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Abstract: In this paper, we focus on a class of robust optimization problems whose objectives and
constraints share the same uncertain parameters. The existing approaches separately address the
worst cases of each objective and each constraint, and then reformulate the model by their respective
dual forms in their worst cases. These approaches may result in that the value of uncertain parameters
in the optimal solution may not be the same one as in the worst case of each constraint, since it is
highly improbable to reach their worst cases simultaneously. In terms of being too conservative
for this kind of robust model, we propose a new robust optimization model with shared uncertain
parameters involving only the worst case of objectives. The proposed model is evaluated for the
multi-stage logistics production and inventory process problem. The numerical experiment shows
that the proposed robust optimization model can give a valid and reasonable decision in practice.

Keywords: robust optimization; duality theory; uncertain set; logistics production; inventory process

1. Introduction

In real life, we usually encounter some problems with uncertain data. In order to solve those
problems properly, we must consider them within an uncertain scope. For problems with uncertainty,
there are many approaches to handle them, such as sensitivity analysis, stochastic programming,
and robust optimization. In this paper, we focus on one of the popular methodologies, robust
optimization (RO), which addresses optimization problems with uncertain parameters described
using uncertainty sets other than probability distributions. The aim of robust optimization is to
determine a solution that is feasible for any realizations of uncertain parameters, and to be optimal for
the worst-case scenario of these uncertain parameters. In other words, robust optimization gives a
decision which is ensured to be “good” for all possible realizations of uncertain parameters.

1.1. Review of Robust Optimization

In recent decades, robust optimization has been popularized to handle practical problems
with incomplete messages, namely, with uncertain data. The primary work by Bertsimas et al. [1]
surveys research on robust optimization both theoretically and practically. For linear optimization
problems, Brown et al. [2] propose a special robust optimization with constructed uncertainty sets.
Ben-Tal et al. [3] relax the standard robustness by varying the protection level across the uncertainty set
and extend the framework of robust optimization. There are also some works on robust optimization for
the mixed integer stochastic optimization problem. For example, Bertsimas et al. [4] show that there can
be a good approximation of the static robust solution for two-stage mixed integer stochastic problem
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under fairly general assumptions. Delage et al. [5] demonstrate that the associated distributionally
robust stochastic programming with a large range of objective functions can be solved efficiently
by the proposed model with uncertainty in the form of distribution and moments. Luo et al. [6]
investigate robust optimization equilibria in game theory with two players by estimating a bounded
asymmetric uncertain set. Xu et al. consider linear regression problems with least-square error in [7].
Later, Xu et al. [8] connect robust optimization and distributionally robust stochastic programming
and show that the solution of the RO problem is also a solution of the latter problem. Distributionally
robust optimization is later studied as one popular area of robust optimization including convergence,
algorithms, and applications, see [9–13] for examples.

In most of those robust optimization models mentioned above, the same uncertain variable does
not exist in either objective or constraints simultaneously. However, in some papers like [14–17],
the objective and constraints often contain the same uncertain variable simultaneously. In other
words, they share the same uncertain parameters. In this case, researchers usually consider the
worst cases over the uncertain variable of the objective and each constraint, respectively. For instance,
Tong et al. [17] respectively get the dual forms of the worst objective and the worst constraints under
the given uncertainty sets. Recently, Yao [18] also employs this method in the robust multi-stage
logistics production and inventory process problem. The resulting optimization of this approach
is usually a convex and linear problem that is easy to solve. However, these robust models are
overly conservative, since the worst case of each objective and each constraint are handled separately.
Therefore, they may result in a highly impossible case—that the same uncertain variable is solved with
different values in objective and constraints.

1.2. Motivation

Most robust optimization models involve minmax(maxmin) objective functions. The popular
approach to handle this kinds of objective is reformulating minmax(maxmin) problems to min(max)
ones by the dual theorem. For example, the theoretical work in [11] reformulates the inner maximization
as a semi-infinite programming through Lagrange dual when solving minimax distributionally robust
optimization problems. Another practical work [10] for economic dispatch in energy integrated
systems also convert objective with respect to uncertainty to its dual form. Similarly, for max(min)
problems (i.e., the worst cases) in constraints, one strategy is to consider its dual forms with respect to
uncertain parameters. Like the work in [17,18] separably transforms the worst-case objective and each
constraint to the corresponding dual forms under the given uncertainty sets. However, the separable
and respective way to convert the worst-case objective and constraints most likely results in the
difference value of the uncertain parameter being between the optimal objective and the worst-case
constraint. Recently, Zhou et al. [19] propose robust risk–reward optimization models which ensure
the same distribution both in the reward and in constraints. Motivated by the above works, we
are prompted to focus on a generalized work which only considers the worst case of the objective
itself over the shared uncertain variable instead of also considering the worst case of each constraint.
We present an innovative model different to the existing robust optimization models which are overly
conservative. In this way, the optimal value of the uncertain parameter in proposed model can be
the same one in both the objective and constraints. Moreover, it is less conservative naturally and
reasonable in practice.

