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Abstract: In this study, we define a hesitant fuzzy topology and base, obtain some of their
properties, respectively, and give some examples. Next, we introduce the concepts of a hesitant
fuzzy neighborhood, Q-neighborhood, closure, and interior and obtain some of their properties,
respectively. Furthermore, we define a hesitant fuzzy continuous mapping and investigate some of
its properties. Furthermore, we define a hesitant fuzzy subspace and obtain some of its properties.
In particular, we obtain the Pasting lemma. We investigate the concept of hesitant fuzzy product
space and study some of its properties.
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1. Introduction

In 1965, Zadeh [1] introduced the concept of a fuzzy set as a generalization of a crisp set. Chang [2]
defined initially the notion of fuzzy topological spaces, and then, many researchers [3–12] investigated
various properties, for example neighborhood systems, Q-neighborhood systems, continuities,
compactness, initial structures, and separation axioms in fuzzy topological spaces.

In 2010, Torra [13] introduced the notion of a hesitant fuzzy set as an extension of a fuzzy set
proposed by Zadeh [1] ([14,15]). In a hesitant fuzzy set, since the membership function takes values
from the power set [0, 1] (see Definition 1), it helps in dealing with the situation effectively. Then,
hesitant fuzzy set theory has many applications in various fields like decision making problems,
decision support systems, clustering algorithms, algebras, etc. After that time, hesitant fuzzy set theory
has been developed rapidly by some scholars in theory and practice.

Xia and Xu [16] applied a hesitant fuzzy set to decision making by defining “hesitant fuzzy
information aggregation”. Jun et al. [17] studied hesitant fuzzy bi-ideals in semigroups. Deepark
and John [18] introduced a basic version of hesitant fuzzy rough sets through hesitant fuzzy relations.
Furthermore, they studied the homomorphisms of hesitant fuzzy subgroups and hesitant fuzzy
subrings and ideals in [19–21]. On the other hand, Jun and Ahn [22] applied hesitant fuzzy sets to
BCK/BCI-algebras. Kim et al. [23] gave characterizations of a hesitant fuzzy positive implicative
ideal, a hesitant fuzzy implicative ideal, and a hesitant fuzzy commutative ideal, respectively in
BCK-algebras. Furthermore, they [24] introduced the category HSet(H) consisting of all hesitant
H-fuzzy spaces and all morphisms between them and studied HSet(H) in the sense of a topological
universe. Recently, Mathew et al. [25] defined a hesitant fuzzy topology and dealt with closures,
interiors, continuities, connectedness, and compactness in hesitant fuzzy topological spaces.

The purpose of this paper is to investigate the topological properties on hesitant fuzzy sets. First,
we define a hesitant fuzzy topology and base, obtain some of their properties, respectively, and give
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some examples. Second, we introduce the concepts of a hesitant fuzzy neighborhood, Q-neighborhood,
closure, and interior and obtain some of their properties, respectively (in particular, see Propositions 6,
7, 9, and 10). Third, we define a hesitant fuzzy continuous mapping and investigate some of its
properties. Fourth, we define a hesitant fuzzy subspace and obtain some of its properties. In particular,
we obtain the Pasting lemma (see Proposition 31). Finally, we introduce the notion of a hesitant fuzzy
product space and study some of its properties.

2. Preliminaries

In this section, we list some definitions and results needed in the later sections.

Definition 1. ([24]). Let X be a reference set, and let P[0, 1] denote the power set of [0, 1]. Then, a mapping
h : X → P[0, 1] is called a hesitant fuzzy set in X.

The hesitant fuzzy empty (resp. whole) set, denoted by h0 (resp. h1), is a hesitant fuzzy set in X defined as:
for each x ∈ X,

h0(x) = φ [resp. h1(x) = [0, 1]].

Especially, we will denote the set of all hesitant fuzzy sets in X as HS(X).
In fact, we can easily see that the hesitant fuzzy empty set and whole set are complete ignorance and a

set of nonsense, respectively, introduced by Tora [13].

Definition 2. ([18]). Let h1, h2 ∈ HS(X). Then:
(i) we say that h1 is a subset of h2, denoted by h1 ⊂ h2, if h1(x) ⊂ h2(x), for each x ∈ X,
(ii) we say that h1 is equal to h2, denoted by h1 = h2, if h1 ⊂ h2 and h2 ⊂ h1.

Definition 3. ([24]). Let h1, h2 ∈ HS(X), and let (hj)j∈J ⊂ HS(X). Then:
(i) the intersection of h1 and h2, denoted by h1∩̃h2, is a hesitant fuzzy set in X defined as follows: for each

x ∈ X,
(h1∩̃h2)(x) = h1(x) ∩ h2(x),

(ii) the intersection of (hj)j∈J , denoted by
⋂̃

j∈Jhj, is a hesitant fuzzy set in X defined as follows: for each
x ∈ X,

(
⋂̃

j∈J
hj)(x) =

⋂
j∈J

hj(x),

(iii) the union of h1 and h2, denoted by h1∪̃h2, is a hesitant fuzzy set in X defined as follows: for each
x ∈ X,

(h1∪̃h2)(x) = h1(x) ∪ h2(x),

(iv) the union of (hj)j∈J , denoted by
⋃̃

j∈Jhj, is a hesitant fuzzy set in X defined as follows: for each x ∈ X,

(
⋃̃

j∈J
hj)(x) =

⋃
j∈J

hj(x).

Definition 4. ([24]). Let X be a nonempty set, and let h ∈ HS(X). Then, the complement of h, denoted by hc,
is a hesitant fuzzy set in X defined as: for each x ∈ X,

hc(x) = h(x)c = [0, 1] \ h(x).

Result 1. ([24], Proposition 3.14). Let X be a nonempty set; let h, h1, h2, h3 ∈ HS(X); and let (hj)j∈J ⊂
HS(X). Then:

(1) (Idempotent laws): h∪̃h = h, h∩̃h = h,
(2) (Commutative laws): h1∪̃h2 = h2∪̃h1, h1∩̃h2 = h2∩̃h1,
(3) (Associative laws): h1∪̃(h2∪̃h3) = (h1∪̃h2)∪̃h3, h1∩̃(h2∩̃h3) = (h1∩̃h2)∩̃h3,
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(4) (Distributive laws): h1∪̃(h2∩̃h3) = (h1∪̃h2)∩̃(h1∪̃h3),
h1∩̃(h2∪̃h3) = (h1∩̃h2)∪̃(h1∩̃h3),

(4)
′

(Generalized distributive laws): h∪̃(⋂̃j∈Jhj) =
⋂̃

j∈J(h∪̃hj),
h∩̃(⋃̃j∈Jhj) =

⋃̃
j∈J(h∩̃hj),

(5) (Absorption laws): h1∪̃(h1∩̃h2) = h1, h1∩̃(h1∪̃h2) = h1.
(6) (DeMorgan’s laws): (h1∪̃h2)

c = hc
1∩̃hc

2, (h1∩̃h2)
c = hc

1∪̃hc
2,

(6)
′

(Generalized DeMorgan’s laws): (
⋃̃

j∈Jhj)
c =

⋂̃
j∈Jhc

j , (
⋂̃

j∈Jhj)
c =

⋃̃
j∈Jhc

j ,
(7) (hc)c = h,
(8) h1∩̃h2 ⊆ h1 and h2∩̃h1 ⊆ h2,
(9) h1 ⊆ h1∪̃h2 and h2 ⊆ h1∪̃h2,
(10) if h1 ⊆ h2 and h2 ⊆ h3, then h1 ⊆ h3,
(11) if h1 ⊆ h2, then h1∩̃h ⊆ h2∩̃h and h1∪̃h ⊆ h2∪̃h,
(12) h0 ⊆ h ⊆ h1,
(13) h∩̃h0 = h0, h∪̃h0 = h, h∩̃h1 = h, h∪̃h1 = h1.

We can see that Kim et al. [24] redefined the intersection, the union, and the complement
introduced by Tora [13] so that (HS(X), ∩̃, ∪̃,c ) is a Boolean algebra with the least element h0 and the
largest element h1.

Definition 5. ([24]). Let X and Y be a nonempty sets; let hX ∈ HS(X) and hY ∈ HS(Y)); and let f : X → Y
be a mapping. Then:

(i) the image o f hX under f , denoted by f (hX), is a hesitant fuzzy set in Y defined as follows: for each
y ∈ Y,

f (hX)(y) =

{ ⋃̃
x∈ f−1(y)hX(x) if f−1(y) 6= φ

φ otherwise,

(ii) the preimage of hY under f , denoted by f−1(hY), is a hesitant fuzzy set in Y defined as follows: for
each x ∈ X,

f−1(hY)(x) = hY ◦ f (x).

Result 2. ([24], Proposition 3.16). Let f : X → Y be a mapping, and let hX, hX1, hX2 ∈ HS(X),
(hXj)j∈J ⊂ HS(X), hY, hY1, hY2 ∈ HS(Y) and (hYj)j∈J ⊂ HS(Y). Then:

(1) if hX1 ⊆ hX2, then f (hX1) ⊆ f (hX2),
(2) f (hX1∪̃hX2) = f (hX1)∪̃ f (hX2), f (

⋃̃
j∈JhXj) =

⋃̃
j∈J f (hXj),

(3) f (hX1∩̃hX2) ⊆ f (hX1)∩̃ f (hX2), f (
⋂̃

j∈JhXj) ⊆
⋂̃

j∈J f (hXj),

(3)
′

if f is injective, then f (hX1∩̃hX2) = f (hX1)∩̃ f (hX2), f (
⋂̃

j∈JhXj) =
⋂̃

j∈J f (hXj),
(4) f (A) = h0 if and only if A = h0,
(5) if hY1 ⊆ hY2, then f−1(hY1) ⊆ f−1(hY2),
(6) f−1(hY1∪̃hY2) = f−1(hY1)∪̃ f−1(hY2), f−1(

⋃̃
j∈JhYj) =

⋃̃
j∈J f−1(hYj),

(7) f−1(hY1∩̃hY2) ⊆ f−1(hY1)∩̃ f−1(hY2), f−1(
⋂̃

j∈JhYj) ⊆
⋂̃

j∈J f−1(hYj),
(8) f−1(hY) = h1 if and only if hY∩̃ f (h1) = h1,
(9) hX ⊂ f−1 ◦ f (hX); in particular, hX = f−1 ◦ f (hX), if f is injective,
(10) f ◦ f−1(hY) ⊂ hY; in particular, f ◦ f−1(hY) = hY, if f is surjective.

