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Abstract: Our paper is devoted to indicating a way of generalizing Mann’s iteration algorithm and a
series of fixed point results in the framework of b-metric spaces. First, the concept of a convex b-metric
space by means of a convex structure is introduced and Mann’s iteration algorithm is extended to this
space. Next, by the help of Mann’s iteration scheme, strong convergence theorems for two types of
contraction mappings in convex b-metric spaces are obtained. Some examples supporting our main
results are also presented. Moreover, the problem of the T-stability of Mann’s iteration procedure for
the above mappings in complete convex b-metric spaces is considered. As an application, we apply
our main result to approximating the solution of the Fredholm linear integral equation.
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1. Introduction

In the last few decades one could observe a huge amount of interest for the development of
the fixed point theory because of plenty of applications, especially in metric spaces [1,2]. Banach’s
contraction principle [3] is one of the most widely applied fixed point theorems in all branches of
mathematics [4–12]. In recent decades, scholars have devoted themselves to extending the above
theorem to all kinds of generalized metric spaces [13–17]. In 1993, Czerwik [18] introduced the concept
of b-metric spaces by weakening the coefficient of the triangle inequality and generalized Banach’s
contraction principle to these spaces. Subsequently, Boriceanu, Bota and Petrusel [19,20] obtained some
concrete examples of b-metric spaces, and studied the fixed point properties of set-valued operators
in b-metric spaces. The fixed point properties of b-metric spaces have received much attention;
for example, see [21–28] and references therein.

In 1970, Takahashi [29] introduced the concepts of a convex structure and a convex metric space,
and formulated some first fixed point theorems for nonexpansive mappings in the convex metric space.
In addition, Goebel and Kirk [30] studied some iterative processes for nonexpansive mappings in
the hyperbolic metric space, and in 1988, Xie [31] found fixed points of quasi-contraction mappings
in convex metric spaces by Ishikawa’s iteration scheme. In 1990, Reich and Shafrir [32] presented
nonexpansive iterations in hyperbolic spaces. In general, the Picard iteration algorithm is widely used
in studying the fixed point problems for many kinds of contraction mappings and quasi-contraction
mappings in b-metric spaces. However, it is hard to extend other algorithms directly to the b-metric
spaces because of the characteristics of this kind of metric space.

Mathematics 2020, 8, 242; doi:10.3390/math8020242 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/8/2/242?type=check_update&version=1
http://dx.doi.org/10.3390/math8020242
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 242 2 of 16

In this work, we firstly introduce the concept of the convex b-metric space by means of the convex
structure. Moreover, we extend Mann’s iteration algorithm to the above space. We also present some
specific examples of convex b-metric spaces. Furthermore, by means of Mann’s iteration scheme,
we obtain strong convergence theorems for two types of contraction mapping in convex b-metric
spaces. In addition, we show concrete examples supporting our main results. Moreover, we introduce
the concept of weak T-stability of the iteration for mappings in complete metric spaces and discuss
the problem of weak T-stability of Mann’s iteration procedure for above two kinds of mappings in
complete convex b-metric spaces. As an application, we apply our main result to approximating the
solution of the Fredholm linear integral equation.

2. Preliminaries

Firstly, we recall some basic notations of b-metric spaces.

Definition 1 ([21]). Let H 6= ∅ be a set and s ≥ 1 be a given real number. A function db : H × H → [0, ∞]

is called a b-metric if the following hold, for every u, v, o ∈ H:

(1) db(u, v) = 0 if and only if u = v;
(2) db(u, v) = db(v, u);
(3) db(u, v) ≤ s[db(u, o) + db(o, v)].

Then, the pair (H, db) is called a b-metric space with constant s ≥ 1.

Definition 2 ([18,32]). Let {un} be a sequence in a b-metric space (H, db). Then:

(1) The sequence {un} is said to be convergent in (H, db) if there exists u∗ ∈ H such that lim
n→∞

db(un, u∗) = 0.

(2) The sequence {un} is said to be a Cauchy sequence in (H, db), if for every ε > 0 there exists a positive
n0 ∈ N such that db(un, um) < ε for all n, m > n0 (or, equivalently, lim

n,m→∞
db(un, um) = 0).

(3) (H, db) is called a complete b-metric space if every Cauchy sequence is convergent in H.

Definition 3 ([31]). Let H 6= ∅ and I = [0, 1]. Define the mapping db : H × H → [0, ∞] and a continuous
function w : H × H × I → H. Then w is said to be the convex structure on H if the following holds:

db(o, w(u, v; λ)) ≤ λdb(o, u) + (1− λ)db(o, v) (1)

for each o ∈ H and (u, v; λ) ∈ H × H × I.