1.3. Orgnization

In Section 2, we propose the standard form of the robust optimization model with shared uncertain
parameters and compare it with the existing robust model. We will show that the proposed robust
optimization model is more reasonable. In Section 3, we utilize the approach to remodel a real robust
problem in logistics production and inventory process. Then we reformulate them to tractable forms
by dual theory under some assumptions. Numerical experiment conducted in Section 4 shows that the
existing robust model is too conservative to have a solution in some cases, but the new robust model is
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validated to forecast earnings and give a good decision to investors. Finally, we conclude this paper in
the last section.

2. Robust Optimization Model with Shared Uncertain Parameters

The optimization problems with uncertainty are generally formulated as follows:

min
x

f (x, ξ)

s.t. gi(x, ξ) ≥ 0, i = 1, · · · , k,
x ∈ X ,

(1)

where both the objective and constraints are uncertain with the same random variable ξ and the
feasible set X ⊆ Rn. We assume that the variable ξ belongs to a compact uncertainty set U.
Generally, the model in Equation (1) is hard to solve because of the existence of uncertain parameter.
The popular way to handle this problem, like in [14,16,18,20,21], is to consider the worst case of
objective and each constraint, respectively. That is,

min
x

max
ξ∈U

f (x, ξ)

s.t. min
ξ∈U

gi(x, ξ) ≥ 0, i = 1, · · · , k,

x ∈ X .

(2)

This model is regarded as the classic robust optimization problem.

2.1. Goal and Method

The robust optimization model in Equation (2) considers the worst cases of the objective and all
constraints with ξ, respectively. It is straightforward that the uncertain variable ξ in the respective worst
case of the objective and constraints are allowed to be different. This may be an overly conservative
assumption since it requires that each constraint should be satisfied for all possible (in particular,
the worst case) realizations of the uncertain parameters ξ. Therefore, it makes sense to improve
these kinds of models, in fact, that one variable should have the same meaning and evaluation at
the same scenario. An interesting alternative would be to consider a model in which the optimal
uncertain variable in the worst case of the objective itself meets related constraints in Equation (1).
Motivated by this consideration, we present the following robust optimization model with shared
uncertain parameters (denote as RO_Shared):

min
x

{
max
ξ∈U

f (x, ξ) : gi(x, ξ) ≥ 0, i = 1, · · · , k
}

s.t. x ∈ X1,
(3)

where the feasible set X1 = {x ∈ X : gi(x, ξ) ≥ 0, ξ ∈ U, i = 1, · · · , k}. We can easily obtain that
model in Equation (3) as it only focuses on the worst case of the objective over ξ which indeed satisfies
all constraints simultaneously. This model meets the requirement of the real situation more suitably
than the model in Equation (2). We illustrate this point by the following example.

2.2. Synthetic Examples and Analysis

Example 1. Compare the following two robust optimization problems:

min
x∈X

max
ξ∈U

3x− ξ

s.t. min
ξ∈U

g(x, ξ) = x− ξ2 ≥ 0.
(4)
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min
x∈X

{
max
ξ∈U

3x− ξ

s.t. g(x, ξ) = x− ξ2 ≥ 0

}
. (5)

Let X = [1, 5] and U = [0, 2]. We obtain the optimal solution x = 4 and ξ1 = 0 in Equation (4), but the
constraint reaches its worst case at ξ2 = 2. So Equation (4) is overly conservative since the value of ξ in the
optimal solution may not be the same one as in the worst case of the constraint. If we also consider the worst case
of the constraint, we may get different situations which would not likely to happen simultaneously in practice.
Meanwhile, the optimal solution of Equation (5) is (x, ξ) = (1, 0) which ensures intrinsic consistences of ξ

in objective and constraints. Clearly, Equation (5) is less conservative than Equation (4) in terms of optimal
objective value.

