meN;,0=sy<1)

Definition 5. (see [45]) The Tremblay fractional derivative operator T&'" of a function f € A is defined, for all
z €U, by

. r _ —y
‘SEWf(z):l_EZ;zl TDE T ZH 1f(z) O<ypusSLu>y0<u—gy<l).

It is clear from Definition 5 that, for 4 = 7 = 1, we have T f(z) = f(z) and we can easily
see that )
= T (n+pu
T}W E 77 a,z".
fz) Z T(u)T(n+vy) "

\e

n=2
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The purpose of our study is to make use of the Faber polynomial expansion in order to obtain
the upper bounds for the general Taylor-Maclaurin coefficients |a,| of functions in a new subclass of
%, which is defined by the principle of differential subordination between analytic functions in the
open unit disk U. We also show that our main results and their corollaries and consequences would
generalize and improve some of the previously published results. Moreover, with a view to potentially
motivate the interested reader, we choose to include a citation of a very recent survey-cum-expository
article [46], which also provides a review of many other related recent works in Geometric Function
Theory of Complex Analysis.

2. A Set of Main Results

We begin this section by assuming that ¢ is an analytic function with positive real part in the unit
disk U, which satisfies the following conditions:

¢0)=1 and  ¢'(0) >0

and is so constrained that ¢ (U) is symmetric with respect to the real axis. Such a function has series
expansion of the form:

@(z) =1+ Biz+ Bz + B3z’ +--- (B >0).
We now introduce the general subclass Ayx (A, v, i, ).

Definition 6. For 0 SAS1,0<9,u <1, u>yand 0 < y— < 1,a function f € X is said to be in the
subclass As. (A, v, i; @) if the following subordination conditions hold true:

4 TR | G E)

- . < ¢(z) (z e U)

and ) ,
pw I

< p(w) (wel),
where ¢ = f~1 is given by (2).

Theorem 1 below gives an upper bound for the coefficients |a,| of functions in the subclass
AZ(/\/ ’)// ;u/ 90)

Theorem 1. For0=A=1,0< v u <1, u>yand 0 < u— <1, let the function f € Ax(A, v, 1; ¢)
be given by (1). Ifay =0 for 2 <k < n—1, then

BiT(p+1)I(n+1y)
LA ey ey S ©)
Proof. For f given by (1), we have
1 TEE) | 1)
Kz 4
S Y A1) DD ) e @)

= T(p+1)T(n+7)
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Thus, by using the equation (3), we find for the inverse map ¢ = f~! given by (2) that

(1 T8 ) (S g(w)
pw Z
PR o YDt p)
f1+gyl+Mn U]HM+UFM+7)%w
Ly Fy+)I(n+p) 1, n—
_1+£¥1+Mnin]my+nrm+v)EKwN@ﬂ&“'MUw L 8

Furthermore, since f € Ay (A, 7,1, ¢), there are two Schwarz functions (see Definition 1)
u,v: U — Uwith

u(0)=00)=0 and u(z)=) psz" and  o(z) =) g.7",
n=1 n=1

so that
WY £(5 EY£(2 !
- 7S ), 26 yf( ) _ otue), o
and i . .

In addition, by applying (4), we have
(P(M(Z)) =1+ Bipiz+ (Bip2 + B2p%)22 4+ ..

00 n
=1+ Z Z BDX(p1,p2, -+, pn)2", (11)
n=1k=1

and
¢(v(w)) =1+ Big1w + (Big2 + Byg?)w? 4 - -

© n
= 1+ 2 ZBkDﬁ(qlquI"' /qn)wn. (12)
n=1k=1

By comparing the corresponding coefficients in (7) and (9), and then using (11), we get

1+ A(n—1)]

T(y+1I(n+p) ok
n = B D — 7 7t -1)- 13
T(u+1)I(n+7) a kzzl kDy1(p1, p2 Pn-1) (13)

Similarly, from (8) and (10), by using (12), we have

F(y+DIM(n+p) 1

_ —n . e
[1 —+ /\(1’[ 1)] r(}l n 1)1_,(n T ’_)/) ” anl (ﬂz,&lg, ,ﬂn)
n—1
= 2 BkDﬁq(ﬂh/%' L qn-1)- (14)
k=1

Now, in view of the assumption that 4y =0 (2 £ k < n — 1), the coefficients b, corresponding to
Dﬁq(ﬂlr‘h/' -+ ,qgn—1) equals —a,, so we have

[14+A(n—1)]

T(y+Df(n+p)
T+ )Tt y) ™ = BiPn- (15)
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and

+ 1)
ay = B1g,_1. 16
- 19n-1 (16)

Since
lpn—1] =1 and  |g,—1| =1,

by taking the absolute values of either of the above two equations, we obtain (6). This completes the
proof of Theorem 1. O

Theorem 2. For0=A<1,0<yu <1, u>yand0 < u— <1, let the function f € As(A,y, 1; ¢)
be given by (1). Also let
By = aB; (0<0c§1).