Definition 6. ([26]). Let h ∈ HS(X). Then, h is called a hesitant fuzzy point with the support x ∈ X and
the value λ, denoted by xλ, if xλ : X → P[0, 1] is the mapping given by: for each y ∈ X,

xλ(y) =

{
λ ⊂ [0, 1] if y = x
φ otherwise.
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In particular, HP(X) is called the set of all hesitant fuzzy points in X.

Definition 7. ([26]). Let h ∈ HS(X), and let xλ ∈ HP(X). Then, xλ is said to belong to h, denoted by xλ ∈ h,
if λ ⊂ h(x).

It is obvious that h =
⋃̃

xλ∈hxλ.

Result 3. ([26], Theorem 3.3). Let h1, h2 ∈ HS(X), and let (hj)j∈J ⊂ HS(X). Then:
(1) h1 ⊂ h2 if and only if xλ ∈ h2, for each xλ ∈ h1.
(2) xλ ∈ h1∩̃h2 if and only if xλ ∈ h1 and xλ ∈ h2.
(3) If xλ ∈ h1 or xλ ∈ h2, then xλ ∈ h1∪̃h2.
(4) xλ ∈

⋂̃
j∈Jhj if and only if xλ ∈ hj, for each j ∈ J.

(5) If xλ ∈ hj for some j ∈ J, then xλ ∈
⋃̃

j∈Jhj.

Remark 1. ([26], Theorem 3.3). From Definitions 2.6 and 2.9, we can easily see that for any mapping
f : X → Y and each xλ ∈ HP(X), f (xλ) = f (x)λ.

3. Topology of Hesitant Fuzzy Sets

A fuzzy topology is a concept that combines order structure and topology. Chang [2] studied
fuzzy topological spaces in the sense of point-like structure. Ekici [3] showed that the concept of fuzzy
topology may be relevant to quantum particle physics in connection with string theory. Silva and
Landim [4] showed that the notion of a fuzzy space topology can be used to explain the origin of the
black hole entropy. Since a hesitant fuzzy topology is a more flexible variation of a fuzzy topology, we
expect that a hesitant fuzzy topology may be more effectively applicable.

In this section, we introduce the concepts of hesitant fuzzy topologies, bases, and sub-bases in
hesitant fuzzy topological spaces, find some of their basic properties, and give examples. One can
easily see that our definition of a hesitant fuzzy topology is different from the one introduced by
Mathew et al. [25]. Moreover, in order to apply hesitant fuzzy sets to a topology, we refer mainly
to [27,28].

Definition 8. Let X be a nonempty set, and let τ ⊂ HS(X). Then, τ is called a hesitant topology (HFT) on X,
if it satisfies the following axioms:

(HFT1) h0, h1 ∈ τ,
(HFT2) h1∩̃h2 ∈ τ, for any h1, h2 ∈ τ,
(HFT3)

⋃̃
j∈Jhj ∈ τ, for each (hj)j∈J ⊂ τ.

Especially, the pair (X, τ) is called a hesitant fuzzy topological space. Each member of τ is called a
hesitant fuzzy open set (HFOS) in X. A hesitant fuzzy set h in X is called a hesitant fuzzy closed set (HFCS)
in (X, τ), if hc ∈ τ.

We will denote the set of all HFTson X (resp. HFOSsand HFCSsin X) as HFT(X) (resp. HFO(X) and
HFC(X))

Example 1. (1) Let X = {a, b, c}, and consider hesitant fuzzy sets in X given by:
h1(a) = [0.8, 1], h1(b) = {0.3, 0.6, 0.9}, h1(c) = [0.8, 1),
h2(a) = [0.6, 1), h2(b) = {0.3, 0.6, 0.8}, h2(c) = (0.8, 1],
h3(a) = [0.8, 1), h3(b) = {0.3, 0.6}, h3(c) = (0.8, 1),
h4(a) = [0.8, 1], h4(b) = {0.3, 0.6, 0.8, 0.9}, h4(c) = [0.8, 1].

Then, we can easily see that τ = {h0, h1, h1, h2, h3, h4} ∈ HFT(X).
(2) Let X be a nonempty set. Then, clearly, the class {h0, h1} ∈ HFT(X). In particular, {h0, h1} will be

called a hesitant fuzzy indiscrete topology on X and denoted by τ0. The pair (X, τ0) is called a hesitant fuzzy
indiscrete space.
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(3) Let X be a nonempty set. Then, we can easily see that the class HS(X) is a hesitant fuzzy topology
on X. In particular, HS(X) will be called a hesitant fuzzy discrete topology on X and denoted by τ1. The pair
(X, τ1) is called a hesitant fuzzy discrete space.

From Definition 8, we have the following result.

Proposition 1. Let (X, τ) be a hesitant fuzzy topological space. Then:
(1) h0, h1 ∈ HFC(X),
(2) h1∪̃h2 ∈ HFC(X), for any h1, h2 ∈ HFC(X),
(2)

⋂̃
j∈Jhj ∈ HFC(X), for each (hj)j∈J ⊂ HFC(X).

Proposition 2. If (τj)j∈J ⊂ HFT(X), then
⋂̃

j∈Jτj ∈ HFT(X).

Proof. Let τ =
⋂

j∈J τj. Then, clearly, h0, h1 ∈ τj, for each j ∈ J. Thus, h0, h1 ∈ ⋂
j∈J τj. Therefore,

h0, h1 ∈ τ. Hence, τ satisfies Axiom (HFT1).
Let h1, h2 ∈ τ. Then, h1, h2 ∈ τj, for each j ∈ J. Thus, h1∩̃h2 ∈ τj, for each j ∈ J. Therefore,

h1∩̃h2 ∈
⋂

j∈J τj, i.e., h1∩̃h2 ∈ τ. Hence, τ satisfies the axiom (HFT2).
Now, let (hk)k∈K ⊂ τ. Then, (hk)k∈K ⊂ τj, for each j ∈ J. Therefore,

⋃̃
k∈Khk ∈

⋂
j∈J τj, i.e.,⋃̃

k∈Khk ∈ τ. Hence, τ satisfies Axiom (HFT3). This completes the proof.

For any τ1, τ2 ∈ HFT(X), we say that τ1 is weaker or coarser than τ2, if τ1 ⊂ τ2. In this case, we
say that τ2 is stronger or finer than τ1.

The following is the immediate result of Example 1 and Proposition 2.

Proposition 3. Let (τj)j∈J ⊂ HFT(X). Then, it forms a complete lattice with respect to the set inclusion
relation of which τ0 is the smallest element and τ1 is the largest element.

Definition 9. Let (X, τ) be a hesitant fuzzy topological space, and let B ⊂ τ. Then, B is called a base for τ, if
for each h ∈ τ, h = h0, or there is B′ ⊂ B such that h =

⋃̃B′ .
Example 2. (1) Let X be a nonempty set. Then, HP(X) is a base for τ1.

(2) Let X = {a, b, c}, and consider B = {h1, h2, h1},
where h1(a) = {0.6} ∪ [0.7, 1), h1(b) = {0.4, 0.6}, h1(c) = [0, 0.6) ∪ {0.8},

h2(a) = {0.3} ∪ (0.8, 1], h2(b) = {0.6, 0.8}, h2(c) = (0.5, 0.6] ∪ {0.7}.
Suppose B is a base for an HFT τ on X. Then, by the definition of a base, B ⊂ τ. Since h1, h2 ∈ τ,

h1∩̃h2 ∈ τ. It is clear that h1∩̃h2 6= h0. However, for any B′ ⊂ B, h1∩̃h2 6=
⋃̃B′ . Thus, by Definition 9, B is

not a base for some hesitant fuzzy topology on X.

Theorem 1. Let X be a nonempty set. Then, B ⊂ HS(X) is a base for some HFT on X if and only if it satisfies
the following conditions:

(1) h1 =
⋃̃B,

(2) if B1, B2 ∈ B and xλ ∈ B1∩̃B2, then there is B ∈ B such that:

xλ ∈ B and B ⊂ B1∩̃B2.

Proof. Suppose B ⊂ HS(X) is a base for some HFT τ on X. Since h1 ∈ τ, it is clear that h1 =
⋃̃B.

Then, the condition (1) is satisfied.
Now, suppose B1, B2 ∈ B and xλ ∈ B1∩̃B2. Then, clearly, B1, B2 ∈ τ. Thus, B1∩̃B2 ∈ τ and

B1∩̃B2 6= h0. Since B is a base for τ, there is B′ ⊂ B such that B1∩̃B2 =
⋃̃B′ . Since xλ ∈ B1∩̃B2, there

is B ∈ B′ such that:
xλ ∈ B and B ⊂ B1∩̃B2.
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Therefore, Condition (2) is satisfied.
Conversely, suppose the necessary conditions hold, and let:

τ = {h0} ∪ {h : h = ∪̃B′ , for some B′ ⊂ B}.

Then, clearly, h0, h1 ∈ τ. Furthermore, we can easily see that τ is closed under arbitrary union.
Thus, τ satisfies Axioms (HFT1) and (HFT3).

Let h1, h2 ∈ τ, and let xλ ∈ h1∩̃h2. Then, by the definition of τ, there are B1, B2 ∈ B such that
xλ ∈ B1 ⊂ h1 and xλ ∈ B2 ⊂ h2. Thus, by Condition (2), there is B ∈ B such that xλ ∈ B ⊂ B1∩̃B2.
Therefore, h1∩̃h2 =

⋃̃B′ , for some B′ ⊂ B. Hence, h1∩̃h2 ∈ τ. Therefore, τ satisfies Axiom (HFT2).
This completes the proof.

Definition 10. If B is a base for an HFT τ on X, then τ is called the hesitant fuzzy topology generated by B.
In fact,

τ = {h0} ∪ {h : h = ∪̃B′ , for some B′ ⊂ B}.

Example 3. Let X = {a, b, c}, and consider B = {h1, h2, h3},
where h1(a) = {0.6} ∪ (0.7, 1], h1(b) = {0} ∪ (0.6, 1], h1(c) = [0, 0.6),

h2(a) = [0, 0.8] ∪ {0.9}, h2(b) = (0, 0.7) ∪ {0.8}, h2(c) = {0.3} ∪ (0.5, 1],
h3(a) = {0.6, 0.9} ∪ (0.7, 0.8], h3(b) = (0.6, 0.7) ∪ {0.8},
h3(c) = {0.3} ∪ (0.5, 0.6).

