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Abstract: A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to
at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent
dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is
less or equal to k− 1. The minimum cardinality among all total outer k-independent dominating sets
is the total outer k-independent domination number of G. In this article, we introduce this parameter
and begin with the study of its combinatorial and computational properties. For instance, we give
several closed relationships between this novel parameter and other ones related to domination
and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally,
we prove that computing the total outer k-independent domination number of a graph G is an
NP-hard problem.

Keywords: total outer k-independent domination; total domination; k-independence

1. Introduction

Theory of domination in graphs is one of the most important topics in graph theory. In the
last few decades, the interest in this area has increased, due to its applications to different fields of
science, such as linear algebra, communication networks, social sciences, computational complexity,
algorithm design, complex ecosystems, optimization problems, among others (for example, see [1,2]).
In this sense, in this important area, a very high number of variants of domination parameters have
been developed, which are combinations of two or more parameters. In this article, we center our
attention on the study of a new parameter, which is a combination between the following well-known
parameters: total domination and k-independence in graphs. In addition, we focus the investigation
some computational and combinatorial properties of it.

Throughout this article, we consider simple graphs G. Given a set D ⊆ V(G), and a vertex
v ∈ V(G), ND(v) denotes the set of neighbors of v in D, that is, ND(v) = {u ∈ D : uv ∈ E(G)}
and ND[v] = ND(v) ∪ {v}. In addition, let δD(v) = |ND(v)|. The parameter δ(v) = δV(G)(v) =

|NV(G)(v)| denotes the degree of v in G. For short, we will often use N(v) and N[v] instead of NV(G)(v)
and NV(G)[v], respectively. The minimum and maximum degrees of G will be denoted by δ(G) =

minv∈V(G){δ(v)} and ∆(G) = maxv∈V(G){δ(v)}, respectively. A leaf vertex of G is a vertex of degree
one, and a support vertex of G is a vertex adjacent to a leaf vertex. The set of leaves and support vertices
will be denoted by L(G) and S(G), respectively. The subgraph induced by X ⊆ V(G) will be denoted by
G[X]. Given two sets X, Y ⊆ V(G), E(X, Y) denotes the set of all edges of G that join a vertex of X and
a vertex of Y.
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A set of vertices of a graph G is independent if the subgraph induced by it is isomorphic to an
empty graph. The independence number of G is the maximum cardinality among all independent sets of
G and is denoted by β(G).

A set D ⊆ V(G) is a dominating set of G if every vertex in V(G) \ D is adjacent to at least one
vertex in D. The domination number of G is the minimum cardinality among all dominating sets of G,
and it is denoted by γ(G).

In [3,4], Fink and Jacobson generalized the concepts of dominating and independent sets. For
an integer k ≥ 1, we say that a set X ⊆ V(G) is k-independent if the maximum degree of the subgraph
induced by the vertices of X is less than or equal to k− 1, that is, ∆(G[X]) ≤ k− 1. The k-independence
number of G is the maximum cardinality among all k-independent sets of G and is denoted by βk(G).
A βk(G)-set is a k-independent set of cardinality βk(G). Thus, when k = 1, the 1-independence
number is the classical independence number. Moreover, we say that a set D ⊆ V(G) is k-dominating if
every vertex in V(G) \ D has at least k neighbors in D. The k-domination number of G is the minimum
cardinality among all k-dominating sets of G and is denoted by γk(G). A k-dominating set of cardinality
γk(G) is called a γk(G)-set. For more information on k-independence and k-domination, we suggest
the relatively recent survey [5].

A dominating set D ⊆ V(G) is a total dominating set of G if the subgraph induced by the vertices
of D has no isolated vertex. The total domination number of G is the minimum cardinality among all
total dominating sets of G and is denoted by γt(G). A total dominating set of cardinality γt(G) is
called γt(G)-set. For more information on total domination, we suggest the survey [6] and the book [7].

A total outer k-independent dominating set (or TOkID set, for short) is a total dominating set D ⊆
V(G) such that V(G) \D is a k-independent set. The minimum cardinality among all TOkID sets is the
total outer k-independent domination number of G and is denoted by γk

t,oi(G). A TOkID set of cardinality
γk

t,oi(G) is a γk
t,oi(G)-set. When k = 1, a TOkID set is a total outer-independent dominating set, that is,

a total dominating set D such that the subgraph induced by V(G) \ D is isomorphic to an empty
graph. This last concept was introduced in [8] and also barely looked at in [9] under the name of total
co-independent domination number. Recently, it was analyzed in [10–12].

Given a graph G with no isolated vertex, in order to have a TOkID set D of G, any vertex of
V(G) \ D must have at least one neighbor in D and must have at most k− 1 neighbors in V(G) \ D.
Hence, 1 ≤ k ≤ ∆(G).

Moreover, we observe that, if H1, H2, . . . , Hr with r ≥ 2 are the components of a non-connected
graph H with no isolated vertex, then any TOkID set of H is formed by a TOkID set in each component
Hi, for i = 1, . . . , r. In the following remark, we expose the quotation above, and, as a consequence, in
the paper, we only study the TOkID sets of nontrivial connected graphs.

Remark 1. Let H be a non-connected graph with no isolated vertex. If H1, H2, . . . , Hr with r ≥ 2, are the
components of H, then

γk
t,oi(H) =

r

∑
i=1

γk
t,oi(Hi).

The remainder of this article is structured as follows. Section 2 introduces primary combinatorial
and computational results. For instance, we show that the problem of finding the total outer
k-independent domination number of a graph is NP-hard. In addition, we give the exact value
of this parameter for some specific families of graphs, and we expose general bounds and discuss
the extreme cases. Finally, Section 3 is dedicated to giving several Nordhaus–Gaddum type results
concerning the parameter γk

t,oi(G).
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2. Primary Combinatorial and Computational Results

It is natural to think that, due to the concept of “TOkID set", the total outer k-independent
domination number is related to the total domination number and the k-independence number.
This simple quotation leads to the following result.