In fact, the model in Equation (2) is a conservative approximation for the new model
in Equation (3). We conclude that the model in Equation (2) is feasible ⇒ the model in
Equation (3) is feasible.

Denote the non-empty set

X2 =

{
x ∈ X : min

ξ∈U
gi(x, ξ) ≥ 0, i = 1, · · · , k

}
as the feasible set of model in Equation (2). According to the definition of the feasible set, for any
x∗ ∈ X2, we have minξ∈U gi(x∗, ξ) ≥ 0, i = 1, ..., n. Obviously, we obtain that gi(x∗, ξ) ≥ 0, i = 1, ..., n
are satisfied for all ξ ∈ U. Thus x∗ is the feasible solution of the model in Equation (3).

The above discussion gives rise to the following elementary result.

Theorem 1. The feasible set X2 constitutes a conservative approximation for X1, that is, X2 ⊆ X1.

Conversely, if the model in Equation (3) is feasible, the model in Equation (2) is not always feasible,
as demonstrated in the following example.

Example 2. Consider the robust optimization problems in Example 1 with X = [1, 2] and U = [0, 2].
And then the model in Equation (5) is always feasible for ∀x ∈ X . Meanwhile, for any x ∈ X , x − 4 =

minξ∈U g(x, ξ) ≥ 0 does not hold, hence the model in Equation (2) is infeasible.

2.3. Real Example in Portfolio Optimization

Now we take for example the practical portfolio problem. The current robust reward–risk model
(see [14–17] for example) is presented as follows:

min
x∈X

max
p∈P

CVaRp(x)

s.t. min
p∈P

Ep(x) ≥ S∗,
(6)

where x ∈ X is the decision variable, p ∈ P is an uncertainty set, and S∗ represents the lowest
expected return. Obviously, Equation (6) is a specific example of Equation (2) by separately considering
the worst-case distribution in the reward Ep and the risk CVaRp. Intuitively, argmaxp∈P CVaRp(x)
may most likely be different from argminp∈P Ep(x).

However, the corresponding RO_Shared model in Equation (3) for the robust reward–risk model is

min
x∈X

max
p∈P
{CVaRp(x) : Ep(x) ≥ S∗}. (7)

It is straightforward to see the difference on the value of p in the optimal solution of the models
in Equations (6) and (7).
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It should be clear that the models in Equations (3) and (7) are more flexible than the models in
Equations (2) and (6), i.e., it has a larger robust feasible set, enabling a better optimal value while still
satisfying all possible realizations of the constraints.

The proposed model in Equation (3) is a generalized model, so we can only provide a framework
on how to solve it. That is, the inner maximization problem in Equation (3) can be equivalent to its
dual form which is a minimization problem under some assumptions and then the minmax model
in Equation (3) can be converted to a minimization problem. Like the specific problems considered
in [14–23], we focus on affinely adjustable robust optimization with application to a multi-stage
logistics production and inventory process problem.

3. Multi-Stage Logistics Production and Inventory Process

For multi-stage (affinely adjustable) robust optimization such as models in [22,23] and so on,
the worst cases of both objective and constraints are also considered and converted to their dual forms,
respectively. In this way, they may get different optimal values of the same uncertain variable, which is
not true in fact. In this section, we remodel the affinely adjustable robust logistics and inventory
problem as the new robust optimization in Equation (3).

3.1. Problem Description

First, we present the following notations.
T: Set of time intervals {1, 2, · · · , T}
I: Set of assets {1, 2, · · · , n}
xt

i : Output of asset i at time t, i ∈ I, t ∈ T

dt
i : Demand generated in asset i at time t, i ∈ I, t ∈ T

ct
i : Production cost in asset i at time t, i ∈ I, t ∈ T

pt
i : Price of asset i at time t, i ∈ I, t ∈ T

Pt
i : Maximum productive capacity of asset i at time t, i ∈ I, t ∈ T

vt
i : Inventory of asset i at time t, i ∈ I, t ∈ T

mt
i : Unit inventory cost in asset i at time t, i ∈ I, t ∈ T

Qi: Maximum productive capacity of asset i, i ∈ I
C: Maximum inventory capacity.
For this problem, the aim is to maximum reward and the deterministic optimization model

presented in [18] is as follows:

max
x,v

∑
i∈I

∑
t∈T

pt
i d

t
i − ∑

i∈I
∑

t∈T
ct

i x
t
i − ∑

i∈I
∑

t∈T
mt

i v
t
i

s.t. vt+1
i ≤ vt

i + xt
i − dt

i , ∀i ∈ I, t ∈ {1, · · · , T − 1},
0 ≤ xt

i ≤ Pt
i , ∀i ∈ I, t ∈ T,

0 ≤ ∑
t∈T

xt
i ≤ Qi, ∀i ∈ I, t ∈ T,

vt
i ≥ 0, ∀i ∈ I, t ∈ T,

∑
i∈I

vt
i ≤ C, ∀t ∈ T,

v1
i = 0, ∀i ∈ I.

(8)

Now we consider robust counterpart in terms of uncertain demand dt
i like in [22]. That is,

it is assumed that demand dt
i is unknown and belongs to a prescribed polyhedral uncertainty set:

dt
i ∈ U = {dt

i : (1− θ)d̂t
i ≤ dt

i ≤ (1 + θ)d̂t
i , ∑

t∈T
dt

i ≤ Di, ∀i ∈ I, t ∈ T},

where θ is uncertainty level, d̂t
i is nominal demand in asset i during time interval t and Di is an upper

bound for demand in asset i. The adjustable control variables xt
i and state variables vt

i can be
represented as the following affine functions of the previously observed demand, i.e.,
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xt
i = η

′
it + ∑

s∈I
∑

τ∈It

ηsτ
it dτ

s ,

vt
i = π

′
it + ∑

s∈I
∑

τ∈It

πsτ
it dτ

s ,

where η
′
it, ηsτ

it , π
′
it and πsτ

it are non-adjustable variables and It = {0, 1, · · · , t− 1}.

3.2. The Proposed Model for this Problem

By substituting the state and control variables, we obtain the new affinely adjustable robust
counterpart of model in Equation (8) with the shared uncertain dt

i as follows:

max
η,η′ ,π,π′



min
d∈U

∑
i∈I

∑
t∈T

pt
i d

t
i − ∑

i∈I
∑

t∈T
ct

i(η
′
it + ∑

s∈I
∑

τ∈It

ηsτ
it dτ

s )

− ∑
i∈I

∑
t∈T

mt
i(π

′
it + ∑

s∈I
∑

τ∈It

πsτ
it dτ

s )

s.t. π
′
it+1 + ∑

s∈I
∑

τ∈It

πsτ
it+1dτ

s

≤ (π
′
it + ∑

s∈I
∑

τ∈It

πsτ
it dτ

s ) + (η
′
it + ∑

s∈I
∑

τ∈It

ηsτ
it dτ

s )− dt
i ,

∀i ∈ I, t ∈ {1, · · · , T − 1},
0 ≤ η

′
it + ∑

s∈I
∑

τ∈It

ηsτ
it dτ

s ≤ Pt
i , ∀i ∈ I, t ∈ T,

0 ≤ ∑
t∈T

(η
′
it + ∑

s∈I
∑

τ∈It

ηsτ
it dτ

s ) ≤ Qi, ∀i ∈ I, t ∈ T,

π
′
it + ∑

s∈I
∑

τ∈It

πsτ
it dτ

s ≥ 0, ∀i ∈ I, t ∈ T,

∑
i∈I

π
′
it + ∑

s∈I
∑

τ∈It

πsτ
it dτ

s ≤ C, ∀t ∈ T.


s.t. π

′
i1 = 0, ∀i ∈ I.

(9)

In this model, the objective represents the worst-case reward under the variable d satisfying
all related constraints, i.e., the inner problem in Equation (9). We denote all inequality constraints
in Equation (9) as S(η, η

′
, π, π

′
, d) ≥ 0 for short. We can utilize duality theory to deal with this

complicated max-min problem. We demonstrate this approach in the following theorem.

Theorem 2. Suppose that, for all fixed η, η
′
, π, and π

′
concerned in the outer maximizing problem of

Equation (9), there exists a d̂ ∈ U, such that

S(η, η′, π, π
′
, d̂) ≥ 0.

