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Abstract: A (k, n) threshold secret image sharing (SIS) method is proposed to divide a secret image
into n shadows. The beauty of this scheme is that one can only reconstruct a secret image with
k or more than k shadows, but one cannot obtain any information about the secret from fewer
than k shadows. In the (k, n) threshold SIS, shadow authentication means the detection and
location of manipulated shadows. Traditional shadow authentication schemes require additional
bits for authentication; need much information to be public; or need to put each shadow into
a host image, utilizing the information hiding technique, which makes the generation, recovery
and authentication complexity higher. Besides, most existing schemes work when a dealer
participates in recovery. Our contribution is that we propose a SIS method for a (k, n) threshold
with dealer-participatory and non-dealer-participatory mutual shadow authentication capabilities
which integrates polynomial-based SIS and visual secret sharing (VSS) through using the result
of VSS to “guide” the polynomial-based SIS by a screening operation. In our scheme, when an
authentication image is public, all involved actors (participants and dealer) can mutually authenticate
each other by exchange the lowest level plane instead of the whole shadow. Our scheme is suitable
for the case with and without a dealer participate recovery. In addition, the proposed scheme has
characteristics of low generation and authentication complexity, no pixel expansion, 100% detection
rate and lossless recovery.

Keywords: secret image sharing; verifiable secret sharing; shadow authentication; lossless recovery

1. Introduction

In a (k, n) threshold secret image sharing (SIS) scheme, where k ≤ n, a secret image is divided
into n shadow images without any secret information leakage, and it can be reconstructed only when a
sufficient number of shadow images are combined together, but one cannot obtain any information of
the secret image from fewer than k shadow images. There are two major categories in secret image
sharing scheme: one is the visual secret sharing (VSS) [1,2] (i.e., visual cryptography), and the other is
the polynomial-based secret image sharing [3]. The beauty of visual cryptography scheme (VCS) is the
stack-to-see property, which indicates the secret can be visually recognized by human visual system
(HVS) just with sufficient shares stacking. This natural property of VCS is based on OR operation, so it
has several drawbacks, such as lossy recovery and low visual quality of recovered images. Shamir [3]
designed the first (k, n) threshold polynomial-based secret sharing method to achieve high quality of
recovered secret images. Other research [4–8], based on Shamir’s work, developed some improved
polynomial-based SIS schemes in order to get superior results.
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The SIS schemes mentioned above have not taken the shadow authentication ability into account.
However, many applications, such as e-voting, e-auctions, secret image sharing and audio sharing,
are very dependent on verifiable secret sharing. The novelty of verifiable secret sharing is that it enables
a dealer to divide a secret into n shares and allows shareholders to verify all received shadows of the
secret without revealing what the secret and shares are. Primitive “verifiable secret sharing” was first
used by Chor et al. [9]; they verified by simultaneous broadcast network. In the practical application of
SIS, shadow authentication plays an increasingly important role. Through authentication, a dishonest
participant can be identified by a combiner before secret reconstruction process, thereby saving time
for the combiner. In general, there are three roles, namely, dealer, participant and combiner, in a secret
image sharing scheme. The dealer is authorized to share a secret image and distributes the shares
to the participants. Participants hold the shares assigned by a dealer, and finally, the combiner is
given the function to choose the threshold or a higher number of participants and gather shares from
them. The combiner may be one of the participants or the dealer, or another with the authority to
recover the secret image from the collected shares. There are two types of verifiable secret sharing
scheme: one is the interactive verifiable secret sharing, and the other is non-interactive verifiable
secret sharing. In interactive verifiable secret sharing, all the participants and the dealer can exchange
information with each other. In non-interactive verifiable secret sharing, only the dealer is allowed to
send messages; in particular, the participants (shareholders) cannot talk with each other or the dealer
when verifying a share.

Based on commitment property, Feldman [10] proposed verifiable secret sharing. The dealer
checks whether the shares he/she gathered are generated from same polynomial. To verify the
identity of each participant, the combiner performs the authentication of the shares submitted by
the participants from the commitments, and when he/she detects any fake share submitted by a
participant, the secret reconstruction process is halted by a broadcast that there is act of swindling.
However, the scheme is based on the premise that a lot of information is public, which increases
the risk of information disclosure. In Pedersen’s scheme [11] which uses the two entry commitment
property, the combiner is considered honest, which not always be the case. Laih et al. [12] proposed a
dynamic secret sharing scheme to change the number of participants dynamically. Charnes et al. [13]
introduced the idea of hierarchical delegation within a secret sharing scheme, and they attempted to
share secrets among the participants in different levels. Each scheme referred to involves not only the
participants, but also an honest dealer.

Pioneer works [14] added a verification function to image secret sharing. Recently, in GF(251)
based on improved polynomial-based SIS, Liu et al. [15] proposed an extended polynomial-based
SIS for a (k, n) threshold with shadow authentication. A secret image is divided into t blocks where
each block includes 2k− 2 secret pixels. The dealer selects an integer, and generates two k− 1 degree
polynomials. The coefficient of the two polynomials satisfies certain conditions over GF(251). For each
block the dealer computes the sub-shadow. In the image reconstruction phase, they reconstruct the
two k− 1 degree polynomials using Lagrange interpolation respectively, and then they check if there
is a common integer satisfying the conditions over GF(251), and thus detect the cheating. However,
it suffers from hard dishonest participant location, lossy reconstruction, auxiliary encryption, high
generation complexity, high recovery complexity and high authentication complexity.

Recently, Hu et al. [16] proposed a verifiable secret sharing scheme suitable for the combinatorial
auctions domain in which they represent the bidding price as a polynomial’s degree. Authors propose
this scheme to counter conspiracy attacks which may implemented by a dishonest auctioneer and
participant. Besides, multi-servers in the scheme are allowed to randomly choose secret shares and
mutually verify the legitimacy of them. They use the degree of the sum/product of the two polynomials
to construct the maximum/sum of the degree of two polynomials, and they utilize the verifiable secret
sharing scheme to resist collusion attack. The shortcoming of the scheme is that if the number of nodes
is large, the framework may not work, because the combinatorial auction’s winner determination
problem is NP-complete.
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One way to implement verifiable secret sharing is to use fragile watermarks. A fragile watermark
can be easily destroyed, even the watermarked image is tampered with quietly. It is usually embedded
in an image. Additionally, a fragile watermark is used to authenticate by inspecting the existence
of the embedded signal in an image. In Wang’s verifiable secret sharing scheme [17], a watermark
image with size of n× n was used with the secret image to generate shadows. Before reconstructing
the secret image, the reliability from shadow images is determined by the accuracy of watermark
image. Through determining the accuracy of watermark image, the recovered secret image could be
verified. To slightly distort the quality of shadow, Lin and Tsai [18] embedded the shared bits and
authentication bit in a four-pixel block. They combined information hiding and authentication features
to prevent accidentally bringing an incorrect shadow or deliberately submitting a fake shadow by
using the parity check bit. Unfortunately, parity checking bits lead to the leakage of the information
of authentication, and dishonest participants can easily fake a shadow that easily passes validation.
Besides the visual quality of the shadows is not good enough.