Theorem 1. If G is a connected graph of order n, then

γk
t,oi(G) ≥ max{γt(G), n− βk(G)}.

Moreover, it is not difficult to see that, for any nontrivial connected graph G, any TO(k− 1)ID set
is a TOkID set, where 2 ≤ k ≤ ∆(G). Therefore, the following inequality chain holds.

Proposition 1. If G is a connected graph of order n and maximum degree ∆, then

2 ≤ γt(G) = γ∆
t,oi(G) ≤ γ∆−1

t,oi (G) ≤ · · · ≤ γt,oi(G) ≤ n.

The following remark is an immediate consequence of the proposition above.

Remark 2. Let G be any connected graph. If γk
t,oi(G) = γt(G), then γ

j
t,oi(G) = γt(G) for every j ∈

{k, . . . , ∆(G)}.

Next, we give a theoretical characterization of the graphs that have equal TOkID and TO(k− 1)ID
numbers. For this, we need some extra terminology and notation. For any γk

t,oi(G)-set D, let Ak
D be the

set of vertices defined as follows:

Ak
D =

{
v ∈ V(G) \ D : δV(G)\D(v) = k− 1

}
.

Lemma 1. Let G be a nontrivial connected graph. For any γk
t,oi(G)-set D with k ≥ 2,

γk−1
t,oi (G) ≤ γk

t,oi(G) + |Ak
D|.

Proof. Let D be any γk
t,oi(G)-set. Notice that D ∪ Ak

D is a TO(k − 1)ID set of G. Thus, γk−1
t,oi (G) ≤

|D ∪ Ak
D| = γk

t,oi(G) + |Ak
D|.

Theorem 2. Let G be a connected graph. For an integer k ≥ 2, γk
t,oi(G) = γk−1

t,oi (G) if and only if Ak
D = ∅ for

some γk
t,oi(G)-set D.

Proof. Suppose that γk
t,oi(G) = γk−1

t,oi (G) and let D be a γk−1
t,oi (G)-set. Thus, ∆(G[V(G) \ D]) ≤ k− 2.

Since every TO(k− 1)ID set is a TOkID set, it follows that D is also a TOkID set of G of cardinality
γk

t,oi(G). Hence, D is also a γk
t,oi(G)-set and satisfies that Ak

D = ∅. Conversely, if there exists a
γk

t,oi(G)-set D such that Ak
D = ∅, then, by Proposition 1 and Lemma 1, the result follows.

Now, we give an example of a subfamily of graphs given by Cabrera et al. in [13], in which
the lower bound of Theorem 1 is achieved for the graphs of this family, and also the equivalence of
Theorem 2 is satisfied. To this end, we need to introduce the family of graphs F . Before this, we shall
need the following operations for vertices or induced paths P3 of a graph G. Note that these operations
were already presented in [12].

Addition of t pendant vertices: Given a vertex x, add t new vertices y1, . . . , yt and the edges xyi
for every i ∈ {1, . . . , t}.



Mathematics 2020, 8, 194 4 of 14

Inflation of size q: Given an induced path P3 = uvw of G, in which δ(v) = 2, remove the vertex v
and the two incident edges, and replace them with q vertices v1, . . . , vq and edges uvi, viw for every
i ∈ {1, . . . , q}.

From the cycle C6, we obtain a graph H ∈ F by making the following sequence of operations.

(i) Apply the operation “Addition of ti pendant vertices”, ti ≥ 1 and i ∈ {1, 2, 3}, to all vertices of a
β(C6)-set S = {v1, v2, v3}, respectively.

(ii) Apply the operation “Inflation of size qi” with qi ≥ 1 and i ∈ {1, 2, 3} to the three possible paths of
order three between v1, v2, v3.

Figure 1 shows an example of a graph belonging to the family F . Next, we expose a result which
relates γt(H) and γt,oi(H) for graphs H ∈ F .

Figure 1. A graph H ∈ F where the three black-colored vertices form a β(C6)-set and the two
gray-colored vertices form a possible set to be added to the black-colored vertices to get a γt(H)-set.

Remark 3. If H ∈ F , then γt(H) = γt,oi(H) = 5.

According to the remark above, we can easily check that, for any graph H ∈ F , γt(H) =

γ∆
t,oi(H) = γ∆−1

t,oi (H) = · · · = γt,oi(H). Since every TOkID set is also a total dominating set and
γt(H) = γk

t,oi(H) by equality chain above, we have that every γk
t,oi(H)-set is also a γt(H)-set too.

Hence, if k ≥ 2, then Ak
D = ∅ for every γk

t,oi(H)-set D.
Now, we consider the decision problem associated with total outer k-independent domination

number of graphs.

TOTAL OUTER k-INDEPENDENT DOMINATION PROBLEM (TOkID PROBLEM)
INSTANCE: A nontrivial connected graph G and a positive integer r
PROBLEM: Deciding whether γk

t,oi(G) is less than r

We will show that the TOkID PROBLEM is NP-Complete by making a reduction from a known
decision problem concerning the k-independence number of graphs, which was solved in 1989 by
Jacobson and Peters [14]. In this article, the authors showed that the problem of determining the
number βk(G) for an arbitrary graph G is NP-Complete.

Next, we define a family of graphs, which we will need to make the reduction. Fixing a positive
integer k, the graph Hk is obtained from a path P2, by adding four copies of Kk, and joining with
an edge each vertex of P2 with all the vertices from two of such copies. (see Figure 2I). Let G be a
connected graph with |V(G)| = n and let H(1)

k , . . . , H(n)
k be n graphs isomorphic to the graph Hk.