3. Main Results

In this section, we begin with the definition of a convex b-metric space.

Definition 4. Let the mapping w : H × H × I → H be a convex structure on a b-metric space (H, db) with
constant s ≥ 1 and I = [0, 1]. Then (H, db, w) is said to be a convex b-metric space.

Let (X, db, w) be a convex b-metric space and T : X → X be a mapping. We generalize Mann’s
iteration scheme to the convex b-metric space as follows:

xn+1 = w(xn, Txn; αn), n ∈ N,

where xn ∈ X and αn ∈ [0, 1]. The sequence {xn} is said to be Mann’s iteration sequence for T.
Let us present now some specific examples of convex b-metric spaces.

Example 1. Let H = R, and for any u, v ∈ H, let us define the metric db : H × H → [0,+∞) by the formula

db(u, v) = |u− v|l , l > 1
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, and the mapping w : H × H × { 1
2} → H by the formula

w(u, v; α) =
u + v

2
.

Then, (H, db, w) is a convex b-metric space with s = 2l−1. However, (H, db, w) is not a metric space in
the usual sense.

Indeed, by the help of the fact that for any n, m ∈ [0,+∞) and l ≥ 1, inequality

(n + m)l ≤ 2l−1(nl + ml)

holds, we easily show that (H, db) is a b-metric space with s = 2l−1. Next we verify that w satisfies inequality
(1). For any o, u, v ∈ H, we get

db(o, w(u, v; α)) =

∣∣∣∣o− [
u + v

2
]

∣∣∣∣l
≤ 2l−1

[
2−l |o− u|l + 2−l |o− v|l

]
= 2−1

[
|o− u|l + |o− v|l

]
= αdb(o, u) + (1− α)db(o, v),

so (H, db, w) is a convex b-metric space with s = 2l−1. However, (H, db, w) is not a metric space in the usual
sense because db does not satisfy the classical triangle inequality. Indeed, if we put l = 2, then

db(2, 4) = 4 > db(2, 3) + db(3, 4) = 2.

Example 2. Let H = Rn and db(u, v) =
n
∑

i=1
(ui − vi)

2 for all u = (u1, u2, · · · , un) ∈ H and v =

(v1, v2, · · · , vn) ∈ H. Obviously, (H, db) is a b-metric space with s = 2. Let w : H × H × [0, 1] → H
be the mapping defined as

w(u, v; α) = αu + (1− α)v,

for any u, v ∈ H. Then, w satisfies inequality (1). Indeed, for all o, u, v ∈ H,

db(o, w(u, v; α)) =
n

∑
i=1

(oi − (αui + (1− α)vi))
2

≤
n

∑
i=1

(α |oi − ui|+ (1− α) |oi − vi|)2

=
n

∑
i=1

α2(oi − ui)
2 +

n

∑
i=1

(1− α)2(oi − vi)
2

+2α(1− α)
n

∑
i=1
|oi − ui| · |oi − vi|

≤
n

∑
i=1

α2(oi − ui)
2 +

n

∑
i=1

(1− α)2(oi − vi)
2

+α(1− α)
n

∑
i=1

((oi − ui)
2 + (oi − vi)

2)

= αdb(o, u) + (1− α)db(o, v).

Hence, (H, db, w) is a convex b-metric space. However, similarly to Example 1, it is not a metric space in
the usual sense.
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The next example shows that the mapping w defined in Example 2, sometimes may not be a
convex structure on some metric spaces (see [33,34]).

Example 3. Let H = lp =

{
{un} ⊂ R :

∞
∑

n=1
|un|p < ∞

}
, where 0 < p < 1. We define db : H × H →

[0,+∞) by the formula

db(u, v) = (
∞

∑
n=1
|un − vn|p)1/p, u = {un}∞

n=1 , v = {vn}∞
n=1 ∈ lp.

Applying inequality (n + m)p ≤ np + mp (0 < p < 1) holding for all n, m ∈ [0,+∞), we easily obtain
that (H, db) is a b-metric space with constant s = 2(1−p)/p. Let w : H × H × [0, 1] → H be the mapping
defined as

w(u, v; α) = αu + (1− α)v, for all u, v ∈ H.

Assume that un < on and vn < on for any n ∈ N. Then, for all α ∈ (0, 1), we get

db(o, w(u, v; α)) = (
∞

∑
n=1
|α(on − un) + (1− α)(on − vn)|p)1/p

> (
∞

∑
n=1

[α(on − un)]
p)1/p+(

∞

∑
n=1

[(1− α)(on − vn)]
p)1/p

= αdb(o, u) + (1− α)db(o, v),

which implies that w is not a convex structure on H.