Yang et al. [19] improved the authentication by hashing the four-pixel block, block ID and image
ID. They used a hash function to prevent participants from manipulating shadows. The shortcomings
are high generation and authentication complexity and poor visual quality.

Yang et al. [20] presented a novel approach which is based on a symmetric bivariate polynomial
without needing parity bits. In addition, their (k, n) steganography and authenticated image sharing
(SAIS) scheme provides better visual quality and has a higher detection ratio. They combine both
authentication and secret sharing features into shared bits without needing additional authentication
bits. The shortcoming of the scheme is that it generates a stegoimage four times larger than the secret
image, which leads to the increase of storage space and transmission bandwidth.

Yan et al. [21] proposed a (k, n) threshold SIS scheme capable of separate shadow
authentication. Yan et al.’s work cleverly integrates polynomial-based SIS and visual secret sharing.
They utilize (2, 2) RG-VSS to split every pixel of authentication image into two temporary bits. One is
assigned to binary authentication shadow, and the other one guide to the generation of secret shadows
in polynomial-based SIS. Their scheme has the ability of separate shadow authentication. It achieves
low generation complexity, low recovery complexity, low authentication complexity, no pixel expansion
and lossless recovery. However, their scheme is only suitable for the case with dealer.

In this paper, we propose a (k, n) threshold SIS authentication with dealer-participatory
and non-dealer-participatory mutual shadow authentication capabilities which integrates
polynomial-based SIS and visual secret sharing (VSS) through using the result of VSS to “guide”the
polynomial-based SIS. We input a public binary authentication image and a grayscale secret image into
the proposed scheme to obtain n grayscale shadows when specifying 257 as a prime. The least
significant bit (LSB) of each shadow pixel is exactly the value of the appropriate bit of binary
authentication shadows generated by (2, n) RG-VSS, and each shadow’s pixel value is less than 256 by
selecting the random coefficients of the established polynomials. By Lagrange interpolation operation,
the secret image is losslessly reconstructed, and the dealer and each participant are authenticated
by only stacking or the XOR operation. All involved participants and the dealer can mutually
authenticate other participants. Besides, in our scheme the participants only need to exchange the
lowest level plane instead of the whole shadow, and only require an authentication image to be public.
The proposed scheme has low generation complexity, low recovery complexity, low authentication
complexity, no pixel expansion and lossless recovery. In order to validate the proposed scheme, we
give illustrations, theoretical analyses and comparisons.

The following sections are organized as follows. In Section 2, we focus on preliminaries for our
work. The motivation and contribution of our paper are described in Section 3. In Section 4, we present
the proposed SIS scheme authentication with dealer-participatory and non-dealer-participatory mutual
shadow authentication capabilities and its performance analysis in detail. Section 5 illustrates the
details of the experiments and comparisons, and Section 6 is the conclusion.
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2. Preliminaries

We introduce some preliminaries for our work in this section, including a traditional
polynomial-based SIS scheme and random grid-based (2, n) threshold VSS (RG-VSS). The conventional
polynomial based SIS scheme means Shamir’s primitive polynomial-based secret sharing scheme,
which is used as the foundation of our scheme to achieve a mutual shadow authentication, and
a (2, n) threshold RG-VSS is used to output n random bits from each binary authentication image pixel.

2.1. Polynomial-Based SIS Scheme

In 1979, Shamir [3] did a landmark job in which he constructed a (k, n) threshold sharing algorithm
by replacing the constant term a0 of a K− 1 degree polynomial with secret information and randomly
selecting other coefficients of the polynomial. N shadow images ( f (i), f or i = 1, 2, · · · , n.) are generated
by a dealer by using different variables (say i∈[1,n]). The polynomial is defined as

f (x) = (a0 + a1x + · · ·+ ak−1xk−1) mod P (1)

where P is a prime number, the secret is f (0) = a0 and ai is random, for i = 1, 2, · · · , k− 1.
In the recovery phase, by using Lagrange interpolation, any k shadows can together rebuild this

k− 1 degree polynomial f (x) following the Lagrange interpolation formula, and the secret information
can be derived from a0 = f (0). Less than k shadow images can not recover any secret information.

Due to a digital image being a special form of digital data, Shamir’s primitive polynomial-based
secret sharing scheme can be directly applied to the sharing of images, and the prime P is generally set
to 251. Figure 1 shows experimental results of (3, 4) threshold PSIS based on Shamir’s PSS. Figure 1a
denotes secret image S. As is displayed in Figure 1b, one out of four shadow images SC1 did not reveal
any secrets. Figure 1c shows the recovered image S′t=2 with not enough shares, where S′t=2 represents
recovery with any 2 shares. Images S′t=3 and S′t=4, which are similar to S, denote the recovered image
with any three and four shares, respectively.

(a)S (b)SC1 (c)S′t=2 (d)S′t=3 (e)S′t=4

Figure 1. Shamir’s proposed polynomial-based secret image sharing for (3, 4) threshold.

As shown in Figure 1d–e, there are black shadows in the recovered images. Since p = 251,
all the values in Equation (1) (x, f (x), a0, a1, · · · , ak−1) are within the interval [0, 250]. However,
the grayscale image includes 256 gray levels from 0 to 255. As a result, pixel values from 251 to
255 can not be processed, so classic PSISs have lossy recovery. Besides, the classic PSISs have not take
shadow authentication ability into account which leads to the shadows involved in recovery possibly
being faked.

2.2. Random Grid-Based VSS – (k, n) RG-VSS

It is necessary to review RG-VSS before introducing (k, n) RG-VSS. In RG-VSS [22,23], “1” and “0”
represent black and white pixel respectively. In what follows, symbols ⊗ and ⊕ denote the Boolean
OR and XOR operations. The generation and recovering phases of a classical (2, 2) RG-VSS are
given below.