We construct the graph Gn,k by adding edges between the ith-vertex of G and one vertex of maximum

degree of the ith-graph H(i)
k . See Figure 2II for an example.
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(I) (II)

Figure 2. The graph H2 (I) and a graph G4,2 (II) where G is a complete graph minus one edge.

Lemma 2. If G is a connected graph of order n and any positive integer k ≤ ∆(G), then

βk(Gn,k) = |V(Gn,k)| − 3n + βk(G).

Proof. Let G be a nontrivial connected graph such that |V(G)| = n and let Gn,k be the graph described

above (1 ≤ k ≤ ∆(G)). We define u(i), v(i) as the two vertices of maximum degree in the copy H(i)
k of the

graph Hk used to construct Gn,k and let A be a βk(G)-set. Notice that A ∪ {⋃n
i=1 V(H(i)

k ) \ {u(i), v(i)}}
is a k-independent set of Gn,k. Hence, βk(Gn,k) ≥ |V(Gn,k)| − 3n + βk(G).

On the other hand, let S be a βk(Gn,k)-set. It is straightforward to see that |S ∩ V(H(i)
k )| ≤

|V(H(i)
k )| − 2 for every 1 ≤ i ≤ n and that |S ∩V(G)| ≤ βk(G). Therefore,

βk(Gn,k) = |S| = |(S ∩V(G)) ∪ {
n⋃

i=1

S ∩V(H(i)
k )}|

≤ |S ∩V(G)|+
n

∑
i=1

(|V(H(i)
k )| − 2)

= |V(Gn,k)| − 3n + βk(G),

which completes the proof.

The following theorem shows the NP-completeness of the TOkID PROBLEM.

Theorem 3. TOkID PROBLEM is NP-complete.

Proof. The TOkID PROBLEM belongs to NP, since we can check in polynomial time that a given
set has cardinality at most r and is a TOkID set. Let Gn,k and u(i), v(i) be the graph and the vertices
described in the lemma above, respectively. Now, we will prove that γk

t,oi(Gn,k) = 3n− βk(G).

Let A be a βk(G)-set and let D = (V(G) \ A) ∪
{⋃n

i=1{u(i), v(i)}
}

. Notice that D is a total
dominating set of Gn,k and V(Gn,k) \ D is a k-independent set. Thus, D is a TOkID set of Gn,k and, as a
consequence,

γk
t,oi(Gn,k) ≤ |D| = n− |A|+

∣∣∣∣∣ n⋃
i=1

{u(i), v(i)}
∣∣∣∣∣ = 3n− βk(G).

Moreover, by Theorem 1 and Lemma 2, we obtain that γk
t,oi(Gn,k) ≥ 3n − βk(G). Therefore,

γk
t,oi(Gn,k) = 3n− βk(G).

Now, for j = 3n− h, it is readily seen that γk
t,oi(Gn,k) ≤ j if and only if βk(G) ≥ h, which completes

the reduction. Hence, TOkID PROBLEM is NP-complete.

The next result is an immediate consequence of the previous theorem.

Corollary 1. The problem of computing the total outer k-independent domination number of a nontrivial
connected graph is NP-hard.
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According to the complexity results above, it is desirable to bound the total outer k-independent
domination number or compute its exact value for several families of graphs. We next center our
attention on this second goal. We will use the notation Pn, Cn, Kn, Sn, Sr,n−r, Nn and Wn = N1 + Cn−1

for path graphs, cycle graphs, complete graphs, star graphs, double star graphs, empty graphs and
wheel graphs of order n, respectively. In addition, we use the notation Kr,s for the bipartite complete
graph and, without loss of generality, we always assume that r ≤ s.

Remark 4 ([7]). For any integer n ≥ 3, γt(Pn) = γt(Cn) =
⌊ n

2
⌋
+
⌈ n

4
⌉
−
⌊ n

4
⌋
.

Proposition 2. The following equalities hold for any integer n ≥ 3.

(i) γt,oi(Pn)=
⌊ 2n

3
⌋

and γ2
t,oi(Pn) =

⌊ n
2
⌋
+
⌈ n

4
⌉
−
⌊ n

4
⌋
.

(ii) γt,oi(Cn)=
⌊ 2n+2

3
⌋

and γ2
t,oi(Cn) =

⌊ n
2
⌋
+
⌈ n

4
⌉
−
⌊ n

4
⌋
.

(iii) γk
t,oi(Kn) =

{
2 if k = n− 1,

n− k otherwise.
(iv) γk

t,oi(Sn) = γk
t,oi(Sr,n−r) = 2.

(v) γk
t,oi(Wn) =


⌈

n+1
2

⌉
if k = 1,⌈ n+2

3
⌉

if k = 2,
2 otherwise.

(vi) γk
t,oi(Kr,s) =

{
min{r + 1, r + s− 2k + 2} if k ≤ r,

min{r + 1, s− k + 2} otherwise.

Proof. From Proposition 1 and Remark 4, we deduce (i) and (ii). The equalities (iii)–(v) are
straightforward. Now, we proceed to prove (vi). Let Kr,s be the bipartite complete graph with
partite sets Vr and Vs of cardinality r and s, respectively. Let v ∈ Vs. Notice that Vr ∪ {v} is a TOkID
set of Kr,s. Hence, γk

t,oi(Kr,s) ≤ |Vr ∪ {v}| = r + 1. If γk
t,oi(Kr,s) = r + 1, then we are done. Thus,

we assume that γk
t,oi(Kr,s) ≤ r. Next, we analyze two cases.

