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Abstract: Burr proposed twelve different forms of cumulative distribution functions for modeling
data. Among those twelve distribution functions is the Burr X distribution. In statistical literature,
a flexible family called the Burr X-G (BX-G) family is introduced. In this paper, we propose a bivariate
extension of the BX-G family, in the so-called bivariate Burr X-G (BBX-G) family of distributions
based on the Marshall–Olkin shock model. Important statistical properties of the BBX-G family are
obtained, and a special sub-model of this bivariate family is presented. The maximum likelihood and
Bayesian methods are used for estimating the bivariate family parameters based on complete and
Type II censored data. A simulation study was carried out to assess the performance of the family
parameters. Finally, two real data sets are analyzed to illustrate the importance and the flexibility of
the proposed bivariate distribution, and it is found that the proposed model provides better fit than
the competitive bivariate distributions.

Keywords: Burr X-G family; bivariate distributions; estimation methods; censored samples; simulation

1. Introduction

The Burr X (BX) model, as one of twelve models, was explored by utilizing the method of
differential equation (see [1]). The random variable X is said to have the BX if its cumulative distribution
function (CDF) is given by

FBX (x; γ) =
[
1− e−x2

]γ
; x > 0, (1)

where γ > 0 is the shape parameter. This model has found many applications in many areas such as
reliability study, agricultural, biological, health, the lifetime of random phenomenon and engineering,
see for example, [2–8].
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Reference [9] introduced the Burr X-G (BX-G) family based on [10] technique, where [10] proposed
a general form to generate a new family named the transformed-transformer (T-X) family. Thus,
the random variable X is said to have the BX-G family if its CDF is given by

FBX−G (x; ω, γ) =

[
1− e−

(
G(x;ω)
Ḡ(x;ω)

)2
]γ

; x > 0, (2)

where G(x; ω) is the baseline CDF, Ḡ(x; ω) = 1− G(x; ω), and ω is a vector of parameters (1×k).
The corresponding probability density function (PDF) to Equation (2) can be expressed as

fBX−G (x; ω, γ) =
2γg(x; ω)G(x; ω)

(Ḡ(x; ω))
3 e−

(
G(x;ω)
Ḡ(x;ω)

)2
[

1− e−
(

G(x;ω)
Ḡ(x;ω)

)2
]γ−1

; x > 0, (3)

where g(x; ω) is the baseline PDF.
Many authors used [10] technique to build new models for the following reasons: to make the

kurtosis more flexible compared to the baseline model, to construct heavy-tailed distributions for
modeling real data, to generate distributions with symmetric, left-skewed, right-skewed or reversed-J
shape, to define special models with all types of the hazard rate function and to provide consistently
better fits than other generated models under the same baseline distribution, see for example, odd
Burr generalized-G family by [11], a new Weibull-G family by [12], generalized odd log-logistic-G
family by [13], odd Lindley-G family by [14], odd flexible Weibull-H family by [15], odd log-logistic
Lindley-G family by [16], odd Chen generator by [17] and references cited therein.

The bivariate distributions have been derived, developed and discussed by many authors which
have wide applications in the fields of reliability (lifetime and stress–strength of components), sports,
engineering, weather and drought, more detail is given in [18,19]. The construction or development
of bivariate distributions are mainly via: the marginals, copulas, compounding, reduction and
conditioning. The trend in proposing new bivariate compounded (power series family) and generalized
(G-) families of distributions has received increased attention, which is briefly described below:

1. Bivariate compounded distributions and families: Reference [20] obtained four bivariate
extended exponential-geometric distributions from the extended exponential-geometric model
introduced by [21]. Reference [22] compounded two discrete distributions and proposed
bivariate geometric-Poisson distribution. Reference [23] proposed the bivariate Weibull-geometric
distribution and discussed some of its properties and estimation methods. Reference [24]
proposed the bivariate exponentiated generalized Weibull–Gompertz distribution. Reference [25]
proposed the bivariate exponentiated modified Weibull extension distribution. Reference [26]
introduced and studied complementary bivariate generalized linear failure rate-power series
family of distributions.