Generating Step 1: Pseudo-randomly generate RG S1C1.
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Generating Step 2: Calculate S1C2 as in Equation (2).
Recovering phase: S1

′ = S1C1 ⊗ S1C2 as Equation (3). For example, suppose the value of a secret
pixel s1 = S1(h, w) of S1 is 1; then, the recovered bit S1C1 ⊗ S1C2 = 1 is always black. While the value
of a secret pixel is 0, the reconstructed bit S1C1 ⊗ S1C2 = S1C1(h, w)⊗ S1C1(h, w) has a 50% chance to
be black or white since S1C1 is pseudo-randomly generated.

S1C2(h, w) =

{
S1C1(h, w) i f S1(h, w) = 0
S1C1(h, w) i f S1(h, w) = 1

(2)

S′1(h, w) =S1C1(h, w)⊗ S1C2(h, w)

=

{
S1C1(h, w)⊗ S1C1(h, w) i f S1(h, w) = 0
S1C1(h, w)⊗ S1C1(h, w) = 1 i f S1(h, w) = 1

(3)

Equation (2) is equal to S1(h, w) = S1C1(h, w)⊕ S1C2(h, w). Thus, we can losslessly reconstruct
S1(h, w) by Boolean XOR operation.

In [23], Yan et al. proposed a (k, n) (generally n, k ∈ Z+, 2 ≤ k ≤ n)VSS based on RG.
The generating phase of a typical (k, n) RG-VSS are demonstrated in Algorithm 1.

Algorithm 1 (k, n) RG-VSS.

Input: A M× N binary secret image S , a pair of threshold parameters (k, n).
Output: n shadows SCi, i = 1, 2, · · · n.
Step 1: For each position (h, w) ∈ {(h, w)|1 ≤ h ≤ M, 1 ≤ w ≤ N} , repeat Steps 2-4.
Step 2: Sequentially calculate b1 , b2 , · · · , bk repeatedly using Equation (2) where bx is the provisional pixels,
x = 1, 2, · · · n− 1, n.
Step 3: Set bk+1 = b1, bk+2 = b2, · · · b2k = bk, b2k+1 = b1, · · · if (n mod k) = 0, bn = bk else bn = bn mod k.
Step 4: Rearrangement b1 , b2 , · · · , bn to SC1(i, j), SC2(i, j), · · · , SCn(i, j) randomly .
Step 5: Output n shadows SC1, SC2, · · · SCn.

It is remarkable that the k bits are utilized to gain the threshold mechanism in Step 2, and Step 3
is designed to improve the visual quality of reconstructed secret image by a different way to use the
last n− k bits, through which the chance of covering b1 , b2 , · · · , bk in the recovered t bits is improved.
While Step 4 aims to make all the shadows be equal to each other, the generated n bits are rearranged
to corresponding n shadow images.

The secret recovery of the scheme is also based on stacking or the HVS.

3. Motivation and Contribution

In our scheme, there are three roles, namely, dealer, participant and combiner, as described
in Section 1. To simplify and make it easier to understand, we assume the combiner is one of the
participants or the dealer in this paper. Additionally, it is assumed that the three roles all store the
authentication image.

As shown in Figure 2, we give an example of the general application scenario regarding
the (k, n) threshold SIS with dealer-participatory and non-dealer-participatory mutual shadow
authentication. For Case 1: (k, n) threshold SIS with dealer-participation and no deception. Any
k of the participants send their shadows; the dealer authenticates the k shadows and successfully
recovers the secret image. For Case 2: (k, n) threshold SIS with dealer-participation and deception.
Any k of the participants send their shadows to the dealer; the dealer authenticates the k shadows,
and then detects a fake shadow. The dealer stops the recovery phase and broadcasts the dishonest
participant to the other participants. For Case 3: (3, 5) threshold SIS with no dealer-participation
and no deception. Participant 1, Participant 2 and Participant 3 mutually send shadows to each
other then authenticate each other. Every participant collects three shadows, and these shadows all
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pass authentication. Finally, every participant successfully recovers the secret image. For Case 4:
(3, 5) threshold SIS with deception and no dealer-participation. Dishonest participant, Participant
2 and Participant 3 mutually send shadows to each other, and then authenticate each other. Every
participant collects three shadows. Through authentication, Participant 2 and Participant 3 detect that
the shadow sent by dishonest participant is fake. Then, Participant 2 and Participant 3 stop the recovery
phase and broadcast the dishonest participant to Participant 4 and Participant 5. Of course, there may
be multiple cheaters. Here we only give the example of the case where there is only one cheater.

Dealer Dealer

k

n

k

n

Shadow 

authentication

4

5

4

5

Shadow 

authentication

Successful 

recovery

Shadow 

authentication

Successful 

recovery

Shadow 

authentication

Successful 

recovery

Shadow 

authentication

Successful 

recovery

Shadow 

authentication

Vote

Shadow 

authentication

Vote

Vote

Vote

Vote

Broadcast

Figure 2. General application scenario regarding the (k, n) threshold secret image sharing (SIS) with
mutual shadow authentication ability.

Our motivation is to propose an SIS scheme which is suitable for shadow verification with and
without a dealer. Further, it is great if the proposed scheme has characteristics of lossless recovery,
low recovery complexity, low authentication complexity and no auxiliary encryption.
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It is easy to think that it is the best case that any two participants can verify each other. It means
that every honest participant’s detection rate of fake shadows is 100%. Based on the ability of mutual
authentication ability, we can design a variety of shadow authentication protocols. For example,
it is reasonable to design a shadow authentication protocol like majority rule. As described in Yang
et al.’s work [20], majority rule is a decision rule that selects the valid shadows which have more
than half the votes. Suppose that the k shadows are all valid. k participants exchange their shadows
mutually; then, each participant authenticates other k− 1 shadows and votes for them. If any one
shadow gains less than (k− 1) votes, we stop recovery and proceed with the auxiliary authentication
procedure of other (n − k) participants. Remaining participants vote for these k shadows. If the
shadow gains less than T votes from (n− 1) participants, we affirm this shadow as fake; otherwise it is
valid. Here, we suppose more than half participants are honest. The maximum number of votes from
other participants is (n− 1) votes. Therefore, a majority-voting threshold is chosen as T = b(n− 1)/2c.
Since T = b(n− 1)/2c = bn/2c, it implies that we need a majority T = b(n/2)c+ 1 of trustworthy
participants among all n participants to achieve the threshold.