Case 1. k ≤ r. Let X ⊆ V(Kr,s) such that |X ∩Vr| = r− (k− 1) and |X ∩Vs| = s− (k− 1). Notice that
X is a TOkID set of Kr,s. Hence, γk

t,oi(Kr,s) ≤ |X| = r + s− 2k + 2. Now, let D be a γk
t,oi(Kr,s)-set. Since

D ∩Vr 6= ∅, D ∩Vs 6= ∅ and |D| ≤ r, we have that |D ∩Vr| ≥ r− (k− 1) and |D ∩Vs| ≥ s− (k− 1).
Thus, γk

t,oi(Kr,s) = |D| ≥ r + s− 2(k− 1). Therefore, γk
t,oi(Kr,s) = r + s− 2k + 2.

Case 2. k > r. Let X ⊆ V(Kr,s) such that |X ∩ Vr| = 1 and |X ∩ Vs| = s − (k − 1). Notice that X
is a TOkID set of Kr,s. Hence, γk

t,oi(Kr,s) ≤ |X| = s − k + 2. Now, let D be a γk
t,oi(Kr,s)-set. Since

D ∩ Vr 6= ∅, D ∩ Vs 6= ∅ and |D| > r, we have that |D ∩ Vr| ≥ 1 and |D ∩ Vs| ≥ s− (k− 1). Thus,
γk

t,oi(Kr,s) = |D| ≥ s− k + 2. Therefore, γk
t,oi(Kr,s) = s− k + 2.

Let G and H be two graphs of order nG and nH , respectively. The corona product graph G� H is
defined as the graph obtained from G and H, by taking one copy of G and nG copies of H and joining
by an edge every vertex from the ith-copy of H with the ith-vertex of G. For every x ∈ V(G), Hx will
denote the copy of H in G� H associated with x.

Next, we study the total outer k-independent domination number of corona product graphs.
Before, we shall need the following useful lemmas.

Lemma 3. If G and H are two graphs with no isolated vertex, then, for any positive integer k ≤ ∆(H),

βk(G� H) = nGβk(H).

Proof. Let S be a βk(H)-set. For any x ∈ V(G), let Sx be the copy of S associated with Hx. Since
∪x∈V(G)Sx is a k-independent set of G� H, we have that βk(G� H) ≥ | ∪x∈V(G) Sx| = nGβk(H). Now,
we suppose that βk(G � H) > nGβk(H) and let D be a βk(G � H)-set. Thus, there exists a vertex
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v ∈ V(G) such that |D ∩ (V(Hv) ∪ {v})| > βk(H). This can only happen if v ∈ D, which implies
that |D ∩ (V(Hv)| ≤ k− 1, contradicting the fact that |D ∩ (V(Hv) ∪ {v})| > βk(H) since βk(H) ≥ k.
Therefore, βk(G� H) = nGβk(H), which completes the proof.

Lemma 4. If G and H are two graphs with no isolated vertex, then

γt(G� H) = nG.

Proof. Notice that V(G) is a total dominating set of G � H. Hence, γt(G � H) ≤ |V(G)| = nG.
Moreover, we observe that each copy of H contains at least one vertex in any total dominating set of
G� H. Thus, γt(G� H) ≥ nG, which completes the proof.

Theorem 4. If G is a graph with no isolated vertex, then, for every graph H with no isolated vertex,

γk
t,oi(G� H) =

{
nG if ∆(H) ≤ k− 1,

nG(nH − βk(H) + 1) otherwise.

Proof. If ∆(H) ≤ k− 1, then it is straightforward to see that V(G) is a TOkID set of G� H. Hence, by
Lemma 4 and the statement above, we have that γk

t,oi(G� H) ≤ |V(G)| = nG = γt(G� H). Therefore,
Theorem 1 leads to γk

t,oi(G� H) = nG.
From now on, we assume that k ≤ ∆(H). Let S be a βk(H)-set. For any x ∈ V(G), let Sx be the

copy of S associated with Hx. Since R = ∪x∈V(G)Sx is a k-independent set of G � H, by Lemma 3,
we deduce that R is a βk(G� H)-set. Moreover, we observe that V(G� H) \ R is a total dominating
set of G� H. Thus, V(G� H) \ R is a TOkID set of G� H and so γk

t,oi(G� H) ≤ |V(G� H) \ R| =
|V(G� H)| − βk(G� H) = nG(nH + 1)− nGβk(H) = nG(nH − βk(H) + 1). The proof is completed
by Theorem 1.

Now, we continue the article giving relationships between the total outer k-independent
domination number and other parameters of a graph.

Theorem 5 ([15]). If G is a connected graph of order n ≥ 3 and maximum degree ∆(G) ≤ n − 2, then
γt(G) ≤ n− ∆(G).

Theorem 6. If G is a connected graph of order n and size m, then

2m− n(k− 2)
3∆(G)− k

≤ γk
t,oi(G) ≤ n− k + 1.

Furthermore, γk
t,oi(G) = n− k + 1 if and only if k = ∆(G) = n− 1.

Proof. Let D be a γk
t,oi(G)-set. Since D is also a total dominating set of G, each vertex in V(G) \ D

is adjacent to at least one vertex in D. Hence, (n − |D|) ≤ |E(D, V(G) \ D)| ≤ |D|(∆(G)− 1). In
addition, as V(G) \ D is a k-independent set, we have that |E(V(G) \ D, V(G) \ D)| ≤ (n−|D|)(k−1)

2 .