2. Bivariate G-families: Reference [27] introduced bivariate proportional reversed hazard rate
family. Reference [28] proposed three bivariate beta-generated families. Reference [29] introduced
bivariate Zografos–Balaktishnan gamma-G family. Reference [30] proposed Marshall–Olkin
type bivariate exponentiated extended Weibull family. Reference [31] proposed bivariate
Ristić–Balaktishnan gamma-G family. Reference [32–34] introduced three bivariate families
(bivariate Gumbel-G family, bivariate Weibull-G family and bivariate Gompertz-G family).

The aim of our paper was to introduce a new bivariate family, the bivariate Burr X-G (BBX-G)
family based on the Marshall–Olkin shock model (see [35]), whose marginal distributions are BX-G
families. The structure of the proposed paper follows similarly to that of [32,33]. A random vector X =

(X1, X2) follows the bivariate Marshall–Olkin model if and only if there exist three independent random
variables U1, U2 and U3 such that (X1 = max(U1, U3) and X2 = max(U2, U3)) or (X1 = min(U1, U3)

and X2 = min(U2, U3)). The proposed BBX-G family is constructed from three independent BX-G
families using a maximization process. Our reasons for introducing the BBX-G family are the following:
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1. The joint CDF can be expressed as a mixture of an absolute continuous distribution function and
a singular distribution function.

2. The joint PDF, joint CDF and joint reliability function (RF) are in closed forms, which make it
proper to use in practice.

3. The joint PDF and joint hazard rate function can take different shapes depending on the
parameter values.

4. The marginals can be used to analyze different types of hazard rates.
5. The stress–strength model does not depend on the baseline function, but only on the

model parameters.
6. This class can be used as a stress model or as a maintenance model.
7. This class contains several special bivariate models depending on the baseline G.
8. This class can be used to model skewed data sets.

The paper is structured as follows. In Section 2, the BBX-G family and its marginals are
defined. Some mathematical properties of the BBX-G family of distributions such as Marshall–Olkin
copula, median correlation coefficient, moments, product moment, covariance, skewness, kurtosis,
joint reliability function, joint hazard and reversed hazard rates and stress–strength reliability are
obtained in Section 3. In Section 4, a special sub-model of this bivariate family is presented in
detail. The family parameters are estimated by maximum likelihood and Bayesian methods based
on complete and Type-II censored samples. Moreover, bootstrap confidence intervals are reported in
Section 5. In Section 6, a simulation study is presented. The usefulness of the new bivariate family of
distributions is illustrated by means of a real data set, where we prove empirically that our proposed
model outperforms some well-known bivariate distributions in Section 7. Section 8 offers some
concluding remarks. Finally, abbreviation and preliminary Sections are listed in Appendix A.

2. The BBX-G Family and Its Marginal Functions

Assume Ui ∼ BX − G (ω, γi); i = 1, 2, 3 are three independent random variables. Define
Xd = max{Ud, U3} ; d = 1, 2. Then, the joint CDF of the BBX-G family can be proposed as

FX1,X2(x1, x2) = FBX−G(z; ω, γ3)
2

∏
i=1

FBX−G (xi; ω, γi), (4)

where z = min(x1, x2). The corresponding joint PDF can be expressed as follows

fX1,X2(x1, x2) =





f1(x1, x2) if 0 < x1 < x2 < ∞
f2(x1, x2) if 0 < x2 < x1 < ∞
f0(x) if 0 < x1 = x2 = x < ∞,

(5)

where
f1(x1, x2) = fBX−G (x2; ω, γ2)× fBX−G (x1; ω, γ1 + γ3) ,

f2(x1, x2) = fBX−G (x1; ω, γ1)× fBX−G (x2; ω, γ2 + γ3)

and
f0(x) =

γ3

γ1 + γ2 + γ3
fBX−G (x; ω, γ1 + γ2 + γ3) .

The expressions fi(x1, x2), i = 1, 2 can be obtained by differentiating Equation (4) with respect to
xi, i = 1, 2. But we can use the following fact to get f0(x)

∞∫

0

f0(x) dx +
∫ ∞

0

∫ x2

0
f1(x1, x2)dx1dx2 +

∫ ∞

0

∫ x1

0
f2(x1, x2)dx2dx1 = 1. (6)
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Further, the marginal CDFs for the proposed family can be represented as follows

FXi (xi) = FBX−G (xi; ω, γi + γ3) ; i = 1, 2. (7)

The corresponding marginal PDFs can be expressed as follows

fXi (xi) = fBX−G (xi; ω, γi + γ3) . (8)