For example, see Case 4 in Figure 2—(3, 5) for threshold SIS without a dealer when there is a
dishonest participant. Suppose that Participant 2, Participant 3 and the dishonest participant send their
shadows to each other at the same time. If every shadow gain two votes from other two participants,
the shadows are authenticated successfully. Otherwise, we proceed with the authentication procedure
with the help of Participant 4 and Participant 5.

In this paper, we propose a (k, n) threshold SIS with dealer-participatory and
non-dealer-participatory mutual shadow authentication which integrates polynomial-based
SIS and visual secret sharing (VSS) through using the result of VSS to “guide” the polynomial-based
SIS by screening operation. In this paper, we assume that the dealer can be both the producer and
distributor of shadow and the combiner. In our scheme, all involved participants and the dealer
can mutually authenticate other participants. If a dealer is responsible for recovering secret image,
participants can verify the credibility of the dealer too. Our scheme is suitable for the case with and
without dealer and only requires an authentication image to be public. If the recovery is done by
entities other than the participants and the dealer, our scheme applies. Besides, in our scheme the
participants only need to exchange the lowest level plane instead of the whole shadow. The proposed
scheme has features of low generation complexity, low authentication complexity and no pixel
expansion. It achieves lossless recovery and 100% detection rate. In terms of classification, our scheme
uses the interactive verifiable secret sharing mentioned in Section 1.

4. The Proposed (k, n) SIS with the Mutual Shadow Authentication Ability

4.1. The Proposed Scheme

Figure 3 shows the design mentality of the proposed (k, n) SIS authentication with
dealer-participatory and non-dealer-participatory mutual shadow authentication capabilities.
The explicit generating algorithm is illustrated in Algorithm 2, and its matching authentication and
recovery algorithm is in Algorithm 3.
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Algorithm 2 The proposed secret image sharing for (k, n) threshold authentication with dealer-participatory
and non-dealer-participatory mutual shadow authentication capabilities.

Input: A H×W grayscale secret image S2; a H×W binary authentication image S1; the threshold
parameters (k, n), where 2 ≤ k ≤ n.
Output: Shadow SCi, i = 1, 2, · · · n; a binary authentication shadow S1Cn+1.
Step 1: Specify a prime number P = 257. For each position (h, w) ∈ {(h, w)|1 ≤ h ≤ H, 1 ≤ w ≤W} , repeat
Steps 2-5.
Step 2: Utilize (2, n + 1) RG-VSS to split S1(h, w) to n + 1 temporary bits, denoted by b1 , b2 , · · · , bn+1 .
Randomly reassign b1 , b2, · · · , bn+1 to S1C1(h, w), S1C2(h, w), · · · , S1Cn+1(h, w) .
Step 3: Construct a k− 1 degree polynomial, as shown below.

f (x) = (a0 + a1x + · · ·+ ak−1xk−1) mod P

where a0 = S2(h, w), ai is random, for i = 1, 2, · · · k− 1.
Compute S2Ci (h, w) = f (i), for i = 1, 2, · · · n.
Step 4: Randomly pick up n numbers from {1, 2, · · · , n, n + 1}, scrambling these n numbers, denoted by
{i1, i2, · · · , in}. If S2Ci (h, w) < P− 1 and LSB (S2Ci (h, w)) = S1Cj (h, w), for i = 1, 2, · · · n, j = i1, i2, · · · in,
go to Step 5 or go to Step 2.
Step 5: Specify S2Ci (h, w) to SCi (h, w), for i = 1, 2, · · · n.
Step 6: n grayscale shadows SC1, SC2, · · · SCn and a binary authentication shadow S1Cn+1 which assigned
to the dealer if there exists are output.

Regarding Algorithm 2, we remark that:

1. S1 is a binary authentication image with size of H×W which is held or known by all participants
involved and the dealer. In other words, S1 is public.

2. In Step 1, we set a prime number P = 257; thus, in Step 4 S2Ci (h, w) < P − 1 to
guarantee the value of the shadow pixel is within [0, 255] and lossless recovery by utilizing
the screening operation.

3. Step 3 aims at guaranteeing the (k, n) threshold attribute and no pixel expansion by using the
polynomial.

4. Step 4 is designed to satisfy LSB (S2Ci (h, w)) = S1Cj (h, w) to achieve mutual
shadow authentication.

5. Since a1, a2, · · · , ak−1 and b1 are random, when n − k is small, we can find a set of random
values to satisfy S2Ci (h, w) < P − 1 and LSB (S2Ci (h, w)) = S1Cj (h, w), for i = 1, 2, · · · n,
j = i1, i2, · · · , in (randomly pick up n numbers from {1, 2, · · · , n, n + 1}, Scrambling these n
numbers, denoted by {i1, i2, · · · , in}) in Step 4. This way, S2 can be losslessly recovered and
mutual shadow authentication ability can be realized.
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Algorithm 3 The authentication and recovery in the proposed secret image sharing for (k, n) threshold
authentication with dealer-participatory and non-dealer-participatory mutual shadow authentication
capabilities.

Input: The binary authentication image S1 and dealer’s binary authentication shadow S1Cn+1, any k grayscale
shadows SCi1 , SCi2 , · · · SCik

.
Output: k authenticating results of SCij for j = 1, 2, · · · , k or (k − 1) authenticating results of SCij for
j = 1, 2, · · · , k for each participant involved depends on there is a dealer participant or not. Recovered
grayscale secret image S′2 with a size of H×W
Step 1: If there is a dealer, for j = 1, 2, · · · , k, take the LSB (least significant bit) of SCij , denoted by S1C1,
obtain the reconstructed binary authentication image S′1 through the stacking or XORing operation of S1C1
and S1Cn+1. If S′1 is recognized as S1 by HVS or S′1 = S1, pass the authentication and go to Step 3; otherwise,
a fake shadow is identified, denoted by i∗j , and broadcast the dishonest participant to the other participants.
Step 2: If there is not a dealer involved, take the LSB (least significant bit) of the participant itself’s
shadow, denoted by S1C1, take the LSB (least significant bit) of SCij for j = 1, 2, · · · , k, denoted by S1Cij for
j = 1, 2, · · · , k− 1, obtain the reconstructed binary authentication image S′1 through the stacking or XORing
operation of S1C1 and S1Cij . If all the S′1 are recognized as S1 by HVS or S′1 = S1, pass the authentication and
go to Step 3; otherwise, a fake shadow is identified, denoted by i∗j , and broadcast the dishonest participant to
the other participants.
Step 3: For each position (h, w) ∈ {(h, w)|1 ≤ h ≤ H, 1 ≤ w ≤W}, repeat Steps 4–5.
Step 4: Solve the following equation to get a0 by Lagrange interpolation function.