Since |E(D, D)| ≤ |D|∆(G)−|E(D,V(G)\D)|
2 ≤ |D|∆(G)−(n−|D|)

2 , we obtain

m = |E(D, V(G) \ D)|+ |E(D, D)|+ |E(V(G) \ D, V(G) \ D)|

≤ |D|(∆(G)− 1) +
|D|∆(G)− (n− |D|)

2
+

(n− |D|)(k− 1)
2

,

which is equivalent to 2m ≤ |D|(3∆(G)− k) + n(k− 2). Therefore, γk
t,oi(G) = |D| ≥ 2m−n(k−2)

3∆(G)−k , which
completes the proof of the lower bound.



Mathematics 2020, 8, 194 8 of 14

In order to prove the upper bound, we first suppose that 1 ≤ k < ∆(G). Let v be a vertex of
maximum degree and let Sk be a set of k vertices adjacent to v. Clearly, the set Sk is k-independent.
If D = V(G) \ Sk is a total dominating set, then D is a TOkID set. Hence, γk

t,oi(G) ≤ |D| = n− k <

n− k + 1. Now, we assume that D is not a total dominating set of G. Since G is connected, it can only
happen when Sk ∩ S(G) 6= ∅. Let Ss

k = Sk ∩ S(G) and consider the set D′ = (D \ (N(Ss
k)∩ L(G)))∪ Ss

k.
Observe that D′ is a total dominating set of G of cardinality at most |D| and V(G) \D′ is k-independent.
Hence, D′ is a TOkID set of G and so, γk

t,oi(G) ≤ |D′| ≤ |D| = n− k < n− k + 1.
Now, we suppose that k = ∆(G) < n− 1. Hence, by Proposition 1 and Theorem 5, we have that

γk
t,oi(G) = γt(G) ≤ n− ∆(G) = n− k < n− k + 1.

Finally, we assume that k = ∆(G) = n− 1. Thus, γt(G) = 2 and again, by Proposition 1, it follows
that γk

t,oi(G) = γt(G) = 2 = n − ∆(G) + 1 = n − k + 1. Conversely, if γk
t,oi(G) = n − k + 1, then,

by previous cases (1 ≤ k < ∆(G) and k = ∆(G) < n− 1), we deduce that k = ∆(G) = n− 1, which
completes the proof.

The lower bound above is tight. For instance, it is achieved for the cycle C4t with k = 2, where, by
Proposition 2(ii), we obtain γ2

t,oi(C4t) = 2t.

The following result is a direct consequence of Theorems 1 and 6.

Corollary 2. Let G be a nontrivial connected graph of order n. Let k be an integer such that βk(G) = k.
If k < ∆(G) or ∆(G) < n− 1, then γk

t,oi(G) = n− k.

Next, we give an upper bound for the total outer k-independent domination number of a graph.

Theorem 7. If G is a connected graph of order n, then for any positive integer k ≤ δ(G),

γk
t,oi(G) ≤ 2(n− βk(G))− δ(G) + k.

Proof. Let S be a βk(G)-set. Since S is k-independent, then V(G) \ S is a (δ(G)− k + 1)-dominating
set of G. Now, we fix a vertex v ∈ S and let A be the set of isolated vertices of G[V(G) \ (S ∪ N(v))].
Let A′ be a subset of S of minimum cardinality such that N(x) ∩ A′ 6= ∅ for every x ∈ A. Clearly,
|A′| ≤ |A|. Moreover, notice that the set (V(G) \ S) ∪ A′ ∪ {v} is a TOkID set of G. Hence,

γk
t,oi(G) ≤ |(V(G) \ S) ∪ A′ ∪ {v}|

≤ |V(G) \ S|+ |A′|+ 1

≤ |V(G) \ S|+ |A|+ 1

= (n− βk(G)) + (n− βk(G)− (δ(G)− k + 1)) + 1

= 2(n− βk(G))− δ(G) + k,

which completes the proof.

We remark that the upper bound given in Theorem 7 is tight. For example, it is achieved for the
graph Hk = (k + 1)Kk + Nk+1, where k ≥ 2 is an integer. It is easy to check that βk(Hk) = (k + 1)k,
|V(Hk)| = (k + 1)2, δ(Hk) = 2k and γk

t,oi(Hk) = k + 2. The graph H2, for example, is illustrated in
Figure 3.

Figure 3. The graph H2 = 3K2 + N3.



Mathematics 2020, 8, 194 9 of 14

Our next result provides a lower bound for the total outer k-independent domination number in
terms of the order, minimum degree, and the maximum degree of a graph.

Theorem 8. If G is a connected graph of order n, then for any positive integer k ≤ δ(G),

γk
t,oi(G) ≥ max{δ(G)− k + 1,

n(δ(G)− k + 1)
∆(G) + δ(G)− k

}.

Furthermore, if γk
t,oi(G) = δ(G)− k + 1, then G ∼= G1 + G2, where G1 is a graph with no isolated vertex of

order δ(G)− k + 1 and G2 is a (k− 1)-regular graph of order n− δ(G) + k− 1.

Proof. Let D be a γk
t,oi(G)-set. If D = V(G), then, by Theorem 13(iii), we have that k = 1 and G ∼= P2.