Now we will prove Banach’s contraction principle for complete convex b-metric spaces by means
of Mann’s iteration algorithm.

Theorem 1. Let (H, db, w) be a complete convex b-metric space with constant s > 1 and T : H → H be a
contraction mapping; that is, there exists β ∈ [0, 1) such that

db(Tu, Tv) ≤ βdb(u, v), for all u, v ∈ H.

Let us choose u0 ∈ H in such a way that db(u0, Tu0) = M < ∞ and define un = w(un−1, Tun−1; αn−1),

where 0 ≤ αn−1 < 1 and n ∈ N. If βs4 < 1 and 0 < αn−1 <
1
s4−β

1−β for each n ∈ N; then, T has a unique fixed
point in H.

Proof. Note that for any n ∈ N, there holds

db(un, un+1) = db(un, w(un, Tun; αn)) ≤ (1− αn)db(un, Tun)

and

db(un, Tun) ≤ sdb(un, Tun−1) + sdb(Tun−1, Tun)

≤ sdb(w(un−1, Tun−1; αn−1), Tun−1)+sβdb(un−1, un)

≤ s[αn−1db(un−1, Tun−1)+β(1− αn−1)db(un−1, Tun−1)]

= s[αn−1 + β(1− αn−1)]db(un−1, Tun−1).
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Let λn−1 = s[αn−1 + β(1− αn−1)]. Combining this and the above inequality with assumptions βs4 < 1

and 0 < αn−1 <
1
s4−β

1−β holding for each n ∈ N, we get

db(un, Tun) ≤ λn−1db(un−1, Tun−1) <
1
s3 db(un−1, Tun−1) (2)

which implies that {db(un, Tun)} is a decreasing sequence of non-negative reals. Hence, there exists
γ ≥ 0 such that

lim
n→∞

db(un, Tun) = γ.

We will show that γ = 0. Suppose that γ > 0. Letting n→ ∞ in inequality (2), we obtain

γ ≤ 1
s3 · γ < γ,

a contradiction. Hence, we get that γ = 0. Moreover, we have

db(un, un+1) ≤ (1− αn)db(un, Tun) < db(un, Tun),

which shows that lim
n→∞

db(un, un+1) = 0. Now we will show that {un} is a Cauchy sequence. Indeed, if

{un} is not a Cauchy sequence, then there exist ε0 > 0 and the subsequences {uθ(k)} and {uη(k)} of
{un}, such that θ(k) is the smallest natural index with θ(k) > η(k) > k,

db(uθ(k), uη(k)) ≥ ε0

and
db(uθ(k)−1, uη(k)) < ε0.

Then, we conclude

ε0 ≤ db(uθ(k), uη(k)) ≤ s[db(uθ(k), uη(k)+1) + db(uη(k)+1, uη(k))],

which implies that
ε0

s
≤ lim sup

k→∞
db(uθ(k), uη(k)+1).

Noticing that

db(uθ(k), uη(k)+1) = db

(
w(uθ(k)−1, Tuθ(k)−1; αθ(k)−1), uη(k)+1

)
≤ αθ(k)−1db(uθ(k)−1, uη(k)+1) + (1− αθ(k)−1)db(Tuθ(k)−1, uη(k)+1)

≤ αθ(k)−1db(uθ(k)−1, uη(k)+1) + (1− αθ(k)−1)s
[
db(Tuθ(k)−1, Tuη(k)+1)

+ db(Tuη(k)+1, uη(k)+1)
]

≤ αθ(k)−1db(uθ(k)−1, uη(k)+1) + (1− αθ(k)−1)s
[

βdb(uθ(k)−1, uη(k)+1)

+ db(Tuη(k)+1, uη(k)+1)
]

= [αθ(k)−1 + (1− αθ(k)−1)sβ]db(uθ(k)−1, uη(k)+1)

+(1− αθ(k)−1)sdb(Tuη(k)+1, uη(k)+1)

< s[αθ(k)−1s + (1− αθ(k)−1)sβ]
(

db(uθ(k)−1, uη(k)) + db(uη(k), uη(k)+1)
)

+(1− αθ(k)−1)sdb(Tuη(k)+1, uη(k)+1),
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we obtain
1
s

ε0 ≤ lim sup
k→∞

db(uθ(k), uη(k)+1) ≤ s2 · 1
s4 ε0 <

1
s

ε0,

a contradiction. Thus {un} is a Cauchy sequence in H. By the completeness of H, there exists u∗ ∈ H
such that lim

n→∞
db(un, u∗) = 0.