Thus, the conditional probability density function of Xi given Xj = xj, (i, j = 1, 2, i 6= j) can be
expressed as follows

fXi |Xj
(xi | xj) =





f (1)Xi |Xj
(xi | xj) if 0 < xi < xj < ∞

f (2)Xi |Xj
(xi | xj) if 0 < xj < xi < ∞

f (3)Xi |Xj
(xi | xj) if 0 < xi = xj < ∞,

(9)

where

f (1)Xi |Xj
(xi | xj) =

2γj (γi + γ3) g(xi; ω)G(xi; ω)e
−
(

G(xi ;ω)

Ḡ(xi ;ω)

)2 
1− e

−
(

G(xi ;ω)

Ḡ(xi ;ω)

)2


γi+γ3−1

(
γj + γ3

)
(Ḡ(xi; ω))

3


1− e

−
(

G(xj ;ω)

Ḡ(xj ;ω)

)2


γ3
,

f (2)Xi |Xj
(xi | xj) =

2γi

(Ḡ(xi; ω))
3 g(xi; ω)G(xi; ω)e

−
(

G(xi ;ω)

Ḡ(xi ;ω)

)2 
1− e

−
(

G(xi ;ω)

Ḡ(xi ;ω)

)2


γi−1

and

f (3)Xi |Xj
(xi | xj) =

γ3

γj + γ3


1− e

−
(

G(xi ;ω)

Ḡ(xi ;ω)

)2


γi

.

Equation (9) can be obtained by substituting from Equations (5) and (8) in the relation fXi |Xj
(xi |

xj) =
fXi ,Xj

(xi ,xj)

fXj
(xj)

, (i 6= j = 1, 2). The PDF and CDF marginals can be represented as a linear

representation as follows

fXi (xi) =
∞

∑
m,l=0

V(i)
m,lΥ

(i)
2(m+1)+l(xi; ω) ; i = 1, 2 (10)

and

FXi (xi) =
∞

∑
m,l=0

V(i)
m,lΛ

(i)
2(m+1)+l (xi; ω) ; i = 1, 2, (11)

respectively, where Υ(i)
2(m+1)+l(xi; ω) = (2(m + 1) + l)g(xi; ω)G(xi; ω)2m+l+1,

V(i)
m,l =

2(γi + γ3)(−1)mΓ(γi + γ3)Γ(2m + l + 3)
m!l!(2(m + 1) + l)Γ(2m + 3)

∞

∑
k=0

(−1)k(k + 1)m

k!Γ(γi + γ3 − k)

and Λ(i)
2(m+1)+l is the CDF of the exponential-G (exp-G) family with power parameter 2(m + 1) + l.

For more detail around exp-G family of distributions (see [36]).
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If the bivariate vector X ∼ BBX-G(ω, γ1, γ2, γ3), then the distribution for each T = max{X1, X2}
and S = min{X1, X2} can be written as follows

FT (t) = FBX−G (t; ω, γ1 + γ2 + γ3) (12)

and
FS (t) = FBX−G (t; ω, γ1 + γ3) + FBX−G (t; ω, γ2 + γ3)− FT (t), (13)

respectively.

3. Statistical Properties

3.1. Marshall–Olkin Copula

It is found that the BBX-G family has both an absolute continuous part on 0 < x1 6= x2 < ∞
with weight γ1+γ2

γ1+γ2+γ3
and a singular part along the line x1 = x2 with weight γ3

γ1+γ2+γ3
, similar to

Marshall and Olkin’s bivariate exponential model. Moreover, the BBX-G family can be obtained by
using the Marshall–Olkin copula with the marginals as the BX-G families. To every FX1,X2(x1, x2) with
continuous marginals FX1(x1) and FX2(x2) corresponds to a unique bivariate distribution function
with uniform margins B : [0, 1]2 → [0, 1] called a copula, such that

FX1,X2(x1, x2) = B
(

FX1(x1), FX2(x2)
)

; for all (x1, x2) ∈ R2, (14)

(see [37]). The Marshall–Olkin copula can be written as follows

Bδ1,δ2(D1, D2) = D1−δ1
1 D1−δ2

2 min
(

Dδ1
1 , Dδ2

2

)
; for 0 < δ1, δ2 < 1. (15)

Using Di = FXi (xi), Xi ∼ BX − G (ω, γi + γ3) and δi =
γ3

γi+γ3
; i = 1, 2 then Bδ1,δ2(D1, D2) gives

the same CDF as Equation (4) where Bδ1,δ2(D1, D2) ≥ D1D2 for all D1, D2 ∈ [0, 1]2. Therefore, if (X1, X2)
follow the BBX-G family, then they are positive quadrant dependent (see [38]). For fX1(.) and fX2(.),
we get Cov

{
fX1(X1), fX2(X2)

}
≥ 0 (see [39]), where fX1(.) and fX2(.) are increasing functions.