Then the following coefficient inequalities hold true:

By (y+1) (7+2) (14A)? (p+1)
gESVIESy (B: 2 EmG)
laa| = (17)
By (7+2)(7+1) (7+2)(1+A)? (1)
P2 G 2) 1) (0< B < Tt
" Bi(y+2)(7+1)
las] = A2 +2)(p+1)° (18)
Proof. If we set n = 2 and n = 3 in (13) and (14), respectively, we obtain
I+M)E+1)
P az = Bypa, (19)
(L+20)(p+2)(p+1) 2
=B Byvy, 20
(7+2)(,)/+1) as 1p2+“ 1p] ( )
A+ MNE+
? a; = Bigq (21)
and
(L+20)(p+2)(p+1) (, 2 2
2a5 — =B Bqg5. 22
('Y+2)(’Y+1) ( ap ﬂ3) lq2+“ 1971 ( )
From (19) or (21), by taking absolute values, we get
Bi(y+1)
< —— 7 23
jaa| = A+ M(u+1) (23)

Furthermore, by adding (20) and (22), we find that

20+2A0)(p+2)(p+1) 2
(Y +2)(r+1) 2

= By [(p2+ap}) + (02 + )],

which, upon taking the moduli of both sides, yields

21 +2A0) (p+2)(u+1)
(v +2)(r+1)

|a2|* < By sz +06P%’ + 'qz —qu%u :
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Thus, by using Lemma 2, we obtain

204+ 220)(p+2)(p+1)

222 < By [14 (= D)|p1 2+ 14 (@ = 1)1 2]

(r+2)(r+1)
< 2B,.
Therefore, we have
Bi(y+2)(y+1)
= \/(14—2/\)(;4—1—2)(;1—1—1)' 24)

Equation (23) in conjunction with (24) would readily yield (17).
We next solve (20) for a3, take the absolute values and apply Lemma 2. We thus obtain

Bi(y +2)(v +1)
T+2A)(p+2)(p+1)

< B0+

20+ 20T L+ @ Diemf] =

Hence we obtain the desired estimate on |a3| given in (18). This completes the proof of
Theorem 2. [

3. Concluding Remarks and Observations
In this concluding section, we give several remarks and observations which related to the

developments resented in this paper.

Remark 1. By letting y = v = A = 1 in Theorem 1, we obtain estimates on the general coefficients
lan| (n = 3) for subclass defined by Ali et al. [47] (Theorem 2.1), which are not obtained until now.

Remark 2. By setting
1+ (1-2B)z
(P(Z):(lfzﬁ) 0=p<1),

in Theorem 1, we get the results which were obtained by Srivastava et al. [44] (Theorem 1).

Remark 3. By taking

o0 = (1) 0<asy

in Theorem 1, we get an upper bound for the coefficients |ay| of functions in a subclass which is defined by
arqument in the following corollary, which is presumably new.

Corollary. For 0 SAS1,0<a,9,u <1, u>v 0B <land0 < p— v <1, let the function

1+z\*
fEAz</\,’Y,#,<1Z> )

be given by (1). Ifapy =0 2=k <n—1), then

2aT (p+ 1T (n+7)
ol S A -t Y
Remark 4. By setting
plz)= U2 g<pa)

in Theorem 2, we get the results which were obtained by Srivastava et al. [44] (Theorem 2).
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Remark 5. By taking

o
u=vy=1 and (;)(z)—(iii) 0<as1)

in Theorem 2, we can improve the estimates which were given by Frasin and Aouf [4] (Theorem 2.2). Also,

by setting

14+ (1—-2B)z
1-z

in Theorem 2, we can improve the estimates which were given by Frasin and Aouf [4] (Theorem 3.2).

p=r=1 and ¢(z) = 0=p<1)
Remark 6. By setting

®

in Theorem 2, we obtain an improvement of the estimates which were given by Srivastava et al. [2] (Theorem 1).
Moreover, by setting

1+ (1-28)z

— (0<p<1)

p=y=A=1 and ¢(z)=
in Theorem 2, we obtain an improvement of the estimates which were given by Srivastava et al. [2] (Theorem 2).

Remark 7. By taking

«
‘u:')/:)\:l and (P(Z):<1j§> (0<(X§1)

in Theorem 2, we get an improvement of the estimates which were given by Zaprawa [48] (Corollary 3). Also,

by taking

1+ (1-2B)z
1-z

in Theorem 2, we obtain an improvement of the estimates which were given by Zaprawa [48] (Corollary 4).

p=vy=A=1 and ¢(z)= (0=p<1)

Remark 8. By letting
p=y=A=1 and By=aB; (0<a<1)

in Theorem 2, we obtain an improvement of the estimates which were given by Ali et al. [47] (Theorem 2.1).

We conclude our present investigation by observing that the interested reader will find several
related recent developments concerning Geometric Function Theory of Complex Analysis (see, for
example, [46,49-51]) to be potentially useful for motivating further researches in this subject and on
other related topics.
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