Then the model in Equation (9) is equivalent to the following nonlinear programming problem:
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max
λ,η,η′ ,π,π′

∑
i∈I

∑
t∈T

[−ct
i η
′
it −mt

i π
′
it − λb

itη
′
it + λc

it(η
′
it − Pt

i ) + λd
i η
′
i

−λe
itπ

′
it + λ

f
t π
′
it + (1− θ)λ

ga
it d̂t

i − (1 + θ)λ
gb
it d̂t

i ]

+ ∑
i∈I

∑
t∈{1,··· ,T−1}

λa
it(π

′
it+1 − π

′
it − η

′
it)

− ∑
i∈I

(λd
i Qi + λ

gc
i Di)− ∑

t∈T
λ

f
t C

s.t. ∑
i∈I

∑
t∈{τ+1,··· ,T−1}

λa
it(π

sτ
it + ηsτ

it − πsτ
it+1)− λa

sτ + λ
ga
sτ − λ

gb
sτ − λ

gc
s

+ ∑
i∈I

∑
t∈{τ+1,··· ,T}

[(λb
it − λc

it − λd
i )η

sτ
it + (λe

it − λ
f
t )π

sτ
it ]

+ ∑
i∈I

λa
iτπsτ

iτ+1 = Pτ
s − ∑

i∈I
∑

t∈{τ+1,··· ,T}
(ct

i η
sτ
it + mt

i π
sτ
it ),

∀s ∈ I, τ ∈ {1, · · · , T − 2}
∑
i∈I

πsτ
iT (−λa

iT−1 + λe
iT − λ

f
T) + ∑

i∈I
ηsτ

iT (λ
b
iT − λc

iT − λd
i )

−λa
sτ + λ

ga
sτ − λ

gb
sτ − λ

gc
s = Pτ

s − ∑
i∈I

(cT
i ηsτ

iT + mT
i πsτ

iT ),

∀s ∈ I, τ = T − 1,
PT

s = λ
ga
sT − λ

gb
sT − λ

gc
s , ∀s ∈ I,

S(η, η
′
, π, π

′
, d̂) ≥ 0, λ ≥ 0, π

′
i1 = 0, ∀i ∈ I.

(10)

Proof. By the assumption, there must exists a d̂ such that S(η, η
′
, π, π

′
, d̂) ≥ 0. Therefore, the inner

minimization over d in Equation (9) is feasible. In addition, it is easy to verify the inner minimization
in the model in Equation (9) is also bounded below. For each fixed η, η

′
, π and π

′
, we obtain that the

strong duality property holds for the inner minimization and then the inner minimization problem
can be equivalent to a dual problem (i.e., a maximization problem) by the linear duality theorem.
Finally, combining the dual problem with the outer maximization in Equation (9), we can obtain the
model in Equation (10). Here we omit detailed derivation since it is an example of the duality theorem
in LP.

Even though we reformulate the affinely adjustable robust optimization as a nonconvex
programming problem, many commercial nonlinear optimization solvers can be utilized to solve the
problem in Equation (10). Besides, we should note that the model in Equation (10) not only involves
less variables but also has more practical significance compared with the model in Equation (12) in [22]
and the model in Equation (20) in [18].

4. Evaluation for the Proposed Model

In this section, we apply the proposed robust model of Equation (9) and its equivalent dual form
in Equation (10) under the uncertain set U to solve a real multi-stage logistics production and inventory
process problem to show the superiority of our robust model. Numerical results will show that our
proposed model can give an effective strategy so that investors would receive preferable rewards.
More details is as follows.

4.1. Experimental Details

All numerical experiments were run under Matlab version R2015b on a Thinkpad laptop computer
with an Intel Core i5 processor at 2.5 GHz with 4 GB RAM. Since the optimization model in Equation (10)
is nonconvex and nonlinear, we use the commercial nonlinear optimization solver KNITRO (Available
at https://www.artelys.com/en/optimization-tools/knitro) to solve our model.

According to [18], denote logistics products n = 10, production planning period T = 10,
nominal demand d̂t

i = 100(1 + 0.1)t, and upper bound for demand in asset i as Di = 2 ∑ dt
i , and

pt
i = 100(1 + 0.05)t, ct

i = 30(1 + 0.05)t, mt
i = 2(1 + 0.05)t,

https://www.artelys.com/en/optimization-tools/knitro
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Pt
i = 300(1 + 0.05)t, qi = ∑ Pt

i , C = ∑ qi.