3.2. Median Correlation Coefficient

Reference [40] proposed the median correlation coefficient NX1,X2 as a form NX1,X2 =

4FX1,X2(NX1 , NX2) − 1, where NX1 and NX2 denote the median of X1 and X2 respectively. If X1 ∼
BX− G (ω, γ1 + γ3) and X2 ∼ BX− G (ω, γ2 + γ3), then

NX1,X2 =

{
4FBX−G

(
NX2 ; ω, γ2

)
× FBX−G

(
NX1 ; ω, γ1 + γ3

)
− 1 if x1 ≤ x2

4FBX−G
(

NX1 ; ω, γ1
)
× FBX−G

(
NX2 ; ω, γ2 + γ3

)
− 1 if x1 > x2,

(16)

where

NXi = QG




1([
− log

(
1− A

1
γi+γ3

)]−0.5
+ 1

)




; i = 1, 2, (17)

and QG(.) = G−1(.) is the baseline quantile function for A has a uniform A(0, 1) distribution.
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3.3. The Moments, Product Moment, Covariance, Skewness and Kurtosis

The rth moment of Xi, say M(r)
i , can be defined as M(r)

i = E(Xr
i ) =

∫ ∞
0 xr

i fXi (xi)dxi. Hence,
by using Equation (10), we get

M(r)
i =

∞

∑
m,l=0

V(i)
m,l

∞∫

0

xr
i Υ(i)

2(m+1)+l(xi; ω) dxi

=
∞

∑
m,l=0

V(i)
m,l E(Zr

i,2(m+1)+l), (18)

where Zi,2(m+1)+l ; i = 1, 2 be a random variable having the exp-G CDF with power parameter
2(m + 1) + l. The moments of the exp-G distributions are given by [41]. Setting r = 1 in Equation (18),
we get the mean of Xi; i = 1, 2. Thus, the nth central moment of Xi, say L(n)

i , is given by

L(n)
i =

n

∑
r=0

∞

∑
m,l=0

[
−M(1)

i )
]n−r

(
n
r

)
V(i)

m,l E(Zr
i,2(m+1)+l) ; i = 1, 2. (19)

The sth incomplete moment of Xi, say ϕ
(s)
i (ti), can be defined as ϕ

(s)
i (ti) =

∫ ti
0 xs

i f (xi) dxi. Then,
the sth incomplete moment can be expressed as follows

ϕ
(s)
i (ti) =

∞

∑
m,l=0

V(i)
m,l ϕ

∗(s)
i (ti); i = 1, 2, (20)

where ϕ
∗(s)
i (ti) =

∫ ti
0 xs

i Υ(i)
2(m+1)+l(xi; ω) dxi. Therefore, the mean deviations of Xi about the mean

and median are given by ρi = 2M(1)
i F(M(1)

i ) − 2ϕ
(1)
i (M(1)

i ) and τi = M(1)
i − 2ϕ

(1)
i (NXi ) ; i = 1, 2,

respectively. The sth incomplete moment has more applications in various fields, for more details,
see [42]. The product moment can be expressed as follows

E(Xr
1Xr

2) =
∫ ∞

0

∫ x2

0
xr

1xr
2 f1(x1, x2)dx1dx2 +

∫ ∞

0

∫ x1

0
xr

1xr
2 f2(x1, x2)dx2dx1

+
∫ ∞

0
x2r f0(x) dx

=
∞

∑
m,l=0

[V(1)
m,l V∗m,l(γ2)Ψ

(r)
2 (m, l, ω) + V(2)

m,l V∗m,l(γ1)Ψ
(r)
1 (m, l, ω)