Hence, the bound is satisfied. Now, we assume that V(G) \ D 6= ∅. Since every vertex in V(G) \ D
has at least δ(G)− k + 1 neighbors in D, we obtain that γk

t,oi(G) = |D| ≥ δ(G)− k + 1. In addition,
since every vertex in D has at most ∆(G)− 1 neighbors in V(G) \ D, we deduce that

|D|(∆(G)− 1) ≥ |V(G) \ D|(δ(G)− k + 1)

γk
t,oi(G)(∆(G)− 1) ≥ (n− γk

t,oi(G))(δ(G)− k + 1)

γk
t,oi(G)(∆(G) + δ(G)− k) ≥ n(δ(G)− k + 1)

γk
t,oi(G) ≥ n(δ(G)− k + 1)

∆(G) + δ(G)− k

which implies that the bound is satisfied.
Now, we assume that |D| = δ(G)− k + 1. Since D is also a total dominating set of G, we have that

G1 = G[D] is a graph with no isolated vertex of order δ(G)− k + 1. Let v ∈ V(G) \ D. If δ(v) > δ(G),
then δD(v) > δ(G)− k + 1 as V(G) \ D is k-independent, which is a contradiction. Hence, for every
vertex x ∈ V(G) \ D, it satisfies that δ(x) = δ(G) and, consequently, δV(G)\D(x) = k − 1. Thus,
G2 = G[V(G) \ D] is a (k − 1)-regular graph of order n − δ(G) + k − 1 and G ∼= G1 + G2, which
completes the proof.

For any integer k ≥ 3, let G2k,k−1 be the family of (k − 1)-regular graphs of order 2k, and let
G = P2 + Gk, where Gk ∈ G2k,k−1. Observe that G2k,k−1 ⊆ T[F ◦1 P2], where ∆(F) ≤ k − 1. Hence,
by Theorem 13(i), we have that γk

t,oi(G) = 2. In addition, one can check that |V(G)| = 2k + 2,
∆(G) = 2k + 1, and δ(G) = k + 1, concluding that the lower bound given in the previous theorem
is tight, and it is achieved for the graph G. Recall that, for any integer k ≥ 3, the family G2k,k−1 is
not empty. Next, we give an example of a graph Fk ∈ G2k,k−1. Let Fk be the graph with vertex set
V(Fk) = {v1, . . . , vk, u1, . . . , uk} and edge set E(Fk) = {viuj : i ∈ {1, . . . k}, j ∈ {i, . . . , i + k − 1}},
where the subscripts are taken modulo k. It is not difficult to see that the graph Fk is a (k− 1)-regular
graph of order 2k, as desired. The graph F4, for example, is illustrated in Figure 4.

Figure 4. The graph F4.

In order to derive another results, we need to state the following results.
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Theorem 9. Let G be a graph.

(i) [16] If k ≤ δ(G), then βk(G) + γδ(G)−k+1(G) ≤ n.
(ii) [3] If 2 ≤ k ≤ ∆(G), then γk(G) ≥ γ(G) + k− 2.

The following result is a direct consequence of combining Theorems 1 and 9(i).

Theorem 10. If G is a connected graph, then for any positive integer k ≤ δ(G),

γk
t,oi(G) ≥ γδ(G)−k+1(G).

We remark that the lower bound given in the theorem above is sharp. For example, it is achieved
for any complete graph Kn with n ≥ 3 and 1 ≤ k ≤ n− 2.

From Theorems 10 and 9(ii), we immediately have the next theorem.

Theorem 11. If G is a connected graph, then for any positive integer 2 ≤ k ≤ δ(G),

γk
t,oi(G) ≥ γ(G) + δ(G)− k− 1.

To conclude this section, we proceed to characterize all graphs achieving the extreme values given
in Proposition 1. Before this, we shall need the following result and notation.

Theorem 12 ([8]). Let G be a graph of order n. Then, γt,oi(G) = n− 1 if and only if G ∈ {P3, C4, C5} or G is
a complete graph with at least three vertices.

We define the k-join operation between two graphs G and H, and denoted by G ◦k H, as the
disjoint union of G and H by joining each vertex of G to k or k + 1 vertices of H. For each integer
positive k and any graphs G and H, the family of all graphs obtained by the operation above is denoted
by T[G ◦k H].

Theorem 13. Let G be a connected graph of order n. Then, the following statement holds.

(i) γk
t,oi(G) = 2 if and only if G ∈ T[F ◦1 P2], where F is some graph with ∆(F) ≤ k− 1.

(ii) For n ≥ 3, we have that γk
t,oi(G) = n− 1 if and only if either k = 1 and G ∈ {Kn, P3, C4, C5} or k = 2

and G ∈ {P3, C3}.
(iii) γk

t,oi(G) = n if and only if k = 1 and G is the path P2.

Proof. We first proceed to prove (i). Suppose that γk
t,oi(G) = 2 and let D be a γk

t,oi(G)-set. Clearly,
D induces a path P2. Moreover, V(G) \ D is a k-independent set, which implies that the subgraph
induced by V(G) \ D, namely F, has maximum degree ∆(F) ≤ k − 1. In addition, as D is a total
dominating set, every vertex in V(G) \ D is adjacent to one or two vertices in D, i.e., 1 ≤ δD(v) ≤ 2
for every v ∈ V(G) \ D. Therefore, G ∈ T[F ◦1 P2], where F is some graph with ∆(F) ≤ k− 1. The
necessary condition is straightforward and so the proof of (i) holds.

We now proceed to prove (ii). If either k = 1 and G ∈ {Kn, P3, C4, C5} or k = 2 and G ∈ {P3, C3},
then it is easy to see that γk

t,oi(G) = n− 1. Hence, we assume that G is a connected graph satisfying
γk

t,oi(G) = n− 1. By Theorem 6, we obtain that k ≤ 2 and, if k = 2, then k = ∆(G) = n− 1. If k = 1,
then, by Theorem 12, we give that G ∈ {Kn, P3, C4, C5}. Moreover, if k = 2, then ∆ = 2 and n = 3.
Hence, G is either P3 or C3, which completes the proof of (ii).

Finally, we proceed to prove (iii). If k = 1 and G = P2, then it is straightforward that γk
t,oi(G) = n.