Then, clearly, h1∪̃h2∪̃h3 = h1. Furthermore, we can easily show that B satisfies Condition (2) of
Theorem 1. Thus, B is a base for some HFT τ on X. In fact,

τ = {h0, h1, h1, h2, h3}.

Definition 11. Let τ1, τ2 ∈ HFT(X), and let B1 and B2 be bases for τ1 and τ2, respectively. Then, B1 and B2

are said to be equivalent, if τ1 = τ2.

Theorem 2. Let τ1, τ2 ∈ HFT(X), and let B1 and B2 be bases for τ1 and τ2, respectively. Then, the following
are equivalent:

(1) τ2 is finer than τ1, i.e., τ1 ⊂ τ2,
(2) for each xλ ∈ HP(X) and each B1 ∈ B1 such that xλ ∈ B1, there is B2 ∈ B2 such that xλ ∈ B2 ⊂ B1.

Proof. (1)⇒(2): Suppose τ1 ⊂ τ2; let xλ ∈ HP(X), and let B1 ∈ B1 such that xλ ∈ B1. Then, clearly,
B1 ∈ τ2. Since τ2 is generated by B2 and xλ ∈ B1, there is B2 ∈ B2 such that xλ ∈ B2 ⊂ B1.

(2)⇒(1): Suppose the necessary condition holds; let h ∈ τ1, and let xλ ∈ h. Since τ1 is generated
by B1, there is B1 ∈ B1 such that xλ ∈ B1 ⊂ h. Then, by Condition (2), there is B2 ∈ B2 such that
xλ ∈ B2 ⊂ B1. Thus, B2 ⊂ h. Therefore, h =

⋃̃B′2, for some B′2 ⊂ B. Hence, h ∈ τ2. Therefore,
τ1 ⊂ τ2.

Proposition 4. Let (X, τ) be a hesitant fuzzy topological space. Assume B ⊂ τ such that for each xλ ∈ HP(X)

and each U ∈ τ with xλ ∈ U, there is B ∈ B such that xλ ∈ B ⊂ U. Then, B is a base for τ.

Proof. Let xλ ∈ HP(X). Since h1 ∈ τ, there is B ∈ B such that xλ ∈ B]subseth1. Then, h1 =
⋃̃B.

Suppose B1, B2 ∈ B and xλ ∈ B1∩̃B2. Since B1, B2 ∈ τ, B1∩̃B2 ∈ τ. Then, there is B ∈ B such
that xλ ∈ B ⊂ B1∩̃B2. Thus, by Theorem 1, B is a base for some HFT τ

′
on X. By Theorem 2, τ

′
is finer

than τ. Since B ⊂ τ, arbitrary unions of members of B are members of τ. Therefore, τ
′ ⊂ τ. Hence,

τ
′
= τ. Therefore, B is a base for τ.
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Definition 12. Let (X, τ) be a hesitant fuzzy topological space, and let S ⊂ τ. Then, S is called a sub-base for
τ, if the family:

{h ∈ HS(X) : h = ∩̃n
i=1Si, Si ∈ S for i = 1, 2, · · · , n}

is a base for τ.

Proposition 5. Let X be a nonempty set, and let S ⊂ HS(X) such that h1 =
⋃̃S . Then, there is a unique

HFT τ such that S is a sub-base for τ.

Proof. Let B = {B ∈ HS(X) : B = ∩̃n
i=1Si, Si ∈ S for i = 1, 2, · · · , n}, and let:

τ = {h ∈ HS(X) : h = h0 or h = ∪̃B′ for some B′ ⊂ B}.

Since h1 =
⋃̃S , h1 ∈ τ. By the definition of τ, h10 ∈ τ. Then, τ satisfies Axiom (HFT1).

Let (hj)j∈J ⊂ τ. Then, for each j ∈ J, there is Bj ⊂ B such that hj =
⋃̃Bj. Thus,

⋃̃
j∈Jhj =⋃̃

j∈J(
⋃̃Bj). Therefore,

⋃̃
j∈Jhj ∈ τ. Hence, τ satisfies Axiom (HFT3).

Now, let h1, h2 ∈ τ, and let xλ ∈ h1∩̃h2. Then, there are B1, B2 ∈ B such that xλ ∈ B1∩̃B2, B1 ⊂ h1

and B2 ⊂ h2. Since B1 and B2 are finite intersection of members of S , respectively, B1, B2 ∈ B. Thus,
h1∩̃h2 =

⋃̃B′ , for some B′ ⊂ B. Therefore, h1∩̃h2 ∈ τ. Hence, τ satisfies Axiom (HFT2). Therefore,
τ ∈ HFT(X). Furthermore, we can easily show that τ is unique.

Example 4. Let X = {a, b, c}, and consider S = {h1, h2, h3},
where h1(a) = {0.6} ∪ (0.7, 1], h1(b) = {0} ∪ (0.6, 1], h1(c) = (0, 0.6),

h2(a) = [0, 0.7), h2(b) = (0, 0.6) ∪ {0.8}, h2(c) = {0.3} ∪ (0.5, 1),
h3(a) = {0.7}, h3(b) = (0.5, 0.7), h3(c) = {0} ∪ (0.8, 1].

Then, clearly,
⋃̃S = h1∪̃h2∪̃h3 = h1. Thus,

⋃̃S is a sub-base for the HFT τ on X. Furthermore,
B = {h1, h2, h3, h4, h5, h6} is a base for τ,
where h4(a) = {0.6}, h4(b) = {0.8}, h4(c) = {0.3} ∪ (0.5, 0.6),

h5(a) = φ, h5(b) = (0.5, 0.6), h5(c) = (0.8, 1),
h6(a) = φ, h6(b) = (0.6, 0.7), h6(c) = φ.

Therefore, τ = {h0, h1, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12, h13, h14, h15, h16},
where h7 = h1∪̃h1, h8 = h2∪̃h3, h9 = h1∪̃h3, h10 = h1∪̃h5,

h11 = h2∪̃h9, h12 = h3∪̃h4, h13 = h4∪̃h5, h14 = h4∪̃h6,
h15 = h5∪̃h6, h16 = h4∪̃h5∪̃h6.

4. Hesitant Fuzzy Neighborhoods, Interiors, and Closures

It is well known that a neighborhood system generates a topology in a classical topological space.
Then, the definition of a hesitant fuzzy neighborhood is necessary.

In this section, we define a hesitant fuzzy neighborhood of a hesitant fuzzy point, a hesitant fuzzy
Q-neighborhood of a hesitant fuzzy quasi-coincident point, the hesitant fuzzy closure, interior, and
exterior, study some of their properties, and give some examples.

Definition 13. Let (X, τ) be a hesitant fuzzy topological space; let xλ ∈ HP(X); and let N ∈ HS(G). Then,
N is called a hesitant fuzzy neighborhood (HFN) of xλ, if there is U ∈ τ such that xλ ∈ U ⊂ N.

We will denote the set of all HFNs of xλ in (X, τ) as HFN(xλ).

The following is the immediate result of Definition 13.

Theorem 3. Let (X, τ) be a hesitant fuzzy topological space, and let U ∈ HS(X). Then, U ∈ τ if and only if
it is an HFN of each of its HFP, i.e., for each xλ ∈ U, U ∈ HFN(xλ).
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From the following result, we can see that the hesitant fuzzy neighborhoods have the property of
the classical neighborhoods.

Proposition 6. Let (X, τ) be a hesitant fuzzy topological space, and let xλ ∈ HP(X). Then, HFN(xλ) has
the following properties:

(HFN1) xλ ∈ N, for each N ∈ HFN(xλ),
(HFN2) if N ∈ HFN(xλ), then M ∈ HFN(xλ), for each M ∈ HS(X) such that N ⊂ M,
(HFN3) if N, M ∈ HFN(xλ), then N∩̃M ∈ HFN(xλ),
(HFN4) if N ∈ HFN(xλ), then there is M ∈ HFN(xλ) such that N ∈ HFN(yµ), for each yµ ∈ M.

Proof. (1) The proof is clear.
(2) Suppose N ∈ HFN(xλ), and let N∩̃M ∈ HFN(xλ). Then, there is U ∈ τ such that xλ ∈ U ⊂

N. Thus, xλ ∈ U ⊂ M. Therefore, M ∈ HFN(xλ).
(3) Suppose N, M ∈ HFN(xλ). Then, there are U, V ∈ τ such that xλ ∈ U ⊂ N and xλ ∈ V ⊂ M.

Thus, xλ ∈ U∩̃V ⊂ N∩̃M and U∩̃V ∈ τ. Therefore, N∩̃M ∈ HFN(xλ).
(4) Suppose N ∈ HFN(xλ). Then, there is M ∈ τ such that xλ ∈ M ⊂ N. Since M ∈ τ, by

Theorem 3, M ∈ HFN(yµ), for each yµ ∈ M. Thus, for each yµ ∈ M, there is V ∈ τ such that
yµ ∈ V ⊂ M ⊂ N. Therefore, N ∈ HFN(yµ). This completes the proof.

Proposition 7. Let X be a nonempty set, and let for each xλ ∈ HP(X) there be a nonempty collection B(xλ) of
hesitant fuzzy sets in X satisfying Properties (HFN1)–(HFN4). Then, there is a unique HFT τ on X such that
for each xλ ∈ HP(X), B(xλ) = HFNτ(xλ), where HFNτ(xλ) denotes the set of all HFNs of xλ in (X. τ).

Proof. Let τ = {U ∈ HS(X) : U ∈ B(xλ), for each xλ ∈ U}. Then, clearly, h0 ∈ τ. By (HFN2), h1 ∈ τ.
Thus, τ satisfies Axiom (HFT1).

Let U, V ∈ τ, and let xλ ∈ U∩̃V. Then, xλ ∈ U and xλ ∈ V. Thus, U, V ∈ B(xλ). By (HFN3),
U∩̃V ∈ B(xλ). Therefore, U∩̃V ∈ τ. Hence, τ satisfies Axiom (HFT2).