+
γ3

γ1 + γ2 + γ3
V∗m,l(γ1 + γ2 + γ3)Ψ(r)(m, l, ω)], (21)

where

Ψ(r)
i (m, l, ω) =

∫ ∞

0
xr

i ∆(r)(xi; m, l, ω)Υ(i)
2(m+1)+l(xi; ω) dxi ; i = 1, 2,

∆(r)(xi; m, l, ω) =
∫ xi

0
xr

3−i Υ(3−i)
2(m+1)+l(x3−i; ω) dx3−i ; i = 1, 2,

Υ(i)
2(m+1)+l(xi; ω) = (2(m + 1) + l)g(xi; ω)G(xi; ω)2m+l+1; i = 1, 2,

Ψ(r)(m, l, ω) =
∫ ∞

0
x2r Υ2(m+1)+l(x; ω) dx,

Υ2(m+1)+l(x; ω) = (2(m + 1) + l)g(x; ω)G(x; ω)2m+l+1

and

V∗m,l(q) =
2q(−1)mΓ(q)Γ(2m + l + 3)

m!l!(2(m + 1) + l)Γ(2m + 3)

∞

∑
k=0

(−1)k(k + 1)m

k!Γ(q− k)
.
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Using Equations (18) and (21) when r = 1, we get the covariance of the bivariate distribution
as follows

Cov(X1, X2) =
∞

∑
m,l=0

[V(1)
m,l V∗m,l(γ2)Ψ

(1)
2 (m, l, ω) + V(2)

m,l V∗m,l(γ1)Ψ
(1)
1 (m, l, ω)

+
γ3

γ1 + γ2 + γ3
V∗m,l(γ1 + γ2 + γ3)Ψ(1)(m, l, ω)]−

∞

∑
m,l=0

V(1)
m,l E(Z1

1,2(m+1)+l)

×
∞

∑
m,l=0

V(2)
m,l E(Z1

2,2(m+1)+l). (22)

where Cov(X1, X2) = E(X1X2)− E(X1)E(X2). Moreover, the correlation of X1 and X2 is the number

defined by ρ = Cov(X1,X2)√
Var(X1)Var(X2)

, where 0 ≤ ρ ≤ 1 and Var(Xi) = M(2)
i −

[
M(1)

i

]2
; i = 1, 2. By

using [43] measures of multivariate and bivariate skewness and kurtosis, we get

Skewness =
1

(1− ρ2)3 [Υ
2
30 + Υ2

03 + 3
(

1 + 2ρ2
) (

Υ2
12 + Υ2

21

)
− 2ρ3Υ30Υ03

+ 6ρ{Υ30 (ρΥ12 − Υ21) + Υ03 (ρΥ21 − Υ12)− (2 + ρ2)Υ21Υ12}], (23)

Kurtosis =
Υ40 + Υ04 + 2Υ22 + 4ρ (ρΥ22 − Υ13 − Υ31)

(1− ρ2)2 , (24)

where Υwq =
E(Xw

1 Xq
2)[√

Var(X1)
]w[√

Var(X1)
]q .

3.4. The Joint RF, Joint Reversed (Hazard) Rate Functions and Stress–Strength Reliability

Assume (X1, X2) be two dimensional random variable with joint CDF FX1,X2(x1, x2) and the
marginal functions are FX1(x1) and FX2(x2), then the joint RF can be defined as RX1,X2(x1, x2) =

1− FX1(x1)− FX2(x2) + FX1,X2(x1, x2). So, the joint RF of the BBX-G family can be expressed as follows

RX1,X2(x1, x2) =





R1(x1, x2) if 0 < x1 < x2 < ∞
R2(x1, x2) if 0 < x2 < x1 < ∞
R0(x) if 0 < x1 = x2 = x < ∞,

(25)

where

R1(x1, x2) = 1− FBX−G (x1; ω, γ1 + γ3)− FBX−G (x2; ω, γ2 + γ3)+

FBX−G (x2; ω, γ2)× FBX−G (x1; ω, γ1 + γ3),

R2(x1, x2) = 1− FBX−G (x1; ω, γ1 + γ3)− FBX−G (x2; ω, γ2 + γ3)+

FBX−G (x1; ω, γ1)× FBX−G (x2; ω, γ2 + γ3)

and

R0(x) = 1− FBX−G (x; ω, γ1 + γ3)− FBX−G (x; ω, γ2 + γ3)+

FBX−G (x; ω, γ1 + γ2 + γ3).