Conversely, if G is a connected graph such that γk
t,oi(G) = n, then, by Theorem 6, we obtain that

k = ∆(G) = 1 and n = 2. Hence, G is the path P2, which completes the proof.
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3. Nordhaus–Gaddum Type Inequalities

In 1956, Nordhaus and Gaddum published an article [17], where it gave lower and upper bounds
on the sum and product of the chromatic numbers of a graph and its complement. From this research
idea, these types of inequalities was defined as Nordhaus–Gaddum type inequalities, and have been
well studied for several domination parameters. We suggest a recent survey [18]. In the present section,
we initiate the study of Nordhaus–Gaddum type inequalities for the total outer k-independence
domination number.

We first establish a lower and upper bounds on the sum of the total outer k-independence
domination numbers of a graph and its complement. Before this, we remark that in this section
we involve the study of not connected graphs. However, it is necessary to assume that both G and
G have no isolated vertices. This last condition implies that n ≥ 4. In addition, we assume that
1 ≤ k ≤ min{∆(G), ∆(G)}.

Lemma 5. For any integer m ≥ 3,
γt,oi(mK2) = 2m− 2.

Proof. Let u and v be two adjacent vertices of mK2. Notice that V(mK2) \ {u, v} is a TO1ID set of mK2.
Hence, γt,oi(mK2) ≤ |V(mK2) \ {u, v}| = 2m− 2. Now, suppose that γt,oi(mK2) < 2m− 2 and let D be
a γt,oi(mK2)-set. Observe that |V(mK2) \ D| ≥ 3 and any three vertices in V(mK2) \ D contain a path
P3, which is a contradiction since V(mK2) \ D is an independent set. Therefore, γt,oi(mK2) = 2m− 2,
which completes the proof.

Theorem 14. For any graph G of order n ≥ 4 such that neither G nor G contains isolated vertices,

max{4, n− 2k + 1} ≤ γk
t,oi(G) + γk

t,oi(G) ≤ 2n− k.

Furthermore,

(i) γk
t,oi(G) + γk

t,oi(G) = 4 if and only if γk
t,oi(G) = γk

t,oi(G) = 2.
(ii) γk

t,oi(G) + γk
t,oi(G) = 2n− k if and only if k = 1 and G ∈ {C4, C4}.

(iii) γk
t,oi(G) + γk

t,oi(G) = 2n− k− 1 if and only if k = 1 and G ∈ {mK2, mK2}, with m ≥ 3.

Proof. First, we prove the lower bound. Since γk
t,oi(G) ≥ 2 for any graph G without isolated vertices,

the trivial lower bound follows and also (i) is straightforward. Now, let D and D be a γk
t,oi(G)-set and

a γk
t,oi(G)-set, respectively. As V(G) \ D and V(G) \ D are k-independent in G and G, respectively, we

have that δV(G)\D(x) ≤ k− 1 and δV(G)\D(x) ≤ k− 1 for every x ∈ (V(G) \ D) ∩ (V(G) \ D). Hence,
|(V(G) \ D) ∩ (V(G) \ D)| ≤ |NV(G)\D(x)|+ |NV(G)\D(x)|+ 1 ≤ 2k− 1, and, as a consequence,

n− (|D|+ |D|) ≤ n− |D ∪ D| = |(V(G) \ D) ∩ (V(G) \ D)| ≤ 2k− 1,

which implies that n− 2k + 1 ≤ γk
t,oi(G) + γk

t,oi(G), as desired.
Next, we prove the upper bound. Suppose that γk

t,oi(G) + γk
t,oi(G) > 2n− k. Notice that either

G or G is connected. By symmetry, we assume that G is connected. Since n ≥ 4 and ∆(G) < n− 1,
by Theorem 6, we have that γk

t,oi(G) ≤ n− k. This implies that γk
t,oi(G) > n, which is a contradiction.

Therefore, the upper bound follows.
Now, we proceed to prove (ii). If k = 1 and G ∈ {C4, C4}, then it is straightforward to observe

that γk
t,oi(G) + γk

t,oi(G) = 2n− k. Conversely, we assume that γk
t,oi(G) + γk

t,oi(G) = 2n− k. Since G
is connected, Theorem 6 leads to γk

t,oi(G) = n − k and γk
t,oi(G) = n. Hence, by Theorem 13(iii), it

follows that G consists of disjoint copies of K2. Since k ≤ ∆(mK2) = 1, we have that k can only take
the value 1 and so γ1

t,oi(mK2) = n− 1. This implies, by Theorem 13(ii), that m = 2. Therefore, k = 1
and G ∈ {C4, C4}, which completes the proof of (ii).
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Finally, we proceed to prove (iii). First, we suppose that γk
t,oi(G) + γk

t,oi(G) = 2n− k− 1. Again, as
G is connected, we have that (γk

t,oi(G), γk
t,oi(G)) = (n− k, n− 1) or (γk

t,oi(G), γk
t,oi(G)) = (n− k− 1, n).

Hence, we analyze these two cases.

Case 1. (γk
t,oi(G), γk

t,oi(G)) = (n− k, n− 1). If γk
t,oi(G) = n− 1, then by Theorem 13(ii), we have that

(k = 1 and G is isomorphic to mK2 ∪ H, where H ∈ {Kr, P3, C4, C5}) or (k = 2 and G is isomorphic
to mK2 ∪ H, where H ∈ {P3, C3}). In both cases, we can construct a TOkID set of G of cardinality
n− k− 1, which contradicts the condition γk

t,oi(G) = n− k.

Case 2. (γk
t,oi(G), γk

t,oi(G)) = (n − k − 1, n). If γk
t,oi(G) = n, then by Theorem 13(iii) we have that

k = 1 and G is isomorphic to mK2, with m ≥ 3. Moreover, Lemma 5 leads to γk
t,oi(G) = γk

t,oi(mK2) =

γt,oi(mK2) = 2m− 2 = n− 2 = n− k− 1, as desired.