f (i1) = (a0 + ai1 + · · ·+ ak−1i1k−1) mod P

f (i2) = (a0 + ai2 + · · ·+ ak−1i2k−1) mod P
· · ·

f (ik−1) = (a0 + aik−1 + · · ·+ ak−1ik−1
k−1) mod P

f (ik) = (a0 + aik + · · ·+ ak−1ik
k−1) mod P

Step 5: Compute S′2(h, w) = a0.
Step 6: Output recovered grayscale secret image S′2 with a size of H×W and k authenticating results of SCij

for j = 1, 2, · · · , k or (k− 1) authenticating results of SCij for j = 1, 2, · · · , k for each participant.

For Algorithm 3, we note the following.

1. If there is a dealer, the dealer generates k authenticating results of SCij for j = 1, 2, · · · , k. If there
is not a dealer, each participant involved generates the (k− 1) authenticating result of SCij for
j = 1, 2, · · · , k. When we mention each participant involved, it means k participants in the
final recovery.

2. The LSB of SCij can be gotten by bitwise operation.
3. In Step 1, dealer or participants authenticate each gathered shadow to estimate whether S′1 is

recognized as S1 by HVS or S′1 = S1; thus, mutual shadow authentication is achieved by stacking
or XOR operation.

4. In Step 2, every participant involved authenticates other (k− 1) participants’ shadows. SCij for
j = 1, 2, · · · , k− 1 denote shadows held by other (k− 1) participants. Each participant involved
takes his/her shadow’s LSB, denoted by S1C1. The other (k− 1) participants involved take their
shadows’ LSBs, denoted by S1Cij for j = 1, 2, · · · , k− 1. Since authentication is performed in
pairs in our scheme, we achieve mutual shadow authentication.

5. In Step 2, every participant involved authenticates other (k − 1) participants’ shadows. So if
k× (k− 1) S′1 are recognized as S1 by HVS or S′1 = S1, pass the authentication and go to Step 3.

6. In Step 2, when detecting a fake shadow, the participant broadcasts the dishonest participant
to the other participants and stops recovery phase. Here, the scheme supposes that the
participant performing shadow authentication is honest. There is no further discussion on
how to authenticate and recover in the case of more than one dishonest participant in our scheme.
In this paper, we focus on designing a SIS with mutual authentication capability, rather than
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the rules or protocols of mutual authentication among participants. However, one can design
many protocols for authentication and recovery based on the proposed scheme with mutual
authentication ability. For example, one can design to allow participants to perform authentication
by using a vote-based protocol. Every participant authenticates other shadows, and decides
whether to vote for the shadows. According to the result of a majority vote, the authenticity of
the shadows is then determined by peers.

Here we will give a simple numerical example of (3, 4) threshold to illustrate the algorithm
process of our scheme. Let us take the current processing positions S1(h, w) = 0 and S2(h, w) = 161 as
an example.

In the generation phase, use (2, 5) RG-VSS to divide S1(h, w) into [0, 0, 0, 0, 0]. Assign S1C1(h, w) =

0, S1C2(h, w) = 0, S1C3(h, w) = 0, S1C4(h, w) = 0 and S1C5(h, w) = 0; S1C5(h, w) is always assigned to
the dealer if one exists. Construct a 2-degree polynomial as f (x) = (161+ a1x + a2x2) mod 257. Screen
a1 and a2 to satisfy S2Ci (h, w) < 256 and LSB (S2Ci (h, w)) = 1, for i = 1, 2, · · · n; for example, a1 = 229
and a2 = 216. Then, the corresponding shadow pixel values are S2C1 (h, w) = 32, S2C2 (h, w) = 64,
S2C3 (h, w) = 172 and S2C4 (h, w) = 248.

In the authentication phase, when the dealer is responsible for verifying and recovering images,
assume S1Ci(h, w) = LSB(SCi(h, w)), for i = 1, 2, · · · , 5. To authenticate SC1, obtain the recovered
binary authentication image S′1 through the stacking or XORing operation of S1C1 and S1C5; if all
the S′1 are recognized as S1 by HVS or S′1 = S1, pass the authentication. When there is not a dealer,
suppose Participant 1 and Participant 2 who hold SC1 and SC2 respectively mutually verify each other.
To authenticate SC1 and SC2, obtain the recovered binary authentication image S′1 through the stacking
or XORing operation of S1C1 and S1C2; if all the S′1 are recognized as S1 by HVS or S′1 = S1, pass
the authentication.

In the recovery phase, when two shadows (such as SC1(h, w) = 32 and SC2(h, w) = 64) are
gathered, solve f (1) = (a0 + a1) mod 257 and f (2) = (a0 + 2a1) mod 257 to obtain a0 = 113 by
Lagrange interpolation; thus, the recovery fails; when SC1(h, w) = 32, SC2(h, w) = 64 and SC3(h, w) =

172 are collected, solve f (1) = (a0 + a1 + a2) mod 257, f (2) = (a0 + 2a1 + 4a2) mod 257 and f (3) =
(a0 + 3a1 + 9a2) mod 257 to obtain a0 = 161 by Lagrange interpolation; thus, the recovery is successful.

4.2. Security Analysis, Time and Space Complexity Analyses and Performance Proof

Herein, we provide the performance and security analysis of the proposed (k, n) threshold SIS
authentication with dealer-participatory and non-dealer-participatory mutual shadow authentication
capabilities. In the next analyses, we suppose that the authentication image S1 and the secret image S2

are natural images, and they have no relevance.
We denote the gathered any k grayscale pixels as sci1 , sci2 , · · · scik in the recovery phase

corresponding to SCi1(h, w), SCi2(h, w), · · · SCik (h, w). s1 and s2 mean S1(h, w) and S2(h, w) ,
respectively.

Lemma 1. s2 can be within [0, 255], and sci is restricted to [0, 255] where i = 1, 2, · · · n.

Proof. Due to P = 257, s2 is limited within [0, 255]. S2Ci (h, w) < P− 1, sci is limited within [0, 255]
for i = 1, 2, · · · n.

Lemma 2. One can losslessly recover the secret pixel s2 with sci1 , sci2 , · · · scik .