Let (Uj)j∈J ⊂ τ, and let xλ ∈
⋃̃

j∈JUj. Then, there is j ∈ J such that xλ ∈ Uj. Since (Uj)j∈J ⊂ τ,
Uj ∈ B(xλ). Thus, by (HFN2),

⋃̃
j∈JUj ∈ B(xλ). Therefore,

⋃̃
j∈JUj ∈ τ. Hence, τ satisfies Axiom

(HFT3). Therefore, τ ∈ HFT(X).
Now, we will show that B(xλ) = HFNτ(xλ). Let N ∈ HFNτ(xλ). Then, there is U ∈ τ such

that xλ ∈ U ⊂ N. Thus, by the definition of τ, U ∈ B(xλ), for each λ ∈ U. Therefore, by (HFN2),
N ∈ B(xλ). Hence, HFNτ(xλ) ⊂ B(xλ). Suppose N ∈ B(xλ), and let U =

⋃̃{yµ ∈ HP(X) : N ∈
HFNτ(yµ)}. Then, clearly, U ∈ HS(X) and xλ ∈ U. By (HFN1), we can easily see that U ⊂ N. Let us
show that U ∈ τ, i.e., U ∈ B(yµ), for each yµ ∈ U. Let yµ ∈ U. By the definition of U, N ∈ HFNτ(yµ).
Since HFNτ(yµ) ⊂ B(yµ), N ∈ B(yµ). Then, by (HFN4), there is M ∈ B(yµ) such that N ∈ B(zν), for
each zν ∈ M. Thus, by the definition of U, zν ∈ U. Therefore, M ⊂ U. Hence, by (HFN2), U ∈ B(yµ).
This completes the proof.

Definition 14. Let X be a nonempty set; let xλ ∈ HP(X); and let h ∈ HS(X). Then, xλ is said to:
(i) be quasi-coincident with h, denoted by xλqh, if λ ' hc(x),
(ii) be not quasi-coincident with h, denoted by xλ q̄h, if λ ⊂ hc(x).

Definition 15. Let X be a nonempty set, and let h1, h2 ∈ HS(X). Then, h1 is said to
be quasi-coincident with h2, denoted by h1qh2, if there is x ∈ X such that h1(x) % hc

2(x).
In this case, we say that h1 and h2 are quasi-coincident (with each other) at xλ.
It is obvious that if h1 and h2 are quasi-coincident at xλ, then (h1∩̃h2)(x) 6= φ.

Theorem 4. Let X be a nonempty set; let xλ ∈ HP(X); and let h, h1, h2 ∈ HS(X). Then, h1 ⊂ h2 if and
only if h1q̄hc

2. In particular, xλ ∈ h if and only if xλ q̄hc.
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Proof. The proof follows from the fact: for each x ∈ X,

h1 ⊂ h2 iff h1(x) % h2(x) iff h1(x) ∪ h2(x)c $ h2(x) ∪ h2(x)c = (h2∪̃hc
2)(x) = [0, 1].

Theorem 5. Let X be a nonempty set; let xλ ∈ HP(X); and let (hj)j∈J ⊂ HS(X). Then, xλq
⋃̃

j∈Jhj if and
only if there is j ∈ J such that xλqhj.

Proof. Suppose xλq
⋃̃

j∈Jhj. Then, λ ' (
⋃̃

j∈Jhj)
c(x) = (

⋂̃
j∈Jhc

j )(x) =
⋂

j∈J hj(x)c. Thus, there is j ∈ J
such that λ ' hj(x)c.

Conversely, suppose there is j ∈ J such that λ ' hj(x)c. Then, λ '
⋂

j∈J hj(x)c and
⋂

j∈J hj(x)c =

(
⋃̃

j∈Jhj)
c(x). Thus, xλq

⋃̃
j∈Jhj.

Proposition 8. Let X, Y be nonempty sets; let xλ ∈ HP(X); let h ∈ HS(X); and let f : X → Y be a mapping.
If xλqh, then f (xλ)q f (h).

Proof. Suppose xλqh. Then, λ ' hc(x) = h(x)c and f (h)( f (x)) = h(x). Thus,

f (h)c( f (x)) = f (h)( f (x))c = h(x)c & λ = f (x)λ( f (x)) = f (x)λ( f (x)).

Therefore, f (x)λq f (h).

Definition 16. Let (X, τ) be a hesitant fuzzy topological space; let N ∈ HS(X); and let xλ ∈ HP(X). Then,
N is called an HQ-neighborhood (HQN) of xλ, if there is a U ∈ τ such that xλqU ⊂ N. The set of all
HQ-neighborhoods of xλ is called the system of of HQ-neighborhoods of xλ and denoted by HQN(xλ).

Proposition 9. Let (X, τ) be a hesitant fuzzy topological space, and let xλ ∈ HP(X). Then, HQN(xλ) has
the following properties:

(HQN1) xλqN, for each N ∈ HQN(xλ),
(HQN2) if N ∈ HQN(xλ), then M ∈ HQN(xλ), for each M ∈ HS(X) such that N ⊂ M,
(HQN3) if N, M ∈ HQN(xλ), then N∩̃M ∈ HQN(xλ),
(HQN4) if N ∈ HQN(xλ), then there is M ∈ HQN(xλ) such that N ∈ HQN(yµ), for each yµqM.

Proof. The proofs are similar to Proposition 6.

Proposition 10. Let X be a nonempty set, and let for each xλ ∈ HP(X) there be a nonempty collection B(xλ)

of hesitant fuzzy sets in X satisfying Properties (HQN1)–(HQN4). Then, there is a unique HFT τ on X such
that for each xλ ∈ HP(X), B(xλ) = HQNτ(xλ), where HQNτ(xλ) denotes the set of all HQNs of xλ in
(X. τ).

Proof. The proof is similar to Proposition 7.

Theorem 6. Let (X, τ) be a hesitant fuzzy topological space, and let B ⊂ HS(X). Then, B is a base for τ if and
only if for each xλ ∈ HP(X) and each U ∈ HQN(xλ) such that U ∈ τ, there is B ∈ B such that xλqB ⊂ U.

Proof. The necessary condition follows directly from the definition of a base and Proposition 8. Let
us show that the sufficient condition. Assume that B is not a base for τ. Then, there is A ∈ B
such that V =

⋃̃{B ∈ B : B ⊂ A} 6= A. Thus, there is x ∈ X such that V(x) $ A(x). Let
λ = [0, 1] \V(x) = Vc(x). Then, clearly, A(x)∪ λ % V(x)∪ λ = [0, 1]. Thus, A(x)∪ λ % V(x) = [0, 1].
Therefore, xλqA.
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On the other hand, for any B ∈ B such that B ⊂ A, A ⊂ V. Then, B(x) ∪ λ ⊂ V(x) ∪ λ = [0, 1].
Thus, xλ q̄B. Since B ⊂ A, xλ q̄A. Therefore, this contradicts the assumption. This completes the
proof.

Definition 17. Let (X, τ) be a hesitant fuzzy topological space, and let h ∈ HS(G). Then, the
hesitant fuzzy interior points of h, denoted by intH(h), are a hesitant fuzzy set in X defined by:

intH(h) =
⋃̃
{U ∈ τ : U ⊂ h}.

Example 5. Let X = {a, b, c}, and let τ = {h0, h1, h1, h2, h3, h4} ∈ HFT(X),
where h1(a) = {0.4} ∪ [0.5, 1), h1(b) = (0.1, 0.9], h1(c) = [0.3, 0.8) ∪ {0.1, 0.9},

h2(a) = (0.3, 0.5) ∪ [0.6, 0.9], h2(b) = {0.2} ∪ (0.8, 0.9), h2(c) = (0.4, 1] ∪ {0.1},
h3(a) = (0.3, 1), h3(b) = (0.1, 0.9], h3(c) = [0.3, 1] ∪ {0.1},
h4(a) = {0.4} ∪ [0.6, 0.9], h3(b) = {0.2} ∪ (0.8, 0.9), h3(c) = (0.4, 0.8) ∪ {0.1, 0.9}.
Let h be the hesitant fuzzy set in X given by:

h(a) = [0.4, 1), h(b) = (0.1, 0.9], h(c) = [0.1, 0.8) ∪ {0.9}.

Then, clearly h0 ⊂ h, h1 ⊂ h and h4 ⊂ h. Thus, intH(h) = h0∪̃h1∪̃h4 = h1∪̃h4.

From Definition 17, we have the following result.

Proposition 11. Let (X, τ) be a hesitant fuzzy topological space, and let h, h1 h2 ∈ HS(X). Then,
(1) intH(h0) = h0,
(2) intH(h) is the largest hesitant fuzzy open set contained in h,
(3) h ∈ τ if and only if intH(h) = h,
(4) if h1 ⊂ h2, then intH(h1) ⊂ intH(h2).

Theorem 7. Let (X, τ) be a hesitant fuzzy topological space; let xλ ∈ HP(X); and let A ∈ HS(X). Then,
xλ ∈ intH(A) if and only if there is N ∈ HFN(xλ) such that N ⊂ A.

Proof. The proof is straightforward.

Proposition 12. (Hesitant fuzzy interior axioms). Let (X, τ) be a hesitant fuzzy topological space, and let
h, h1 h2 ∈ HS(X). Then:

(HFI1) intH(h1) = h1,
(HFI2) intH(h) ⊂ h,
(HFI3) intH(intH(h)) = intH(h),
(HFI4) intH(h1∩̃h2) = intH(h1)∩̃intH(h2).

Proof. From Definition 17 and Proposition 11 (1), the proofs of (HFI1) and (HFI2) are clear.
(HFI3) By (HFI2), it is obvious that intH(intH(h)) ⊂ intH(h). Let xλ ∈ intH(h). Then, there is

U ∈ τ such that xλ ∈ U ⊂ h. Thus, by Proposition 11 (2) and (3) and (HFI2), xλ ∈ U ⊂ intH(h).
Therefore, xλ ∈ intH(intH(h)). Hence, intH(h) ⊂ intH(intH(h)). Therefore, intH(intH(h)) = intH(h).