Next, we will verify that u∗ is a fixed point of T. Note that

db(u∗, Tu∗) ≤ s [db(u∗, un) + db(un, Tu∗)]

≤ sdb(u∗, un) + s2 [db(un, Tun) + db(Tun, Tu∗)]

= sdb(u∗, un) + s2db(un, Tun) + s2βdb(un, u∗).

Letting n→ ∞, we deduce that db(u∗, Tu∗) = 0 which implies that Tu∗ = u∗. Hence, u∗ is a fixed
point of T. Now we will explain that T has a unique fixed point. Suppose that q ∈ H is another fixed
point, that is, Tq = q. Then,

db(u∗, q) = db(Tu∗, Tq) ≤ βdb(u∗, q)

for some β ∈ [0, 1), a contradiction. Hence, u∗ = q which completes the proof.

Let us give an example illustrating the above theorem.

Example 4. Let H = R+ ∪ {0} and Tu = u
5 for all u ∈ H. For any u, v ∈ H, we define function

db : H × H → [0,+∞) by the formula db(u, v) = (u− v)2, while the mapping w : H × H × [0, 1] → H is
defined as

w(u, v; α) = αu + (1− α)v, for all u, v ∈ H.

Set β = 1
1+24 and un = w(un−1, Tun−1; αn−1), where u0 = 1 and αn−1=

1
24 − β. Then, (H, db, w) is a

complete convex b-metric space with s = 2, and T has a unique fixed point in H.
Indeed, from Example 1 it follows that (H, db) is a b-metric space with s = 2. In addition, for any

o, u, v ∈ H, we have

db(o, w(u, v; α)) = [α(o− u) + (1− α)(o− v)]2

≤ [α |o− u|+ (1− α) |o− v|]2

= (α |o− u|)2+((1− α) |o− v|)2+2α(1− α) |o− u| |o− v|
≤ (α |o− u|)2+((1−α) |o− v|)2+α(1−α)(|o− u|2+|o− v|2)
= α(o− u)2 + (1− α)(o− v)2

= αdb(o, u) + (1− α)db(o, v).

Hence, (H, db, w) is a convex b-metric space with s = 2. It is not difficult to see that T satisfies

db(Tu, Tv) =
1
25

db(u, v) ≤ βdb(u, v),

where β = 1
17 . We choose u0 ∈ H\{0}. Combining with un = w(un−1, Tun−1; αn−1) and Tu = u

5 , we have

un = αn−1un−1 + (1− αn−1)Tun−1 =

(
1
5
+

4
5

αn−1

)
un−1,

and

un−1 =

(
1
5
+

4
5

αn−2

)
un−2, un−2 =

(
1
5
+

4
5

αn−3

)
un−3, · · · , u1 =

(
1
5
+

4
5

α0

)
u0.
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Since αn−1=
1
24 − β for all n ∈ N, we obtain

un =

(
69
340

)n
u0 and Tun =

1
5
·
(

69
340

)n
u0.

Letting n→ ∞, we get that un → 0 ∈ H and Tun → 0 ∈ H. We notice that 0 is a fixed point of T in H. Next,
we will show that T has a unique fixed point. Suppose that u∗, q ∈ H are two distinct fixed points of T. Then,

0 < db(u∗, q) = db(Tu∗, Tq) = db

(
1
5

u∗,
1
5

q
)
=

1
25

db(u∗, q),

a contradiction. Therefore, 0 is the unique fixed point of T in H.

Our next theorem is the Kannan type fixed point theorem for a complete convex b-metric space.

Theorem 2. Let (H, db, w) be a complete convex b-metric space with constant s > 1, and let the mapping
T : H → H be defined as

db(Tu, Tv) ≤ k[db(u, Tu) + db(v, Tv)], for all u, v ∈ H (3)

and for some k ∈ [0, 1
2 ). Let us choose u0 ∈ H in such a way that db(u0, Tu0) = M < ∞ and define

un = w(un−1, Tun−1; αn−1) for n ∈ N and αn−1 ∈ (0, 1
4s2 ]. If k ∈ [0, 1

4s2 ], then T has a unique fixed point in
H.