Proof. Using the equation mentioned in Algorithm 3 and the Lagrange interpolation, we can calculate
the value of a0 and ai uniquely for i = 1, 2, · · · k− 1. Based on the Lemma 1, since s2 = a0 < P, s2 can
be recovered with sci1 , sci2 , · · · scik without distortion.

Theorem 1. Using SCi, S1 and SCij (S1Cn+1), we can recognize whether SCi is fake, for i = 1, 2, · · · n.
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Proof. In Step 4 of Algorithm 2, we make LSB (SCi (h, w)) = S1C1 (h, w), LSB(SCi) = S1C1,
LSB

(
SCij (h, w)

)
= S1Cij (h, w) and LSB(SCij) = S1Cij . According to (k, n) RG-VSS [23], we can

visually reveal S1 by stacking and XORing S1C1 and S1Cij (S1Cn+1). According to Equation (2),
the probability of correctly inferring S1C1 is (1/2)HW . As a result, using SCi, S1 and S1Cij (S1Cn+1),
we can judge whether SCi is fake for i = 1, 2, · · · n.

Lemma 3. When gathering k− 1 or fewer shadows, The secret image S2 cannot be recovered.

Proof. If only k− 1 equations are built in the equation mentioned in Algorithm 3, we have P solutions
rather than only one to the equation mentioned in Algorithm 3. Thus, the secret image S2 cannot be
recovered when gathered k− 1 or fewer shadows.

5. Experimental Results and Discussion

In this section, we implement a set of experiments to verify the effectiveness of the proposed (k, n)
threshold SIS authentication with dealer-participatory and non-dealer-participatory mutual shadow
authentication capabilities in which we set the value of n from 2 to 5, and the value of k from 2 to n
accordingly. Then, comparisons with related scheme will be given to show the features of our scheme.
In the future, we intend to use machine learning (i.e., [24]) to perform shadow verification.

5.1. Experimental Illustration

Due to the characteristics of no pixel expansion of the proposed SIS, all the experimental images
are have same size 128× 128 in our experiments. Here we only introduce the experimental results
of (2, 2) threshold and (3, 4) threshold SIS with dealer-participatory and non-dealer-participatory
mutual shadow authentication ability.

Figure 4 exhibits the results of (3, 4) threshold SIS authentication with dealer-participatory
and non-dealer-participatory mutual shadow authentication capabilities, the binary authentication
image S1 is shown in Figure 4a and the input secret image S2 which is grayscale is displayed in
Figure 4e. Figure 4b–d denotes the output binary shadows S1C1, S1C2, S1C3, where S1C3 is the binary
authentication shadow assigned to the dealer. Figure 4f–g presents the outputs of two shadows
SC1 and SC2. Figure 4h illustrates a fake shadow which is denoted by SC∗1 . Figure 4i–l denotes the
recovered binary authentication images obtained through the stacking and XORing operations of S1C3

and SC1, SC2, respectively, where the recovered binary authentication image can be well recognized;
thus, the shadows SC1 and SC2 are authenticated by the dealer. Meanwhile, participants holding
the shadows SC1 and SC2 can verify the credibility of the dealer responsible for recovering secret
image. Figure 4m,n denotes the recovered binary authentication images obtained through the stacking
and XORing operations of SC1 and SC2, respectively, where the recovered binary authentication
image can be well recognized; thus, the shadows SC1 and SC2 are authenticated. In other words,
the two participants are mutually authenticated successfully. Suppose there is an attacker posing
as Participant 1, or that Participant 1 is an dishonest participant who sends a fake shadow SC∗1 to
other participants or the dealer. The recovered binary authentication images with SC∗1 and SC1, SC2

by stacking and XORing, respectively, are presented in Figure 4o–r, and it is obvious that the binary
authentication image is not disclosed or recovered, and thus the shadow SC∗1 is fake. Figure 4s exhibits
the secret image reconstructed with the two shadows by Lagrange interpolation, and we can see that
the secret image is reconstructed losslessly. Figure 4t demonstrates the secret image recovered with
SC∗1 and SC2 by Lagrange interpolation operation, which is not recognized as the secret image; thus,
the recovery is failed. Additional instructions are needed here. In our scheme, participants exchange
and authenticate their shadows’ LSB planes mutually in the case of non-dealer-participation. In the
case of dealer-participation, the dealer authenticates the LSB planes of shadows sent by participants.
Thus, the SC1 and SC2 we are talking about here are actually the LSB planes of them.
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(a) S1 (b) S1C1 (c) S1C2 (d) S1C3

(e) S2 (f) SC1 (g) SC2 (h) SC∗1

(i) S1C3
⊗

SC1 (j) S1C3
⊕

SC1 (k) S1C3
⊗

SC2 (l) S1C3
⊕

SC2

(m) SC1
⊗

SC2 (n) SC1
⊕

SC2 (o) SC2
⊗

SC∗ (p) SC2
⊕

SC∗

(q) SC3
⊗

SC∗ (r) SC3
⊕

SC∗ (s) S2
′

recovered with
SC1 and SC2

(t) S2∗ recovered with
SC∗ and SC2

Figure 4. Results of (2, 2) threshold SIS with dealer-participatory and non-dealer-participatory multual
shadow authentication ability. (a) The binary authentication image S1; (b,c) two binary shares S1C1 and
S1C2; (d) the binary authentication shadow S1C3; (e) the grayscale secret image S2; (f,g) two grayscale
shadows SC1 and SC2; (h) fake shadow SC∗1 ; (i,j) recovered binary authentication image with S1C3 and
the LSB of SC1 by stacking and XORing; (k,l) recovered binary authentication image with S1C3 and the
least significant bit (LSB) of SC2 by stacking and XORing; (m,n) recovered binary authentication image
with the LSB of SC1 and SC2 by stacking and XORing; (o,p) recovered binary authentication image
with the LSB of SC2 and SC∗ by stacking and XORing; (q,r) recovered binary authentication image
with the LSB of SC3 and SC∗ by stacking and XORing; (s) recovered grayscale secret image S2