On the other hand, we suppose that k = 1 and G ∈ {mK2, mK2}, with m ≥ 3. By symmetry,
we consider that G = mK2. Theorem 13(iii) and Lemma 5 lead to (γk

t,oi(G), γk
t,oi(G)) = (n− k− 1, n).

Hence, γk
t,oi(G) + γk

t,oi(G)) = 2n− k− 1, which completes the proof.

Next, we show that the upper bounds in Theorem 14 can be improved if we assume that both G
and G are connected graphs.

Theorem 15. If G is a graph of order n ≥ 4 such that both G and G are connected, then

γk
t,oi(G) + γk

t,oi(G) ≤ 2(n− k).

Proof. Notice that, if both G and G are connected, then k ≤ min{∆(G), ∆(G)} < n − 1, and by
Theorem 6 we have that (γk

t,oi(G), γk
t,oi(G)) ≤ (n− k, n− k). Hence, γk

t,oi(G) + γk
t,oi(G) ≤ 2(n− k).

Next, we give Nordhaus–Gaddum type inequalities for the product of the TOkID numbers of a
graph and its complement.

Theorem 16. If G is a graph of order n ≥ 5 such that neither G nor G contains isolated vertices, then

max{4, 2n− 2(2k + 1)} ≤ γk
t,oi(G) · γk

t,oi(G) ≤ (n− k)(n− 1).

Furthermore,

(i) γk
t,oi(G) · γk

t,oi(G) = 4 if and only if γk
t,oi(G) = γk

t,oi(G) = 2.
(ii) γk

t,oi(G) · γk
t,oi(G) = (n− k)(n− 1) if and only if k = 1 and G ∼= C5.

Proof. We first prove the upper bound. Since either G or G is connected (by symmetry, we assume
that G is connected) and max{∆(G), ∆(G)} < n− 1, we deduce by Theorem 6 that γk

t,oi(G) ≤ n− k.
Therefore, γk

t,oi(G) · γk
t,oi(G) ≤ (n− k)n.

Suppose now that there exists a graph G of order n for which γk
t,oi(G) · γk

t,oi(G) = (n − k)n.
Without loss of generality, we assume that γk

t,oi(G) = n− k and γk
t,oi(G) = n. Thus, by Theorem 13(iii),

we have that k = 1 and G consists of disjoint copies of K2, which is a contradiction with the equality
above γk

t,oi(G) = n− k = n− 1 by Lemma 5.
As a consequence, γk

t,oi(G) · γk
t,oi(G) < (n− k)n, which implies

γk
t,oi(G) · γk

t,oi(G) ≤ (n− k)(n− 1), (1)

as desired.
Now, we suppose that the equality in the inequality (1) holds. Hence, either (γk

t,oi(G), γk
t,oi(G)) =

(n− k, n− 1) or (γk
t,oi(G), γk

t,oi(G)) = (n− 1, n− k). Without loss of generality, we may assume that
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(γk
t,oi(G), γk

t,oi(G)) = (n− k, n− 1). By Theorem 13(ii), we have that either (k = 1 and G ∼= t1K2 + G′,
where G′ ∈ {Kn, P3, C4, C5}) or (k = 2 and G ∼= t2K2 + G′′, where G′′ ∈ {P3, C3}). In both cases,
if t1, t2 ≥ 1, then we can construct a TOkID set of G of cardinality n− k− 1, which contradicts the
condition γk

t,oi(G) = n − k. Since n ≥ 5, we obtain that k = 1 and G ∼= C5. The other hand is
straightforward to see, which completes the proof of statement (ii).

In order to prove the lower bound, by Theorem 14, we have

γk
t,oi(G) + γk

t,oi(G) ≥ max{4, n− 2k + 1}.

Now, we minimize γk
t,oi(G) · γk

t,oi(G) subject to γk
t,oi(G) + γk

t,oi(G) = max{4, n − 2k + 1}.
If γk

t,oi(G) + γk
t,oi(G) = 4, then, by Theorem 14(i), we obtain the equivalence with the condition

γk
t,oi(G) = γk

t,oi(G) = 2. Therefore, γk
t,oi(G) · γk

t,oi(G) ≥ 4 and statement (i) holds. On the other
hand, if γk

t,oi(G) + γk
t,oi(G) = n− 2k + 1, then we obtain either (γk

t,oi(G), γk
t,oi(G)) = (2, n− 2k− 1) or

(γk
t,oi(G), γk

t,oi(G)) = (n− 2k− 1, 2). Therefore, γk
t,oi(G) · γk

t,oi(G) ≥ 2n− 2(2k + 1), which completes
the proof.

4. Conclusions and Open Problems

In this paper, we have introduced and studied the total outer k-independent domination number
of graphs. Among the main contributions, we emphasize the following.

• We have shown the close relationship that exists between the total outer k-independent
domination number and other domination parameters such as domination number, total
domination number, k-domination number, and k-independence number.

• We have obtained general bounds for the parameter and discussed the sharpness of them.
• In a specific section of the article, we focused on the study of Nordhaus–Gaddum type inequalities

for the total outer k-independence domination number.
• We have shown that the problem of finding the total outer k-independent domination number of

a graph is NP-hard.

In order to continue with this new line of research, we propose some open problems, which we
consider to be interesting.

(a) Characterize the graphs G of order n such that γk
t,oi(G) = γt(G) and γk

t,oi(G) = n− βk(G).
(b) Since the problem of finding γk

t,oi(G) is NP-hard, is there a polynomial-time algorithm for finding
γk

t,oi(T) for any tree T?
(c) To find possible practical applications to the parameter γk

t,oi(G) studied.
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