Proof. Note that for any n ∈ N, we have

db(un, un+1) = db(un, w(un, Tun; αn)) ≤ (1− αn)db(un, Tun) (4)

and

db(un, Tun) = db(w(un−1, Tun−1; αn−1), Tun)

≤ αn−1db(un−1, Tun) + (1− αn−1)db(Tun−1, Tun)

≤ sαn−1db(un−1, Tun−1) + sαn−1db(Tun−1, Tun)

+db(Tun−1, Tun)

≤ sαn−1db(un−1, Tun−1)

+(sαn−1 + 1)k[db(un−1, Tun−1) + db(un, Tun)]

= (sαn−1 + sαn−1k + k)db(un−1, Tun−1)

+(sαn−1k + k)db(un, Tun);

i.e.,
[1− (sαn−1k + k)]db(un, Tun) ≤ (sαn−1 + sαn−1k + k)db(un−1, Tun−1).

Since

sαn−1k + k ≤
(

1
4s

+ 1
)

k <
5
4
· 1

4s2 < 1,

then
db(un, Tun) ≤

sαn−1 + sαn−1k + k
1− (sαn−1k + k)

db(un−1, Tun−1). (5)



Mathematics 2020, 8, 242 8 of 16

Denote λn−1 = sαn−1+sαn−1k+k
1−(sαn−1k+k) for n ∈ N. We deduce that

λn−1 =
sαn−1 + sαn−1k + k

1− (sαn−1k + k)
<

5
4

1− (sαn−1k + k)
− 1 <

5
4

1− 5
4 ·

1
4s2

− 1 <
9

11
.

Combining this and inequality (5) with the assumptions of the theorem, we get

db(un, Tun) ≤ λn−1db(un−1, Tun−1) <
9

11
db(un−1, Tun−1), (6)

which implies that {db(un, Tun)} is a decreasing sequence of non-negative reals. Hence, there exists
γ ≥ 0 such that

lim
n→∞

db(un, Tun) = γ.

We will show that γ = 0. Suppose γ > 0. Letting n→ ∞ in (6), we obtain that γ ≤ 9
11 · γ < γ, a

contradiction. Hence, we get that γ = 0; i.e.,

lim
n→∞

db(un, Tun) = 0.

Moreover, by inequality (4), we obtain

db(un, un+1) ≤ (1− αn)db(un, Tun) < db(un, Tun),

which implies that lim
n→∞

db(un, un+1) = 0. Now we will show that {un} is a Cauchy sequence. Indeed,

if {un} is not a Cauchy sequence, then there exist ε0 > 0 and the subsequences {uθ(l)} and {uη(l)} of
{un} such that θ(l) is the smallest natural index with θ(l) > η(l) > l,

db(uθ(l), uη(l)) ≥ ε0

and
db(uθ(l)−1, uη(l)) < ε0.

Then, we conclude that

ε0 ≤ db(uθ(l), uη(l)) ≤ s[db(uθ(l), uη(l)+1) + db(uη(l)+1, uη(l))],

which implies that
ε0

s
≤ lim sup

l→∞
db(uθ(l), uη(l)+1).
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Noticing that

db(uθ(l), uη(l)+1) = db

(
w(uθ(l)−1, Tuθ(l)−1; αθ(l)−1), uη(l)+1

)
≤ αθ(l)−1db(uθ(l)−1, uη(l)+1) + (1− αθ(l)−1)db(Tuθ(l)−1, uη(l)+1)

≤ αθ(l)−1db(uθ(l)−1, uη(l)+1) + (1− αθ(l)−1)s
[
db(Tuθ(l)−1, Tuη(l)+1)

+ db(Tuη(l)+1, uη(l)+1)
]

≤ αθ(l)−1db(uθ(l)−1, uη(l)+1) + (1− αθ(l)−1)s
[
kdb(uθ(l)−1, Tuθ(l)−1)

+(k + 1) db(Tuη(l)+1, uη(l)+1)
]

(for some k ∈
[

0,
1
2

)
satisfying (3))

≤ αθ(l)−1

[
sdb(uθ(l)−1, uη(l)) + sdb(uη(l), uη(l)+1)

]
+(1− αθ(l)−1)s

[
kdb(uθ(l)−1, Tuθ(l)−1) + (k + 1) db(Tuη(l)+1, uη(l)+1)

]
,

we obtain
lim sup

l→∞
db(uθ(l), uη(l)+1) ≤

1
4s2 s · ε0 <

1
s

ε0,

a contradiction. Thus {un} is a Cauchy sequence in H. By the completeness of H, it follows that there
exists u∗ ∈ H such that

lim
n→∞

db(un, u∗) = 0.

Now we will show that u∗ is a fixed point of T. Since

db(u∗, Tu∗) ≤ s [db(u∗, un) + db(un, Tu∗)]

≤ sdb(u∗, un) + s2 [db(un, Tun) + db(Tun, Tu∗)]

≤ sdb(u∗, un) + s2db(un, Tun) + s2k[db(un, Tun) + db(u∗, Tu∗)],

we conclude that

(1− s2k)db(u∗, Tu∗) ≤ sdb(u∗, un) + (s2 + s2k)db(un, Tun)

≤ sdb(u∗, un) + (s2 + s2k) ·
(

9
11

)n
db(u0, Tu0).