(HFI4) It is clear that h1∩̃h2 ⊂ h1 and h1∩̃h2 ⊂ h2. Then, by Proposition 11 (3), intH(h1∩̃h2) ⊂
intH(h1) and intH(h1∩̃h2) ⊂ intH(h2). Thus, intH(h1∩̃h2) ⊂ intH(h1)∩̃intH(h2). Let xλ ∈
intH(h1)∩̃intH(h2). Then, xλ ∈ intH(h1) and xλ ∈ intH(h2). Thus, there are U, V ∈ τ such that xλ ∈
U ⊂ h1 and xλ ∈ V ⊂ h2. Therefore, xλ ∈ U∩̃V ⊂ h1∩̃h2 and U∩̃V ∈ τ. Hence, xλ ∈ intH(h1∩̃h2),
i.e., intH(h1)∩̃intH(h2) ⊂ intH(h1∩̃h2). Therefore, intH(h1∩̃h2) = intH(h1)∩̃intH(h2).

Definition 18. Let X be a nonempty set. Then, a mapping ◦H : HS(X) → HS(X) is called a
hesitant fuzzy interior operator on X, if it satisfies Properties (HFI1)–(HFI4) of Proposition 12.
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The following result shows that a hesitant fuzzy interior operator completely determines a hesitant
fuzzy topology on X and that in this topology, the operator is the hesitant fuzzy interior.

Proposition 13. Let ◦H be hesitant fuzzy interior operator on a set X. Let:

τ = {U ∈ HS(X) : U◦H = U}.

Then, τ ∈ HFT(X), and if intH is the hesitant fuzzy interior defined by τ, then

U◦H = intH(U), for each U ∈ HS(X).

Proof. By (HFI1) and (HFI2), (h1)◦H = h1 and (h0)◦H = h0. Then, h0, h1 ∈ τ. Thus, τ satisfies Axiom
(HFT1).

Let U, V ∈ τ. Then, U◦H = U and V◦H = V. Thus, by (HFI4),

(U∩̃V)◦H = U◦H ∩̃V◦H = U∩̃V.

Therefore, U∩̃V ∈ τ. Hence, τ satisfies Axiom (HFT2).
Let (Uj)j∈J ⊂ τ, and let U =

⋃̃
j∈JUj. Then clearly, Uj ⊂ U, for each j ∈ J. By (HFI2), U◦H

j ⊂ U◦H ,

for each j ∈ J. Thus,
⋃̃

j∈JU
◦H
j ⊂ U◦H . Since (Uj)j∈J ⊂ τ, U◦H

j = Uj, for each j ∈ J. Therefore, U ⊂ U◦H ,
i.e., U◦H = U. Hence, τ satisfies Axiom (HFT3). Therefore, τ ∈ HFT(X).

Suppose intH is the hesitant fuzzy interior defined by τ, and let h ∈ HS(X). Then clearly, intH(h)
is the largest hesitant fuzzy open set in X contained in h. Thus, h◦H = h. By (HFI3), h◦H (h◦H ) =

h◦H . Therefore, h◦H ∈ τ. By (HFI2), h◦H ⊂ h. Hence, h◦H ⊂ intH(h). On the other hand, by
(HFI2), intH(h) ⊂ h. Then, h◦H ⊂ h◦H (intH(h)) = intH(h). Thus, h◦H = intH(h). Therefore, U◦H =

intH(U), for each U ∈ HS(X).

Definition 19. Let (X, τ) be a hesitant fuzzy topological space, and let h ∈ HS(X). Then, the hesitant fuzzy
closure of h, denoted by clH(h), is a hesitant fuzzy set in X defined by:

clH(h) =
⋂̃
{F ∈ HFC(X) : h ⊂ F}.

Example 6. Let X = {a, b, c}, and let τ = {h0, h1, h1, h2, h3, h4} ∈ HFT(X),
where h1(a) = {0.4} ∪ [0.5, 1), h1(b) = (0.1, 0.9], h1(c) = [0.3, 0.8) ∪ {0.1, 0.9},

h2(a) = (0.3, 0.5) ∪ [0.6, 0.9], h2(b) = {0.2} ∪ (0.8, 0.9), h2(c) = (0.4, 1] ∪ {0.1},
h3(a) = (0.3, 0.5) ∪ [0.5, 1), h3(b) = (0.1, 0.9], h3(c) = [0.3, 1] ∪ {0.1},
h4(a) = {0.4} ∪ [0.6, 0.9], h3(b) = {0.2} ∪ (0.8, 0.9), h3(c) = (0.4, 0.8) ∪ {0.1, 0.9}.
Then, HFC(X) = {h0, h1, hc

1, hc
2, hc

3, hc
4},

where hc
1(a) = [0, 0.4) ∪ (0.4, 0.5) ∪ {1}, hc

1(b) = [0, 0.1) ∪ [0.9, 1],
hc

1(c) = [0, 0.1) ∪ (0.1, 0.3) ∪ [0.8, 0.9) ∪ (0.9, 1],
hc

2(a) = [0, 0.3] ∪ [0.5, 0.6) ∪ (0.9, 1], hc
2(b) = [0, 0.2) ∪ (0.2, 0.8] ∪ [0.9, 1],

hc
2(c) = [0, 0.1] ∪ (0.1, 0.4],

hc
3(a) = [0, 0.3] ∪ {1}, hc

3(b) = [0, 0.1] ∪ (0.9, 1], hc
3(c) = [0, 0.1) ∪ (0.1, 0.3),

hc
4(a) = [0, 0.4) ∪ (0.4, 0.6) ∪ (0.9, 1], hc

4(b) = [0, 0.2) ∪ (0.2, 0.8] ∪ [0.9, 1],
hc

4(c) = [0, 0.1) ∪ (0.1, 0.4] ∪ [0.8, 0.9) ∪ (0.9, 1].
Let h be the hesitant fuzzy set in X given by:

h(a) = [0, 0.2] ∪ (0.9, 1], h(b) = (0.9, 1], h(c) = [0, 0.2) ∪ [0.9, 1].

Then clearly, h ⊂ h1, h ⊂ hc
1 and h ⊂ hc

3. Thus, clH(h) = h0∩̃hc
1∩̃hc

3 = hc
1∩̃hc

3.

From Definition 19, we have the following result.
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Proposition 14. Let (X, τ) be a hesitant fuzzy topological space, and let h, h1 h2 ∈ HS(X). Then,
(1) clH(h1) = h1,
(2) clH(h) is the smallest hesitant fuzzy closed set containing h,
(3) h ∈ HFC(X) if and only if clH(h) = h,
(4) if h1 ⊂ h2, then clH(h1) ⊂ clH(h2).

Theorem 8. Let (X, τ) be a hesitant fuzzy topological space; let xλ ∈ HP(X); and let A ∈ HS(X). Then,
xλ ∈ clH(A) if and only if for each N ∈ HQN(xλ), NqA.

In this case, xλ is called a hesitant fuzzy closure point of A. In fact,

clH(A) =
⋃̃
{xλ ∈ HP(X) : xλ is a hesitant fuzzy closure point of A}.

Proof. xλ ∈ clH(A) iff for each F ∈ HFC(X) with F ⊃ A, xλ ∈ F, i.e., λ ⊂ F(x)
iff for each Fc = U ∈ τ with U ⊂ Ac, U(x) ⊂ A(x)c

iff for each U ∈ τ with U(x) % Ac(x), U 6⊂ Ac

iff by Theorem 4, UqA
iff for each N ∈ HQN(xλ), NqA.

Proposition 15. Let (X, τ) be a hesitant fuzzy topological space, and let h ∈ HS(X). Then:

intH(h) = (clH(hc))c, i.e., (intH(h))c = clH(hc).

Proof. Let xλ ∈ intH(h). Then clearly, xλ ∈ intH(h) ∈ τ such that intH(h)∩̃hc = h0. Thus, λ % hc(x),
i.e., xλ 6∈ hc. Since hc ⊂ clH(hc), xλ 6∈ clH(hc). Therefore, λ ∈ (clH(hc))c. Hence, intH(h) ⊂ (clH(hc))c.

Now, let xλ ∈ (clH(hc))c. Then, xλ 6∈ clH(hc). Thus, xλ 6∈ hc, i.e., xλ ∈ h. Since xλ 6∈ clH(hc),
there is U ∈ τ such that xλ ∈ U and U∩̃hc = h0. Therefore, U ⊂ h. Hence, xλ ∈ intH(h), i.e.,
(clH(hc))c ⊂ intH(h). Therefore, intH(h) = (clH(hc))c.

From Definition 19 and Proposition 15, we have the following result.

Proposition 16. (Hesitant fuzzy Kuratowski closure axioms). Let (X, τ) be a hesitant fuzzy topological
space, and let h, h1 h2 ∈ HS(X). Then:

(HFC1) clH(h0) = h0,
(HFC2) h ⊂ clH(h),
(HFC3) clH(clH(h)) = clH(h),
(HFC4) clH(h1∪̃h2) = clH(h1)∪̃clH(h2).

Definition 20. Let X be a nonempty set. Then, a mapping −H : HS(X)→ HS(X) is called a hesitant fuzzy
closure operator on X, if it satisfies Properties (HFC1)–(HFC4) of Proposition 16.

As expected, a result analogous to Proposition 13 holds for the hesitant fuzzy closure operator.
Then, a hesitant fuzzy closure operator completely determines a hesitant fuzzy topology, and in that
topology, the hesitant fuzzy closure operator is the hesitant fuzzy closure.

Proposition 17. Let −H be a hesitant fuzzy closure operator on a set X. Let F = {F ∈ HS(X) : F−H = F},
and let τ = {U ∈ HS(X) : Uc ∈ F}. Then, τ ∈ HFT(X), and if clH is the hesitant fuzzy closure defined by
τ, then:

F−H = clH(F), for each F ∈ HS(X).

Proof. It is similar to Proposition 13.
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Definition 21. Let X be a nonempty set, and let h1, h2 ∈ HS(X). Then, the difference of h1 and h2, denoted
by h1 \ h2, is a hesitant fuzzy set in X defined by:

h1 \ h2 = h1∩̃hc
2.

Definition 22. Let (X, τ) be a hesitant fuzzy topological space, and let h ∈ HS(X). Then, xλ ∈ HP(X) is
called a hesitant fuzzy limit point or an accumulation point of h, if h∩̃U \ {xλ} 6= h0, for each U ∈ τ with
xλ ∈ U, where U \ {xλ} = U∩̃{xλ}c. The union of all hesitant fuzzy limit points of h will be called the
hesitant fuzzy derived set of h and will be denoted by DH(h). Then clearly,

DH(h) =
⋃̃
{xλ ∈ HP(X) : xλ is a hesitant fuzzy limit point of h}.