Reference [44] defined the bivariate hazard rate function (BHRF) as follows hX1,X2(x1, x2) =
fX1,X2 (x1,x2)

RX1,X2 (x1,x2)
. So, the BHRF of the BBX-G family can be written as follows
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hX1,X2(x1, x2) =





h1(x1, x2) if 0 < x1 < x2 < ∞
h2(x1, x2) if 0 < x2 < x1 < ∞
h0(x) if 0 < x1 = x2 = x < ∞,

(26)

where

h1(x1, x2) = fBX−G (x2; ω, γ2)× fBX−G (x1; ω, γ1 + γ3)×
[1− FBX−G (x1; ω, γ1 + γ3)− FBX−G (x2; ω, γ2 + γ3)+

FBX−G (x2; ω, γ2)× FBX−G (x1; ω, γ1 + γ3)]
−1,

h2(x1, x2) = fBX−G (x1; ω, γ1)× fBX−G (x2; ω, γ2 + γ3)×
[1− FBX−G (x1; ω, γ1 + γ3)− FBX−G (x2; ω, γ2 + γ3)+

FBX−G (x1; ω, γ1)× FBX−G (x2; ω, γ2 + γ3)]
−1

and

h0(x) =
γ3

γ1 + γ2 + γ3
fBX−G (x; ω, γ1 + γ2 + γ3)×

[1− FBX−G (x; ω, γ1 + γ3)− FBX−G (x; ω, γ2 + γ3)+

FBX−G (x; ω, γ1 + γ2 + γ3)]
−1.

The marginal hazard rate functions hi(xi); i = 1, 2 can be expressed as follows

hi(xi) =
fBX−G (xi; ω, γi + γ3)

1− FBX−G (xi; ω, γi + γ3)
; i = 1, 2. (27)

Reference [45] defined the bivariate reversed hazard rate function (BRHRF) as a scalar, given by

rX1,X2(x1, x2) =
fX1,X2 (x1,x2)

FX1,X2 (x1,x2)
. So, the BRHRF for the random vector (X1, X2) can be expressed as follows

rX1,X2(x1, x2) =





r1(x1, x2) if 0 < x1 < x2 < ∞
r2(x1, x2) if 0 < x2 < x1 < ∞
r0(x) if 0 < x1 = x2 = x < ∞,

(28)

where

r1(x1, x2) =
4γ2 (γ1 + γ3) g(x1; ω)g(x2; ω)G(x1; ω)G(x2; ω)

[Ḡ(x1; ω)Ḡ(x2; ω)]
3

[
e
(

G(x1;ω)

Ḡ(x1;ω)

)2

− 1

] [
e
(

G(x2;ω)

Ḡ(x2;ω)

)2

− 1

] ,

r2(x1, x2) =
4γ1 (γ2 + γ3) g(x1; ω)g(x2; ω)G(x1; ω)G(x2; ω)

[Ḡ(x1; ω)Ḡ(x2; ω)]
3

[
e
(

G(x1;ω)

Ḡ(x1;ω)

)2

− 1

] [
e
(

G(x2;ω)

Ḡ(x2;ω)

)2

− 1

]

and

r0(x) =
2γ3g(x; ω)G(x; ω)

[Ḡ(x; ω)]
3

[
e
(

G(x;ω)
Ḡ(x;ω)

)2

− 1

] .
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The marginal reversed hazard rate functions ri(xi); i = 1, 2 can be expressed as follows

ri(xi) =
2 (γi + γ3) g(xi; ω)G(xi; ω)

[Ḡ(xi; ω)]
3


e

(
G(xi ;ω)

Ḡ(xi ;ω)

)2

− 1




; i = 1, 2. (29)

On the other hand, the proposed bivariate family has a nice interpretation, namely,
the stress–strength model does not depend on the baseline function G(x; ω), by another way
P[X1 < X2] =

γ2+γ3
γ1+γ2+2γ3

and P[X2 < X1] =
γ1+γ3

γ1+γ2+2γ3
.