Consequently, we get that lim
n→∞

db(u∗, Tu∗) = 0, so u∗ is a fixed point of T.

In order to show the uniqueness of the fixed point, suppose that q ∈ H, q 6= u∗, is another fixed
point of T. Then Tq = q. However,

0 < db(u∗, q) = db(Tu∗, Tq) ≤ kdb(u∗, Tu∗) + kdb(q, Tq) = 0,

a contradiction. Hence, u∗ = q which completes the proof.

Next, we will give an example of applying Theorem 2.

Example 5. Let H = R+ ∪ {0} and define the mapping T : H → H by the formula

Tu =

{
0, if u ∈ [0,

√
5

2 ),
1

4u , if u ∈ [
√

5
2 ,+∞).
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For any u, v ∈ H, we define db : H×H → [0,+∞) by the formula db(u, v) = (u− v)2 and the mapping
w : H × H × [0, 1]→ H as

w(u, v; α) = αu + (1− α)v.

Let u0 be the initial value and un = w(un−1, Tun−1; αn−1), where αn−1 = 1
4s . If k= 1

4s2 , then T has a
unique fixed point in H.

Proof. From Example 4, it follows that (H, d, w) is a convex b-metric space with s = 2. We claim that
T satisfies inequality

db(Tu, Tv) ≤ k[db(u, Tu) + db(v, Tv)] (7)

for any u, v ∈ H. In order to prove it, we will consider the following four cases.
(i) If u, v ∈ [0,

√
5

2 ), then it is easy to see that inequality (7) holds.

(ii) If u ∈ [0,
√

5
2 ) and v ∈ [

√
5

2 ,+∞), then

db(Tu, Tv)− 1
16

[db(u, Tu) + d(v, Tv)] =

(
1

4v

)2
− 1

16

[
u2 +

(
v− 1

4v

)2
]

≤
(

1
4v

)2
− 1

16

(
v− 1

4v

)2
≤ 0,

which implies that

db(Tu, Tv) ≤ 1
16

[db(u, Tu) + db(v, Tv)]

holds for any u ∈ [0,
√

5
2 ) and v ∈ [

√
5

2 ,+∞).

(iii) If u ∈ [
√

5
2 ,+∞) and v ∈ [0,

√
5

2 ), then, similarly to case (ii), we can also get that inequality (7) holds.

(iv) If u, v ∈ [
√

5
2 ,+∞), then

db(Tu, Tv)− 1
16

[db(u, Tu) + db(v, Tv)] =
1
16

(
1
u
− 1

v
)2 − 1

16

[
(u− 1

4u
)2 + (v− 1

4v
)2
]

=
1
16
{15

16
(

1
u2 +

1
v2 ) + 1− [(u2 + v2) +

2
uv

]}

≤ 1
16

[
15
16

(
1
u2 +

1
v2 ) + 1− [2uv +

2
uv

]]

≤ 1
16

[
15
16

(
1
u2 +

1
v2 ) + 1− 4] < 0,

which shows that
db(Tu, Tv) <

1
16

[db(u, Tu) + db(v, Tv)]

holds for all u, v ∈ [
√

5
2 ,+∞). Summarizing, inequality (7) holds for any u, v ∈ H.

Next, we will claim that T has a unique fixed point in H. In order to do it, we will consider the
following two cases.
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(a) If u0 <
√

5
2 , then

Tu0 = 0,

u1 =
1
8

u0 +
7
8

Tu0 =
1
8

u0,

u2 =
1
8

u1 +
7
8

Tu1 =

(
1
8

)2
u0,

u3 =
1
8

u2 +
7
8

Tu2 =

(
1
8

)3
u0,

· · ·

un =
1
8

un−1 +
7
8

Tun−1 =

(
1
8

)n
u0.

Obviously, un → 0 as n→ ∞.
(b) If u0 ≥

√
5

2 , then

Tu0 =
1

4u0
,

u1 =
1
8

u0 +
7
8

Tu0,

u1

u0
=

1
8
+

7
32

1
u2

0
≤ 3

10
.