Example 7. (1) Let X be the hesitant fuzzy discrete space. Then, DH(h) = h0, for each h ∈ HS(X).
(2) Let X be the hesitant fuzzy indiscrete space. Then, DH(h) = h1, for each h ∈ HS(X).

From Definition 22, we have the following result.

Proposition 18. Let (X, τ) be a hesitant fuzzy topological space, and let h, h1, h2 ∈ HS(X). Then:
(HFD1) DH(h0) = h0,
(HFD2) if h1 ⊂ h2, then DH(h1) ⊂ DH(h2),
(HFD3) if xλ ∈ DH(h), then xλ ∈ DH(h \ {xλ}),
(HFD4) DH(h1∪̃h2) = DH(h1)∪̃DH(h2).

Definition 23. Let (X, τ) be a hesitant fuzzy topological space, and let h ∈ HS(X). Then, the
hesitant fuzzy exterior of h, denoted by eH(h), is a hesitant fuzzy set in X defined by eH(h) = intH(hc).

It is obvious that intH(h) = eH(hc).
By the above definition, we have the following result.

Proposition 19. Let (X, τ) be a hesitant fuzzy topological space, and let h, h1, h2 ∈ HS(X). Then:
(HFD1) eH(h0) = h1,
(HFD2) eH(h) ⊂ hc,
(HFD3) eH(h) = eH([eH(h)]c),
(HFD4) eH(h1∪̃h2) = eH(h1)∩̃eH(h2).

Definition 24. Let (X, τ) be a hesitant fuzzy topological space, and let h ∈ HS(X). Then, the hesitant fuzzy
boundary of h, denoted by bH(h), is a hesitant fuzzy set in X defined by bH(h) = [intH(h)]c∪̃ intH(hc).

It is clear that bH(h) = bH(hc) = clH(h)∩̃ clH(hc) = clH(h) \ intH(h).

5. Hesitant Fuzzy Continuous Mappings

We define a hesitant fuzzy continuous mapping and a hesitant fuzzy open (resp. closed) mapping
and prove that each concept has similar properties in classical topological spaces.

Definition 25. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces. Then, a mapping f : (X, τ)→ (Y, σ)

is said to be hesitant fuzzy continuous, if f−1(V) ∈ τ, for each V ∈ σ.

From Result 2 and Definition 25, we have the following result.

Proposition 20. Let (X, τ), (Y, σ), (Z, δ) be hesitant fuzzy topological spaces.
(1) The identity mapping id : (X, τ)→ (X, τ) is continuous.
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(2) If f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, δ) are continuous, then g ◦ f : (X, τ) → (Z, δ) is
continuous.

Remark 2. From Proposition 20, we can see that the class of all hesitant fuzzy topological spaces and hesitant
fuzzy continuous mappings forms a concrete category.

Definition 26. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces. Then, a mapping f : (X, τ)→ (Y, σ)

is said to be hesitant fuzzy continuous at xλ ∈ HP(X), if f−1(V) ∈ HFN(xλ), for each V ∈ HFN( f (xλ)) =

HFN( f (x)λ) (see Remark 1).

The following is the immediate result of Result 2 and Definitions 25 and 26.

Theorem 9. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces. Then, a mapping f : (X, τ)→ (Y, σ) is
hesitant fuzzy continuous if and only if f is hesitant fuzzy continuous at each hesitant fuzzy point of X.

Theorem 10. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces, and let f : (X, τ)→ (Y, σ) be a mapping.
Then, the following are equivalent:

(1) f is continuous,
(2) f−1(F) ∈ HFC(X), for each F ∈ HFC(Y),
(3) f−1(S) ∈ τ, for each S ∈ S , where S is the sub-base for σ,
(4) f is continuous at each xλ ∈ HP(X),
(5) for each xλ ∈ HP(X) and each V ∈ HFN( f (x)λ), there is U ∈ HFN(xλ) such that f (U) ⊂ V,
(6) f (clH(h)) ⊂ clH( f (h)), for each h ∈ HS(X),
(7) clH( f−1(h)) ⊂ f−1(clH(h)), for each h ∈ HS(Y).

Proof. (1)⇒ (2): The proof is clear from Definitions 8 and 25.
(2)⇒ (3): Suppose f−1(F) ∈ HFC(X), for each F ∈ HFC(Y), and let S ∈ S . Then, clearly,

Sc ∈ HFC(Y). Thus, by the hypothesis, f−1(Sc) ∈ HFC(X). It is obvious that f−1(Sc) = ( f−1(S))c.
Therefore, ( f−1(S))c ∈ HFC(X). Hence, f−1(S) ∈ τ.

(3)⇒ (4): Suppose (3); and let xλ ∈ HP(X), and let V ∈ HFN( f (x)λ). Then, there is S ∈ S such
that f (x)λ ∈ S ⊂ V, where S is the sub-base for σ. Thus, by (3), f−1(S) ∈ τ. Since f (x)λ ∈ S ⊂ V,
xλ ∈ f−1(S) ⊂ f−1(V). Therefore, f−1(V) ∈ HFN(xλ). Hence, f is continuous at each xλ ∈ HP(X).

(4)⇒ (5): The proof is obvious.
(5)⇒ (6): Suppose (5), and let yµ ∈ f (clH(h)), for each h ∈ HS(X). Then, there is x ∈ X such

that yµ = f (xµ) and xµ ∈ clH(h). Let V ∈ HFN( f (xµ)). Then, by (5), there is U ∈ HFN(xµ) such that
f (U) ⊂ V. Since xµ ∈ clH(h), U∩̃h 6= h0. Thus, f (U)∩̃ f (h) 6= h0. Therefore, V∩̃ f (h) 6= h0. Hence,
yµ ∈ clH( f (h)). Therefore, f (clH(h)) ⊂ clH( f (h)).

(6) ⇒ (7): Suppose (6), and let A = f−1(h), for each h ∈ HS(Y). Then, by (6), f (clH(A)) ⊂
clH( f (A)). Thus, f (clH( f−1(h))) ⊂ clH( f ( f−1(h)) ⊂ clH(h). Therefore, clH( f−1(h)) ⊂ f−1(clH(h)).

(7)⇒ (2): The proof is clear.

The following is the immediate result of Theorem 10.

Corollary 1. f : (X, τ) → (Y, σ) is continuous if and only if f−1(intH(h)) ⊂ intH( f−1(h)), for each
h ∈ HS(Y).

Definition 27. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces. Then, a mapping f : (X, τ)→ (Y, σ)

is said to be hesitant fuzzy open (resp. closed), if f (U) ∈ σ, for each U ∈ τ (resp. f (F) ∈ HFC(Y), for each
F ∈ HFC(X)).

Proposition 21. Let (X, τ), (Y, σ), (Z, δ) be hesitant fuzzy topological spaces. If f : (X, τ) → (Y, σ) and
g : (Y, σ)→ (Z, δ) are open (resp. closed), then g ◦ f : (X, τ)→ (Z, δ) is open (resp. closed).
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Proof. Let U ∈ τ. Since f : (X, τ) → (Y, σ) is open, f (U) ∈ σ. Since g : (Y, σ) → (Z, δ) is open,
g( f (U)) ∈ δ. Then, (g ◦ f )(U) ∈ δ. Thus, g ◦ f is open. The proof of the second part is similar.

Theorem 11. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces, and let f : X → Y be a mapping. Then,
f is open if and only if f (intH(h)) ⊂ intH( f (h)), for each h ∈ HS(X).

Proof. Suppose f is open, and let h ∈ HS(X). Then, clearly, intH(h) ∈ τ. Thus, by the hypothesis,
f (intH(h)) ∈ σ. Since intH(h) ⊂ h, f (intH(h) ⊂ f (h). Since intH( f (h)) is the largest hesitant fuzzy
open set contained in f (h), f (intH(h) ⊂ intH( f (h)).

Conversely, assume the necessary condition holds, and let U ∈ τ. Then, clearly, U = intH(U).
Thus, by the hypothesis, f (U) = f (intH(U)) ⊂ intH( f (U)). Since intH( f (U)) ⊂ f (U), f (U) =

intH( f (U)). Therefore, f (U) ∈ σ. Hence, f is open.

Proposition 22. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces, and let f : X → Y be an injective
mapping. If f : (X, τ)→ (Y, σ) is continuous, then intH( f (h)) ⊂ f (intH(h)), for each h ∈ HS(X).

Proof. Suppose f is continuous, and let h ∈ HS(X). Then, clearly, intH( f (h)) ∈ σ. Thus, by the
hypothesis, f−1[intH( f (h))] ∈ τ. Since f is injective, by Result 2 (9), f−1[intH( f (h))] ⊂ f−1( f (h)) = h.
Therefore, f−1[intH( f (h))] ⊂ intH(h). Hence, intH( f (h)) ⊂ f (intH(h)).

From Theorem 11 and Proposition 22, we have the following result.

Corollary 2. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces. If f : (X, τ) → (Y, σ) is continuous,
open, and injective, then intH( f (h)) = f (intH(h)), for each h ∈ HS(X).

Theorem 12. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces, and let f : X → Y be a mapping. Then,
f is closed if and only if clH( f (h)) ⊂ f (clH(h)), for each h ∈ HS(X).

Proof. Suppose f is closed, and let h ∈ HS(X). Then, clearly, h ⊂ clH(h). Thus, f (h) ⊂ f (clH(h)).
Since f is closed and clH(h) is closed in X, f (clH(h)) is closed in Y. Therefore, clH( f (h)) ⊂ f (clH(h)).

Conversely, assume the necessary condition holds, and let F ∈ HFC(X). Then, clearly, F = clH(F).
Thus, by the hypothesis,

clH( f (F)) ⊂ f (clH(F)) = f (F) ⊂ clH( f (F)).

Therefore, clH( f (F)) = f (F). Hence, f (F) is closed in Y. Therefore, f is closed.

The following is the immediate result of Theorems 10 and 12.

Corollary 3. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces. Then, a mapping f : (X, τ)→ (Y, σ) is
continuous and closed if and only if clH( f (F)) = f (clH(h)), for each h ∈ HS(X).

Definition 28. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces. Then, a mapping f : (X, τ)→ (Y, σ)

is called a hesitant fuzzy homeomorphism, if it is bijective, continuous, and open.

Remark 3. For any hesitant fuzzy discrete spaces X and Y, f : X → Y is a hesitant fuzzy homeomorphism if
and only it is bijective.