′
with

SC1 and SC2; (t) recovered grayscale secret image S2∗ with SC∗ and SC2.
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Figure 5 exhibits the results of (3, 4) threshold SIS authentication with dealer-participatory and
non-dealer-participatory mutual shadow authentication capabilities. The input binary authentication
image S1 is shown in Figure 5a. Figure 5c shows the input grayscale secret image S2. Figure 5b
denotes the output binary authentication shadow S1C5. Figure 5d–g presents the output 4 shadows.
Suppose SC1, SC2 and SC3 are specified to recover the secret image. When the dealer is in charge of
the authentication, he/she takes his/her binary shadow and the shadow (the LSB plane of shadow)
sent to him/her by the participant to perform stacking and XORing. Figure 5h–m denotes the binary
authentication images recovered through the stacking and XORing operations of S1C5 and SC1, SC2,
SC3, respectively, where the recovered binary authentication image can be well recognized, and thus the
three shadows are authenticated. Meanwhile, participants holding the shadows SC1, SC2 and SC3 can
verify the credibility of the dealer responsible for recovering secret image. When there is not a dealer,
the participants holding SC1 or SC2 or SC3 mutually authenticate each other. Figure 5n–s shows binary
authentication images mutually recovered through the stacking and XORing operations of SC1, SC2

and SC3, respectively, where the recovered binary authentication image can be well recognized; thus,
the shadows SC1, SC2 and SC3 are authenticated. In other words, the three participants are mutually
authenticated successfully. Figure 5t shows the secret image recovered with the three shadows by
Lagrange interpolation, and we can see that the secret image is reconstructed losslessly.

Figure 6 exhibits the results of our proposed (3, 4) threshold SIS authentication with
dealer-participatory and non-dealer-participatory mutual shadow authentication capabilities, when
there is a fake shadow participating in recovery. A randomly generated fake shadow, denoted by
SC∗1 , is illustrated in Figure 6a. Suppose there is an attacker posing as Participant 1 or Participant 1
is an dishonest participant who sends a fake shadow SC∗1 to other participants or dealer. The binary
authentication images recovered SC∗1 , SC2 and SC1 by stacking and XORing, respectively, are presented
in Figure 6b–e, and the binary authentication images are not correctly identified; thus the shadow
SC∗1 is fake. Figure 6f demonstrates the recovered secret images S∗2 with SC∗1 and SC2, SC3 by stacking
and XORing, respectively by Lagrange interpolation, which displays no secret information; thus, the
recovery is failed.

According to the above experimental results, we draw the following conclusions:

1. The shadow generated by our scheme has no cross-interference and no pixel expansion of the
secret image.

2. Figure 7 shows the security of the proposed SIS when recovered with fewer than k shadows;
the recovered image leaks no secret details.

3. One can losslessly reconstruct the secret image with any number k or more of shadows.
4. The binary authentication image is lossily reconstructed, so one can carry out authentication by

only stacking or XORing operation.
5. The mutual authentication ability is gained based on SIS itself rather than another technique.
6. An SIS with dealer-participatory and non-dealer-participatory mutual shadow authentication

for a general (k, n) threshold is achieved, where n ≥ k ≥ 2. Since when k is fixed, as n increases
more requirements should be satisfied. Through experiments, we give the suggestion that the
condition is n−k

n ≤
3
5 .
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(a) S1 (b) S1C5 (c) S2 (d) SC1

(e) SC2 (f) SC3 (g) SC4 (h) S1C5
⊗

SC1

(i) S1C5
⊕

SC1 (j) S1C5
⊗

SC2 (k) S1C5
⊕

SC2 (l) S1C5
⊗

SC3

(m) S1C5
⊕

SC3 (n) SC1
⊗

SC2 (o) SC1
⊕

SC2 (p) SC1
⊗

SC3

(q) SC1
⊕

SC3 (r) SC2
⊗

SC3 (s) SC2
⊕

SC3 (t) S2
′

recovered with
SC1, SC2 and SC3

Figure 5. Experimental results of (3, 4) threshold SIS authentication with dealer-participatory and
non-dealer-participatory mutual shadow authentication capabilities. (a) The binary authentication
image S1; (b) the binary authentication shadow S1C5; (c) the grayscale secret image S2; (d–g) four
grayscale shadows SC1, SC2, SC3 and SC4; (h–m) recovered binary authentication image with S1C5

and the LSBs of SC1, SC2 and SC3 by stacking and XORing; (n–s) recovered binary authentication
image with the LSBs of SC1, SC2 and SC3 by stacking and XORing; (t) recovered grayscale secret image
S2
′

with SC1, SC2 and SC3.



Mathematics 2020, 8, 234 16 of 20

(a) SC∗1 (b) SC2
⊗

SC∗1 (c) SC2
⊕

SC∗1

(d) SC3
⊗

SC∗1 (e) SC3
⊕

SC∗1 (f) S2∗ recovered with SC∗1 ,
SC2 and SC3

Figure 6. Experimental results of the proposed (3, 4) threshold SIS authentication with
dealer-participatory and non-dealer-participatory mutual shadow authentication capabilities, when
there is a fake shadow participating in recovery. (a) Fake shadow SC∗1 ; (b–e) recovered binary
authentication image with the LSB of SC2, SC3 and SC∗1 by stacking and XORing; (f) recovered
grayscale secret image S2∗ with SC∗, SC2 and SC3.

(a) S2
′

recovered with SC1,
SC2

(b) S2
′

recovered with SC2,
SC3

Figure 7. Experimental results of the proposed (3, 4) threshold SIS with dealer-participatory and
non-dealer-participatory mutual shadow authentication capabilities, when less than k (k = 3) shadows
were collected. (a) S2

′
recovered with SC1, SC2; (b) S2

′
recovered with SC2, SC3.

Moreover, in Algorithm 2, we use (2, n + 1) RG-VSS to split every pixel of authentication image
into n + 1 temporary bits; one is assigned to binary authentication shadow, and the others are used
to guide the generation of secret shadows in polynomial-based SIS. The specific guidance method
is as follows: we continue to screen a1, a2, · · · , ak−1 until we find a set of random values to satisfy
S2Ci (h, w) < P− 1 and LSB (S2Ci (h, w)) = S1Cj (h, w), for i = 1, 2, · · · n, j = i1, i2, · · · , in (randomly
pick up n numbers from {1, 2, · · · , n, n + 1}. So, what we change and influence are the LSBs of the
shadows generated by the polynomial-based SIS, and the shadow itself is noise like, so it is difficult to
be detected even if we modify the LSBs of all pixels of all shadows. Figure 8 shows that the shadows
are randomly generated by the polynomial-based SIS.
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(a) Statistical histogram of SC1 (b) Statistical histogram of SC2

Figure 8. Statistical histogram of shadow images generated in Experiment 1.

5.2. Comparisons with Relative Schemes

Herein, we will compare the proposed SIS with Yan et al.’s work [21].