If 0 ≤ u1 <
√

5
2 , then Tu1=0. From case (a), it follows that un → 0 as n → ∞. If u1 ≥

√
5

2 , then
u2
u1

= 1
8 + 7

32 ·
1

u2
1
≤ 3

10 . From the above procedure, we can assume that un−1 ≥
√

5
2 . Then, we obtain

un

un−1
=

1
8
+

7
32
· 1

u2
n−1
≤ 3

10

and
un

u0
=

u1

u0
· u2

u1
· ... · un

un−1
≤
(

3
10

)n
,

which implies that un ≤ ( 3
10 )

nu0. Hence, lim
n→∞

un = 0, where 0 is a fixed point of T. Actually, 0 is

the unique fixed point of T in H. Indeed, suppose that q ∈ [
√

5
2 ,+∞) is also a fixed point of T. Then

Tq = q; that is,

q = Tq =
1
4q

,

which implies

q =
1
2
<

√
5

2
,

a contradiction. Thus the proof is finished.

Next, we will consider the problem for the T-stability of Mann’s iteration for the above two kinds
of mappings in complete convex b-metric spaces. We first recall the following useful results.

Lemma 1 ([35]). Let {kn}, {ln} be non-negative sequences satisfying kn+1 ≤ hkn + ln for all n ∈ N,
0 ≤ h < 1, lim

n→∞
ln = 0. Then lim

n→∞
kn = 0.

In 2008, Qing and Rhoades [24] introduced the concept of T-stability of the iteration procedure in
complete metric spaces in the following:
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Definition 5 ([24]). Let T be a self-map on a complete metric space (H, db). Assume that un+1 = f (T, un)

is an iteration sequence, which yields a sequence un of points from H. Then the sequence un+1 = f (T, un)

is said to be T-stable if {un} converges to a fixed point u∗ of T, and if {vn} is a sequence in H such that
lim

n→∞
db(vn+1, f (T, vn)) = 0, then we have lim

n→∞
vn = u∗.

Now we show the notion of the weak T-stability of the iteration procedure.

Definition 6. Let T be a self-map on a complete metric space (H, db). Assume that un+1 = f (T, un) is an
iteration sequence, which yields a sequence un of points from H. Then the iteration procedure un+1 = f (T, un),
is said to be weakly T-stable if {un} converges to a fixed point u∗ of T, and if {vn} is a sequence in H such that
lim

n→∞
db(vn+1, f (T, vn)) = 0 and sequence {db(vn, Tvn)} is bounded, then lim

n→∞
vn = u∗.

Remark 1. It is not difficult to see that if an iteration is T-stable, then it is also weakly T-stable. However, one
is not sure if the converse is not true.

Theorem 3. Under the assumptions of Theorem 1, if, additionally, lim
n→∞

αn = 0, then Mann’s iteration is
weakly T-stable.

Proof. By virtue of Theorem 1, we deduce that u∗ is a unique fixed point of T in H. Assume that {vn}
is a sequence in H which satisfies lim

n→∞
db(vn+1, w(vn, Tvn; αn)) = 0 and {db(vn, Tvn)} is bounded. We

obtain

db(vn+1, u∗) ≤ s[db(vn+1, w(vn, Tvn; αn)) + db(w(vn, Tvn; αn), u∗)]

≤ sdb(vn+1, w(vn, Tvn; αn)) + s2[db(w(vn, Tvn; αn), Tvn)

+db(Tvn, u∗)]

≤ sdb(vn+1, w(vn, Tvn; αn)) + s2[αndb(vn, Tvn) + βdb(vn, u∗)]

= sdb(vn+1, w(vn, Tvn; αn)) + s2αndb(vn, Tvn) + s2βdb(vn, u∗)

≤ sdb(vn+1, w(vn, Tvn; αn)) + s2αndb(vn, Tvn) +
1
s2 db(vn, u∗).

Noticing that 1
s2 < 1, lim

n→∞
αn = 0, lim

n→∞
db(vn+1, w(vn, Tvn; αn)) = 0 and {db(vn, Tvn)} is bounded,

and taking into account Lemma 1, we get that

lim
n→∞

db(vn, u∗) = 0,

which completes the proof.

Theorem 4. Under all the assumptions of Theorem 2, if lim
n→∞

αn = 0 and if the positive real numbers k and s

from Theorem 2 satisfy, additionally, condition ks3

1−ks < 1, then Mann’s iteration is weakly T-stable.

Proof. From Theorem 2, it follows that T has a unique fixed point u∗ in H. Assume that {vn} is a
sequence in H which satisfies

lim
n→∞

db(vn+1, w(vn, Tvn; αn)) = 0



Mathematics 2020, 8, 242 13 of 16

and {db(vn, Tvn)} is bounded. We obtain

db(vn+1, u∗) ≤ s[db(vn+1, w(vn, Tvn; αn)) + db(w(vn, Tvn; αn), u∗)]

≤ sdb(vn+1, w(vn, Tvn; αn)) + s2[db(w(vn, Tvn; αn), Tvn)

+db(Tvn, u∗)]

≤ sdb(vn+1, w(vn, Tvn; αn)) + s2[αndb(vn, Tvn) + db(Tvn, u∗)].