6. Hesitant Fuzzy Subspaces

We define a hesitant fuzzy subspace topology, and we obtain some of its similar properties in
classical topological spaces. Moreover, we prove that the “Pasting lemma” holds in hesitant fuzzy
topological spaces.
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Definition 29. Let (X, τ) be a hesitant fuzzy topological space, and let h ∈ HS(X). Then, the collection
τh = {U∩̃h : U ∈ τ} is called a hesitant fuzzy subspace topology or hesitant fuzzy relative topology on h. The
pair (h, τh) is called a hesitant fuzzy subspace, and each member of τh is called a hesitant fuzzy open set in h.

Example 8. (1) Let X = {a, b, c}, and let τ = {h0, h1, h1, h2, h3, h4} ∈ HFT(X),
where h1(a) = {0.4} ∪ [0.5, 1), h1(b) = (0.1, 0.9], h1(c) = [0.3, 0.8) ∪ {0.1, 0.9},

h2(a) = (0.3, 0.5) ∪ [0.6, 0.9], h2(b) = {0.2} ∪ (0.8, 0.9), h2(c) = (0.4, 1] ∪ {0.1},
h3(a) = (0.3, 1), h3(b) = (0.1, 0.9], h3(c) = [0.3, 1] ∪ {0.1},
h4(a) = {0.4} ∪ [0.6, 0.9], h4(b) = {0.2} ∪ (0.8, 0.9), h4(c) = (0.4, 0.8) ∪ {0.1, 0.9}.
Let h be the hesitant fuzzy set in X given by:
h(a) = (0.4, 0.9] ∪ {1}, h(b) = [0.1, 0.3) ∪ [0.7, 0.8], h(c) = [0.2, 0.4) ∪ (0.5, 1].
Then, τh = {h0, h, h1∩̃h, h2∩̃h, h3∩̃h, h4∩̃h}.
(2) If X is a hesitant fuzzy discrete space and h ∈ HS(X), then (h, τh) is a hesitant fuzzy discrete space.
(3) If X is a hesitant fuzzy indiscrete space and h ∈ HS(X), then (h, τh) is a hesitant fuzzy indiscrete space.

Proposition 23. Let (X, τ) be a hesitant fuzzy topological space, and let h ∈ HS(X). Then, τh is a hesitant
fuzzy topology on h.

Proof. Since h0, h1 ∈ τ, h0 = h0∩̃h ∈ τh and h = h1∩̃h ∈ τh.
Let U, V ∈ τh. Then, there are h1, h2 ∈ τ such that U = h1∩̃h and V = h2∩̃h. Thus, U∩̃V =

(h1∩̃h)∩̃(h2∩̃h) = (h1∩̃h2)∩̃h. Since h1∩̃h2 ∈ τ, U∩̃V ∈ τh.
Now, let (Uj)j∈J ⊂ τh. Then, there is hj ∈ τ such that Uj = hj∩̃h, for each j ∈ J. Thus,⋃̃

j∈JUj =
⋃̃

j∈J(hj∩̃h) = (
⋃̃

j∈Jhj)∩̃h. Since
⋃̃

j∈Jhj ∈ τ,
⋃̃

j∈JUj ∈ τh. Therefore, τh is a hesitant fuzzy
topology on h.

Proposition 24. Let (X, τ) be a hesitant fuzzy topological space, and let h1, h2 ∈ HS(X) such that h1 ⊂ h2.
Then, τh1 = (τh2)h1 .

Proof. Let U ∈ τh1 . Then, V ∈ τ such that U = V∩̃h1. Since h1 ⊂ h2, h1 = h1∩̃h2. Thus, U =

V∩̃(h1∩̃h2) = (V∩̃h2)∩̃h1. Since V∩̃h2 ∈ τh2 , U ∈ (τh2)h1 . Therefore, τh1 ⊂ (τh2)h1 . Let U ∈ (τh2)h1 .
Then, there is V ∈ τh2 such that U = V∩̃h1. Since V ∈ τh2 , there is h ∈ τ such that V = h∩̃h2. Thus,
U = (h∩̃h2)∩̃h1 = h∩̃(h2∩̃h1). Since h1 ⊂ h2, h2∩̃h1 = h1. Therefore, U = h∩̃h1. Hence, U ∈ τh1 , i.e.,
(τh2)h1 ⊂ τh1 . Therefore, τh1 = (τh2)h1 .

Proposition 25. Let (X, τ) be a hesitant fuzzy topological space; let h ∈ HS(X); and let B be a base for τ.
Then, Bh = {B∩̃h : B ∈ B} is a base for τh.

Proof. Let U ∈ τ, and let xλ ∈ U∩̃h. Then, there is B ∈ B such that xλ ∈ B ⊂ U. Thus, xλ ∈ B∩̃h ⊂
U∩̃h. Therefore, by Proposition 4, Bh is a base for τh.

The following gives a special situation in which every member of the the hesitant fuzzy space
topology is also a member of the hesitant topology on X.

Proposition 26. Let (X, τ) be a hesitant fuzzy topological space, and let h ∈ τ. If U ∈ τh, then U ∈ τ.

Proof. Suppose U ∈ τh. Then, there is V ∈ τ such that U = V∩̃h. Since h ∈ τ, V∩̃h ∈ τ. Thus,
U ∈ τ.

Theorem 13. Let (X, τ) be a hesitant fuzzy topological space; let h ∈ HS(X); and A ∈ HS(X) such that
A ⊂ h. Then, A is closed in h if and only if there is F ∈ HFC(X) such that A = F∩̃h.
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Proof. Assume A is closed in h. Then clearly, h \ A = h∩̃Ac ∈ τh. Thus, there is U ∈ τ such that
h∩̃Ac = U∩̃h. Since A ⊂ h, A = Uc∩̃h. Let F = Uc. Since U ∈ τ, Uc is closed in X. Therefore, F is
closed in X. Hence, the necessary condition holds.

Conversely suppose the necessary condition holds, and let A ∈ HS(X) such that A ⊂ h. Then,
there is F ∈ HFC(X) such that A = F∩̃h. Thus, Fc ∈ τ and h \ A = Fc∩̃h. Therefore, h \ A ∈ τh.
Therefore, A is closed in h.

There is also a criterion for a hesitant fuzzy closed set in a hesitant fuzzy subspace to be closed in
the hesitant fuzzy topological space. The proof is similar to Proposition 26.

Proposition 27. Let (X, τ) be a hesitant fuzzy topological space, and let h ∈ HFC(X). If A is closed in (h, τh),
then A ∈ HFC(X).

Proposition 28. Let (X, τ) be a hesitant fuzzy topological space; let h ∈ HFC(X); and let A ⊂ h. Then,
clτh(A) = h∩̃clH(A), where clτh(A) denotes the closure of A in (h, τh).

Proof. It is clear that clH(A) is closed in X. Then, by Theorem 13, h∩̃clH(A) is closed in (h, τh). Since
A ⊂ h and A ⊂ clH(A), A ⊂ h∩̃clH(A). Since:

clτh(A) =
⋂̃
{F ∈ HS(X) : A ⊂ F and F is closed in (h, τh)},

clτh(A) ⊂ h∩̃clH(A). Since clτh(A) is closed in (h, τh), by Theorem 13, there is F ∈ HFC(X) such that
clτh(A) = h∩̃F. Since A ⊂ clτh(A), A ⊂ F. Since F ∈ HFC(X), clH(A) ⊂ F. Thus, h∩̃clH(A) ⊂ h∩̃F =

clτh(A). Therefore, clτh(A) = h∩̃clH(A). This completes the proof.

From Definitions 13 and 29, we have the following result.

Theorem 14. Let (X, τ) be a hesitant fuzzy topological space; let h ∈ HFC(X); let N ⊂ h; and let aλ ∈ h.
Then, N ∈ HFN(h,τh)

(aλ) if and only if there is U ∈ HFN(aλ) such that N = U∩̃h, where HFN(h,τh)
(aλ)

denotes the set of all neighborhoods of aλ in (h, τh).

Let X be a nonempty set, and let A be a subset of X. Then, we can consider A as the mapping
A : X → P[0, 1] defined by: for each x ∈ X,

A(x) =

{
[0, 1] if x ∈ A
φ otherwise.

In this case, A is also a hesitant fuzzy set, and we will write A as A = h1
A.

Remark 4. Let (X, τ) be a hesitant fuzzy topological space, and let A ⊂ X. Then, we can easily see that the
collection τh1

A
= {U∩̃h1

A : U ∈ τ} is a hesitant fuzzy subspace topology on A. Furthermore, we can see that all
the propositions and all theorems obtained in the above hold in (A, τh1

A
).

Proposition 29. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces, and let A ⊂ X, B ⊂ Y.
(1) The inclusion mapping i : (A, τh1

A
)→ (X, τ) is continuous.

(2) If f : (X, τ)→ (Y, σ) is continuous, then f |A: (A, τh1
A
)→ (Y, σ) is continuous.

(3) If f : (X, τ)→ (B, σh1
B
) is continuous, then the mapping g : (X, τ)→ (Y, σ) defined by g(x) = f (x)

for each x ∈ X is continuous.
(4) If f : (X, τ) → (Y, σ) and f (X) ⊂ B, then the mapping g : (X, τ) → (B, σh1

B
) defined by

g(x) = f (x) for each x ∈ X is continuous.

Proof. (1) Let V ∈ τ. Then, clearly, i−1(V) = V∩̃h1
A. Thus, i−1(V) ∈ τh1

A
. Therefore, i is continuous.
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(2) Let V ∈ σ. Then clearly, ( f |A)−1(V) = f−1(V)∩̃h1
A. Since f is continuous, f−1(V) ∈ τ. Thus,

( f |A)−1(V) ∈ τh1
A

. Therefore, f |A is continuous.

(3) Let V ∈ σ. Then clearly, V∩̃h1
B ∈ σh1

B
. Since f is continuous,

f−1(V∩̃h1
B) = f−1(V)∩̃ f−1(h1

B) = f−1(V)∩̃h1
X = f−1(V) ∈ τ.