Next, we compare our model in Equation (10) with the AARC1 model in [18]. The Affinely
Adjustable Robust Counterpart (AARC) is first proposed by Ben-Tal et al. in [24]. AARC model
restricts the adjustable variables to be affine functions of the uncertain data and converts the NP-hard
Adjustable Robust Counterpart (ARC) problem to be a semi-infinite conic programming. Then it can
be reformulated as a computationally tractable problem (typically an LP or a semidefinite problem)
which is denoted by AARC1 model in [18]. Since the AARC1 model for this multi-stage logistics
production and inventory process problem is an LP, we use the commercial solver CPLEX to solve it.
Here we test the two models against different levels of uncertainty, specifically, varying θ from 0 to 1
with increment 0.1.

4.2. Results and Evaluations

We output the optimal objective of the two models vs different uncertainty level θ in Figure 1.
That is, Figure 1 shows the maximal rewards of two models with different uncertainty levels,
respectively. We also plot the histogram of total profit of the 10 periods to comparison more clearly
in Figure 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

-500,000

      0

 500,000
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m

a
l 
o

b
je

c
ti
v
e

 v
a

lu
e

the optimal objective value with different value of θ (I=10,T=10)

AARC

AARC-Shared

Figure 1. The comparison between our model (Affinely Adjustable Robust Counterpart
(AARC)-Shared) and AARC model in [18].
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the total profit with different value of  (I=10,T=10)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

15

20

T
o

ta
l 
P

ro
fi
t

105

AARC

AARC_Shared

Figure 2. The total profit obtained by two models.

We can see that the maximal rewards decrease along with increasing of the level of uncertainty θ

for both models. Here it should be clarified that it is a deterministic multi-stage logistics production
and inventory process problem when θ = 0. Obviously, the optimal value of reward in the deterministic
case is lager than ones in any other uncertain cases. It exactly illustrates the meaning of robust as we
expect. This is easily understandable because the optimal values of both models can be interpreted as
the optimistic estimate of total reward in the worst case, which can be lower and lower as the level of
uncertainty increases (i.e., the robust feasible region gets larger and larger). This can be interpreted by
Figure 3 which shows the demand d5

i (the 5th period) with different uncertain level θ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Uncertainty level 

0

50
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200

250

300

350

D
e
m

a
n
d

the demand range over different value of  at t=5

Figure 3. The impact of θ to uncertain demand (e.g., t = 5).
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However, compared with our model, the optimal values solved by AARC1 decrease dramatically
as θ increasing and specially it can even become negative when θ = 0.9 and 1. This is because AARC1
considers its feasible solutions (for η, η′, π, π′) satisfying each constraint for all dt

i ∈ U. Figure 4 plots
the range of dt

i in all 10 periods over θ = 0.9.

1 2 3 4 5 6 7 8 9 10

Period t

0

50

100

150

200

250

300

350

400

450

500

U
n
c
e
rt

a
in

 D
e
m

a
n
d

the demand region in 10 periods over  = 0.9

Figure 4. The demand range in all periods over θ = 0.9.

Clearly, as θ increases, the range of dt
i enlarges which make the outer feasible region of AARC1

shrink rapidly. On the other hand, no matter how the company arranges the production and inventory
planning, the model in [18] tells people that they will run at a loss in the worst cases when θ = 0.9
and 1. This is too conservative to give a production and inventory plan. While, our AARC-Shared
model is less conservative to some extent and can give a valid strategy in the production and inventory
planning under a larger uncertainty level than the AARC1 model.

5. Conclusions

In this paper, the robust optimization model with shared uncertain parameters is proposed.
Unlike existing robust models, we only consider the worst case of the objective under the constraints
sharing the same uncertain variable and regard it as in the inner problem of entire model. In terms
of the duality theorem, the proposed robust model can be reformulated to a nonconvex optimization
problem step by step.

Compared with existing robust optimization models in [14,16–18,22–24] and so on, the proposed
model has two advantages:

1. Normally, the same variable in one problem indicates the same meaning. So the uncertain situation
of the same variable in robust optimization should be the same in one event. In view of this point,
our model focuses on the optimization problems under the same uncertain situation shared in
both the objective and constraints, and is more practical and realistic.

2. Our model is less conservative and can provide more flexibility in regards to practical problems.
When people set more conditions and constraints to models in terms of personal preference,
our new robust model can have a greater chance to solve the problems than the original robust
models, since they are more conservative with their feasible region. Therefore, the robust
optimization model with shared uncertain parameters can be an advisable alternative for investors
and the investors can make a decision more actively, but not too conservative by our model.
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