Moreover, for any n ∈ N, we have

db(Tvn, u∗) = db(Tvn, Tu∗) ≤ kdb(vn, Tvn)

≤ ks[db(vn, u∗) + db(Tvn, u∗)],

which implies db(Tvn, u∗) ≤ ks
1−ks db(vn, u∗). Hence,

db(vn+1, u∗) ≤ ks3

1− ks
db(vn, u∗) + sdb(vn+1, w(vn, Tvn; αn)) + s2αndb(vn, Tvn).

Noticing that ks3

1−ks < 1, lim
n→∞

αn = 0, lim
n→∞

db(vn+1, w(vn, Tvn; αn)) = 0 and {db(vn, Tvn)} is

bounded, and by virtue of Lemma 1, we get that lim
n→∞

db(vn, u∗) = 0.

4. Applications

In this section we apply Theorem 1 in order to show the existence and uniqueness of the solution
of the Fredholm linear integral equation:

u(t) = f (t) + λ
∫ b

a
K(t, τ)u(τ)dτ. (8)

Theorem 5. Consider the linear integral Equation (8) with the continuous function K(t, τ), where a ≤ t, τ ≤ b
and f ∈ H[a, b]. Let M = max

a≤t,τ≤b
|K(t, τ)| and m > 2 be an arbitrary real number. If |λ| < 1

2mM(b−a) , then

the linear integral Equation (8) has a unique solution on the interval [a, b]. Moreover, the solution is exhibited as
follows:

u(t) = f (t) + λ lim
n→∞

∫ b

a
K(t, τ)un(τ)dτ, (9)

where u0(t) = u0, αn−1 = 1
16 −

1
4m2 and

un(t) = αn−1un−1(t) + (1− αn−1)

[
f (t) + λ

∫ b

a
K(t, τ)un−1(τ)dτ

]
, n = 1, 2, 3, · · · .

Proof. Let H = C[a, b] and define db : H × H → [0,+∞) by the formula

db(u, v) = max
a≤t,τ≤b

|u(t)− v(t)|2 . (10)

Define a self-map T on H by

Tu(t) = f (t) + λ
∫ b

a
K(t, τ)u(τ)dτ, for all u ∈ H[a, b]. (11)

Set
un = w(un−1, Tun−1; αn−1) = αn−1un−1 + (1− αn−1)Tun−1,
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where αn−1 = 1
16 −

1
4m2 . It is obvious that (H, db, w) is a complete convex b-metric space with s = 2.

Combining (10) and (11), we get

db(Tu, Tv) = max
a≤t,τ≤b

|Tu(t)− Tv(t)|2

= max
a≤t,τ≤b

∣∣∣∣λ ∫ b

a
K(t, τ)u(τ)− K(t, τ)v(τ)dτ

∣∣∣∣2
≤ max

a≤t,τ≤b
|λ|2

∣∣∣∣∫ b

a
|K(t, τ)| |u(τ)− v(τ)| dτ

∣∣∣∣2
≤ [M(b− a) |λ|]2 max

a≤t,τ≤b
|u(τ)− v(τ)|2

= [M(b− a) |λ|]2 db(u, v) <
1

4m2 db(u, v).

Hence, T is a contraction mapping on H( β = 1
4m2 ). Meanwhile, by Theorem 1, T has a unique

fixed point u(t) ∈ H satisfying lim
n→∞

un(t) = u(t) and Tu(t) = u(t), which means that u(t) is the

solution of (8). Now we will show that

∫ b

a
K(t, τ)u(τ)dτ = lim

n→∞

∫ b

a
K(t, τ)un(τ)dτ.

Indeed,

lim sup
n→∞

∫ b

a
K(t, τ)(un(τ)− u(τ))dτ ≤ lim sup

n→∞

∫ b

a
|K(t, τ)| |un(τ)− u(τ)| dτ

≤ M(b− a) lim sup
n→∞

max |un(τ)− u(τ)| .

Since
lim

n→∞
d(un(t), u(t)) = lim

n→∞
max(un(t)− u(t))2 = 0,

it is not difficult to see that

lim
n→∞

∫ b

a
K(t, τ)(un(τ)− u(τ))dτ = 0.

Thus, Equation (9) holds.
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