Thus, by the definition of g, g−1(V) = f−1(V). Therefore, g−1(V) ∈ τ. Hence, g is continuous.
(4) Suppose f : (X, τ) → (Y, σ) and f (X) ⊂ B. Let V ∈ σh1

B
. Then, there is U ∈ σ such that

V = U∩̃h1
B. Thus, by the hypothesis, f−1(U) ∈ τ. Since f (X) ⊂ B, by the definition of g,

g−1(V) = g−1(U∩̃h1
B) = g−1(U)∩̃g−1(h1

B) = f−1(U)∩̃h1
X = f−1(U).

Therefore, g−1(V) ∈ τ. Hence, g is continuous.

Proposition 30. Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces, and let f : X → Y be a mapping. Let
(Uj)j∈J be any family of subsets of X such that X =

⋃
j Uj, and let (Uj)j∈J ⊂ τ. If f |Uj : (Uj, τh1

Uj
)→ (Y, σ)

is continuous, for each j ∈ J, then f : (X, τ)→ (Y, σ) is continuous.

Proof. Let V ∈ σ. Then, by the hypothesis, ( f |Uj)
−1(V) ∈ τh1

Uj
. Since Uj ∈ τ, by Proposition 26,

( f |Uj)
−1(V) ∈ τ. On the other hand, f−1(V) =

⋃̃
j∈J( f |Uj)

−1(V). Thus, f−1(V) ∈ τ. Therefore, f is
continuous.

Proposition 31. (Pasting lemma). Let (X, τ), (Y, σ) be hesitant fuzzy topological spaces, and let A, B ⊂ X
such that X = A ∪ B and A, B ∈ HFC(X). Let f : (A, τh1

A
) → (Y, σ) and g : (B, τh1

B
) → (Y, σ) be

continuous mappings such that f (x) = g(x) for each x ∈ A ∩ B. Then, the mapping h : (X, τ) → (Y, σ)

defined by h(x) = f (x) for each x ∈ A and h(x) = g(x) for each x ∈ B is continuous.

Proof. Let F ∈ HFC(Y). Since f and g are continuous, by Theorem 10, f−1(F) is closed in (A, τh1
A
),

and g−1(F) is closed in (B, τh1
B
). Since A, B ∈ HFC(X), by Proposition 26, f−1(F), g−1(F) ∈ HFC(X).

Then, h−1(F) = f−1(F)∩̃g−1(F) ∈ HFC(X). Thus, by Theorem 10, h is continuous.

7. Hesitant Fuzzy Product Topologies and Initial Topologies

We define a hesitant fuzzy product topology and prove that there exists an initial structure in
hesitant fuzzy topological spaces (See Theorem 16).

Definition 30. Let (Xj, τj)j∈J be a family of hesitant fuzzy topological spaces; let X = ∏j∈J Xj; and let
(πj : X → Xj)j∈J be a family of projections. For each j ∈ J, let Sj = {π−1

j (U) : U ∈ τj}, and let S =
⋃

j∈J Sj.
Then, S is a sub-base for a hesitant fuzzy topology τ on X induced by (πj : X → (Xj, τj))j∈J .

In this case, τ is called the hesitant fuzzy product topology on X and will be denoted by ∏j∈J τj. The pair
(X, τ) is called a hesitant fuzzy product space.

Proposition 32. Let (Xj, τj)j∈J be a family of hesitant fuzzy topological spaces. Then, the hesitant fuzzy product
topology ∏j∈J τj is the coarsest hesitant fuzzy topology on ∏j∈J Xj for which each πi : (∏j∈J Xj, ∏j∈J τj)→
(Xi, τi) is continuous.

Proof. Let S be the sub-base for the hesitant fuzzy product topology ∏j∈J τj. For each i ∈ J, let U ∈ τi.
Then clearly, π−1

i (U) ∈ S . Since S ⊂ ∏j∈J τj, π−1
i (U) ∈ ∏j∈J τj. Thus, by Theorem 10 (3), πi is

continuous, for each i ∈ J.
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Suppose τ is any hesitant fuzzy topology on ∏j∈J Xj for which each πi is continuous, where
πi : (∏j∈J Xj, ∏j∈J τj) → (Xi, τi) is the projection mapping. Let S ∈ S ⊂ ∏j∈J τj. Then, there are
j ∈ J and U ∈ τj such that S = π−1

j (U). Thus, by the hypothesis, π−1
j (U) ∈ τ, i.e., S ∈ τ. Therefore,

∏j∈J τj ⊂ τ.

Theorem 15. Let (Yj, τj)j∈J be a family of hesitant fuzzy topological spaces, and let (X, τ) be a hesitant
fuzzy topological space. Then, a mapping f : (X, τ) → (∏j∈J Yj, ∏j∈J τj) is continuous if and only if
πj ◦ f : (X, τ)→ (Yj, τj) is continuous, for each j ∈ J.

Proof. Suppose f is continuous, and let j ∈ J. Then, by Proposition 32, πj is continuous, where πj :
(∏j∈J Yj, ∏j∈J τj)→ (Yj, τj) is the projection mapping. Thus, by Proposition 20, πj ◦ f is continuous.

Conversely, suppose the necessary condition holds, and let S be the sub-base for the hesitant
fuzzy product topology ∏j∈J τj on ∏j∈J Yj given by Definition 30. For each j ∈ J and each U ∈ τj,
let π−1

j (U) ∈ S . Then, f−1(π−1
j (U)) = (πj ◦ f )−1(U). Thus, by the hypothesis, (πj ◦ f )−1(U) ∈ τ.

Therefore, f−1(π−1
j (U)) ∈ τ. Hence, by Theorem 10 (3), f is continuous.

The following is the immediate result of Theorem 15.

Corollary 4. Let (Yj, τj)j∈J be a family of hesitant fuzzy topological spaces; let (X, τ) be a hesitant fuzzy
topological space and for each j ∈ J; let f j : X → Yj be a mapping. We define a mapping f : X → ∏j∈J Yj
as follows:

f or each x ∈ X and each j ∈ J, the value o f f (x) at j is f j(x).

Then, f continuous if and only if f j is continuous, for each j ∈ J.

Proposition 32 is the motivation of the following definition.

Definition 31. Let X be a nonempty set; let (Xj, τj)j∈J be a family of hesitant fuzzy topological spaces; and
let ( f j : X → (Xj, τj))j∈J be a family of mappings. For each j ∈ J, let Sj = { f−1

j (U) : U ∈ τj}, and
let S =

⋃
j∈J Sj. Then, the coarsest hesitant fuzzy topology τ on X with the sub-base S for which each

f j : (X, τ)→ (Xj, τj) is continuous.
Especially, τ is called the hesitant fuzzy initial (or weak) topology on X induced by ( f j : X → (Xj, τj))j∈J .

From Proposition 32, we can easily see that the hesitant fuzzy product topology ∏j∈J τj on ∏j∈J Xj
is the hesitant fuzzy initial topology induced by the family (πj : ∏j∈J Xj → Xj)j∈J of projection
mappings. By Theorem 15, we obtain the following theorem.

Theorem 16. Let (Xj, τj)j∈J be a family of hesitant fuzzy topological spaces; let x be a set and for each j ∈ J; let
f j : X → (Xj, τj) be a mapping. Let τ be the hesitant fuzzy initial topology on X with the sub-base S induced by
( f j : X → (Xj, τj))h∈J , where S = { f−1

j (U) : U ∈ τj, j ∈ J}. Let (Y, σ) be a hesitant fuzzy topological space.
Then, a mapping f : (Y, σ)→ (X, τ) is continuous if and only if f j ◦ f : (Y, σ)→ (Xj, τj) is continuous, for
each j ∈ J.

Proof. Suppose f is continuous, and let j ∈ J. Then, by the definition of the hesitant fuzzy initial
topology, f j : (X, τ)→ (Yj, τj) is continuous. Thus, by Proposition 20, f j ◦ f is continuous.

Conversely, suppose the necessary condition holds, and let S be the sub-base for the hesitant
fuzzy initial topology τ on X given by Definition 31. For each j ∈ J and each U ∈ τj, let f−1

j (U) ∈
S . Then, f−1( f−1

j (U)) = ( f j ◦ f )−1(U). Thus, by the hypothesis, ( f j ◦ f )−1(U) ∈ τ. Therefore,

f−1( f−1
j (U)) ∈ τ. Hence, by Theorem 10 (3), f is continuous.
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Proposition 33. Let (Xj, τj)j∈J be a family of hesitant fuzzy topological spaces; let X be a set and for each
j ∈ J; let f j : X → (Xj, τj) be a mapping. Let τ be the hesitant fuzzy initial topology on X with the sub-base
S induced by ( f j : X → (Xj, τj))j∈J , and let A ⊂ X. Then, τh1

A
is the hesitant fuzzy initial topology on A

induced by ( f j |A)j∈J .

Proof. Let δ be the hesitant fuzzy initial topology on A induced by ( f j |A)j∈J , and let S ′ = {( f j |A
)−1(Uj) : Uj ∈ τj, j ∈ J}. Then, clearly, S ′ is a sub-base for δ. In order to prove that δ ⊂ τh1

A
, for each

j ∈ J and Uj ∈ τj, let ( f j |A)−1(Uj) ∈ S
′
. Then, clearly, ( f j |A)−1(Uj) = f−1

j (Uj)∩̃h1
A. Since τ is the

hesitant fuzzy initial topology on X induced by ( f j : X → (Yj, τj))h∈J , f−1
j (Uj ∈ τ, thus, by Remark 4,

f−1
j (Uj)∩̃h1

A ∈ τh1
A

. Therefore, ( f j |A)−1(Uj) ∈ τh1
A

. Hence, δ ⊂ τh1
A

.

Now, let us show that τh1
A
⊂ δ. For each j ∈ J and Uj ∈ τj, let f−1

j (Uj) ∈ S ⊂ τ. Then, clearly,

f−1
j (Uj)∩̃h1

A ∈ δ and f−1
j (Uj)∩̃h1

A = ( f j |A)−1(Uj). Thus, ( f j |A)−1(Uj) ∈ δ. Therefore, τh1
A
⊂ δ.

This completes the proof.

8. Conclusions

We defined a hesitant fuzzy topology, a hesitant fuzzy base and sub-base, a hesitant fuzzy
neighborhood and Q-neighborhood, a hesitant fuzzy closure and interior, a hesitant fuzzy continuous
mapping, a hesitant fuzzy subspace, and a hesitant fuzzy product space, and obtained some of
their properties, respectively. In the future, we will try to separate the axioms, compactness, and
connectedness in hesitant fuzzy topological space.
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