1. Inspired by Yan et al.’s work [21], we improve the SIS scheme to be suitable for the case with and
without dealer by extending the sharing method of the authentication image from (2, 2) RG-VSS
to (2, n + 1) RG-VSS. Yan et al. utilize the (2, 2) RG-VSS to split every pixel of authentication
image into two temporary bits; one is assigned to binary authentication shadow, and another
one guides the generation of secret pixels in polynomial-based SIS. We use (2, n + 1) RG-VSS to
split every pixel of authentication image into n + 1 temporary bits; one is assigned to the binary
authentication shadow, and the others are used to guide the generation of secret shadows in
polynomial-based SIS. Thus, in our scheme, any actor (participants or dealer) can be specified as
a combiner. Yan et al.’s scheme works when there is a dealer.

2. As shown in Figure 9, when we share extreme image Figure 9a by Yan et al.’s and our (2, 3)
threshold SISs respectively, we can see through our eyes that the shadows (Figure 9b–d) generated
by Yan et al.’s reveal the secret, while ours (Figure 9e–g do not). The reason is that we use the pixels
generated by (2, n+ 1) RG-VSS to guide the LSBs of pixels generated by the polynomial-based SIS,
while Yan et al. use the pixels generated by (2, 2) RG-VSS to guide the MSBs of pixels generated
by the polynomial-based SIS. Besides, based on the above Lemmas 2 and 3, the conditions are
satisfied. Unfortunately, Yan et al.’s use MSBs of pixels, which is the most significant bit, may
cause information disclosure when n− k gets larger and larger. In contrast, we use the LSB, which
will be better.

3. Due to the characteristics of (2, 2) RG-VSS and (2, n + 1) RG-VSS, in the authentication phase,
the shadow passes verification when the binary authentication image is always well recognized
in our scheme. The shadow passes verification when the binary authentication image recovered
respectively, by stacking or XORing, is always well recognized or losslessly recovered in
Yan et al.’s scheme.

Besides, we compare the proposed SIS with Bhattacharjee et al.’s work [25]. Bhattacharjee et al.
propose an image-in-image communication scheme which is a data-hiding-based SIS scheme.
The process includes encoding and decoding stages. In the encoding stage, they first M-bit signal
modulates all the pixels of the secret image, and then n shadows of reduced size are generated
by their shadow generation algorithm; finally stegoimages are generated by a series of steps
which include generation of Walsh code, a block-based discrete cosine transform (DCT) operation,
SS embedding and an inverse DCT transformation operation. It should be noted that the SS
embedding in Bhattacharjee et al.’s work means spread spectrum watermarking which is used to resist
attacks and unexpected operations. Correspondingly, the decoding stage includes the share image’s
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extraction (the stegoimage’s decomposition, correlation calculation and secret rearrangement) and
secret reconstruction.

The comparisons between the proposed scheme and Bhattacharjee et al.’s scheme are summarized
as follows.

1. The proposed scheme is (k, n) threshold SIS scheme. Contrarily, the scheme in
Bhattacharjee et al.’s [25] work is (n, n) threshold.

2. Bhattacharjee et al. embed the shares into several cover images; this leads to the need to extract
shares from stegoimages during the recovery phase, and thus increases decoding complexity.
Contrarily, we do not use a cover image at all. In addition, Bhattacharjee et al.’s scheme generates
shadows of reduced size in the encoding phase by using a kind of encryption technology which
increases encoding complexity.

3. Bhattacharjee et al.’s scheme has the characteristics of no key requirements but several cover
image requirements, while our scheme only requires an authentication image to be public.

(a) Indor (b) SC
′
1 (c) SC

′
2 (d) SC

′
3

(e) SC1 (f) SC2 (g) SC3

Figure 9. Comparisons of generated shadows between Yan et al.’s and our (2, 3) threshold SIS. (a) The
grayscale secret image Indor; (b–d) three grayscale shadows SC

′
1, SC

′
2 and SC

′
3 gernerated by Yan et

al.’s scheme; (e–g) three grayscale shadows SC1, SC2 and SC3 gernerated by our scheme.

Table 1 shows the comparison of the properties between our scheme and the schemes proposed
in [21,25].



Mathematics 2020, 8, 234 19 of 20

Table 1. Comparison of our scheme, Yan et al.’s scheme [21] and Bhattacharjee et al.’s scheme [25].

Properties Our Scheme Yan et al. [21] Bhattacharjee et al. [25]

Threshold (k, n) (k, n) (n, n) progressive quality access

Dealer participatory No Yes No

Verification operation VCS(OR/XOR) VCS(OR/XOR) Watermark

Recovery operation Lagrange
interpolation

Lagrange
interpolation

Pixel rearrangement

Cover images No No Yes

Pixel expansion No No No (reduced shadow size)

Technology Polynomial-based SIS
and (2, n+ 1) RG-VSS

Polynomial-based SIS
and (2, 2) RG-VSS

Data hiding

In particular, compared with traditional schemes, the proposed SIS for the (k, n) threshold achieves
the features of mutual shadow authentication, low recovery operation, no pixel expansion and lossless
recovery. Besides, in our scheme the actors only need to exchange the lowest level plane instead of the
whole shadow, and it only requires an authentication image to be public.

6. Conclusions

In this paper, the proposed SIS for a (k, n) threshold authentication with dealer-participatory
and non-dealer-participatory mutual shadow authentication capabilities integrates polynomial-based
SIS and visual secret sharing (VSS) through using the result of VSS to "guide" the polynomial-based
SIS by screening operation. We input a public binary authentication image and a grayscale secret
image into the proposed scheme to obtain n grayscale shadows when specifying 257 as a prime.
The least significant bit (LSB) of each shadow pixel is exactly the value of the appropriate bit of binary
authentication shadows generated by (2, n) RG-VSS, and each shadow’s pixel value is less than 256
by selecting the random coefficients of the established polynomials. In our scheme, we can assign
any participant as a combiner. By Lagrange interpolation operation, the secret image is losslessly
reconstructed, and the dealer and each participant are authenticated by only stacking or XORing
operation. All involved participants and the dealer can mutually authenticate other participants.
Besides, in our scheme the participants only need to exchange the lowest level plane instead of the
whole shadow, and it only requires an authentication image to be public. The proposed scheme has low
generation complexity, low recovery complexity, low authentication complexity, no pixel expansion,
lossless recovery and a 100% detection rate.
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