4. Special Case of BBX-G Family: Bivariate Burr X-Exponential Distribution with Properties

The random variable X is said to have the exponential (Ex) distribution if its CDF is given by

G(x; a) = 1− e−ax; a, x > 0. (30)

The joint CDF of the bivariate Burr X-exponential (BBXEx) distribution can be expressed as follows

FBBXEx(x1, x2) =
(

1− e−(e
az−1)2)γ3 2

∏
i=1

(
1− e−(e

axi−1)2)γi
, (31)

where z = min(x1, x2). By substituting from Equation (30) in Equations (5), (25) and (26), we get the
joint PDF, joint RF and BHRF of the BBXEx distribution, respectively. Figures 1–3 show the surface
plots of those functions for γ1 = γ2 = γ3 = 0.3 and a = 0.1, 0.3 and 0.5, respectively.
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Ḡ(xi ;ω)

)2

− 1




; i = 1, 2. (29)

On the other hand, the proposed bivariate family has a nice interpretation, namely, the stress-strength100

model does not depend on the baseline function G(x; ω), by another way P[X1 < X2] =
γ2+γ3

γ1+γ2+2γ3
101

and P[X2 < X1] =
γ1+γ3

γ1+γ2+2γ3
.102

4. Special Case of BBX-G Family: Bivariate Burr X-Exponential Distribution with Properties103

Although the baseline distribution G(x; ω) can be presented by several distributions, we choose
the exponential (Ex) distribution for an example. The random variable X is said to have the Ex
distribution if its CDF is given by

G(x; a) = 1− e−ax; a, x > 0. (30)

The joint CDF of the bivariate Burr X-exponential (BBXEx) distribution can be expressed as follows

FBBXEx(x1, x2) =
(

1− e−(e
az−1)2)γ3 2

∏
i=1

(
1− e−(e

axi−1)2)γi
, (31)

where z = min(x1, x2). By substituting from Equation (30) in Equations (5), (25) and (26), we get the
joint PDF, joint RF and BHRF of the BBXEx distribution, respectively. Figures 1, 2 and 3 show the
surface plots of those functions for γ1 = γ2 = γ3 = 0.3 and a = 0.1, 0.3 and 0.5, respectively.

Figure 1. The surface plots of the joint PDF for γ1 = γ2 = γ3 = 0.3 and a = 0.1, 0.3 and 0.5, respectively.

Figure 2. The surface plots of the joint RF for γ1 = γ2 = γ3 = 0.3 and a = 0.1, 0.3 and 0.5, respectively.Figure 2. The surface plots of the joint RF for γ1 = γ2 = γ3 = 0.3 and a = 0.1, 0.3 and 0.5, respectively.

Figure 1. The surface plots of the joint probability density function (PDF) for γ1 = γ2 = γ3 = 0.3 and
a = 0.1, 0.3 and 0.5, respectively.

Mathematics 2020, xx, 5 9 of 32

The marginal reversed hazard rate functions ri(xi); i = 1, 2 can be expressed as follows

ri(xi) =
2 (γi + γ3) g(xi; ω)G(xi; ω)
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Ḡ(xi ;ω)

)2

− 1




; i = 1, 2. (29)

On the other hand, the proposed bivariate family has a nice interpretation, namely,
the stress-strength model does not depend on the baseline function G(x; ω), by another way
P[X1 < X2] =

γ2+γ3
γ1+γ2+2γ3

and P[X2 < X1] =
γ1+γ3

γ1+γ2+2γ3
.

4. Special Case of BBX-G Family: Bivariate Burr X-Exponential Distribution with Properties

The random variable X is said to have the exponential (Ex) distribution if its CDF is given by

G(x; a) = 1− e−ax; a, x > 0. (30)

The joint CDF of the bivariate Burr X-exponential (BBXEx) distribution can be expressed as follows

FBBXEx(x1, x2) =
(

1− e−(e
az−1)2)γ3 2

∏
i=1

(
1− e−(e

axi−1)2)γi
, (31)

where z = min(x1, x2). By substituting from Equation (30) in Equations (5), (25) and (26), we get the
joint PDF, joint RF and BHRF of the BBXEx distribution, respectively. Figures 1–3 show the surface
plots of those functions for γ1 = γ2 = γ3 = 0.3 and a = 0.1, 0.3 and 0.5, respectively.

Version January 29, 2020 submitted to Journal Not Specified 9 of 33

The marginal reversed hazard rate functions ri(xi); i = 1, 2 can be expressed as follows

ri(xi) =
2 (γi + γ3) g(xi; ω)G(xi; ω)

[Ḡ(xi; ω)]
3


e

(
G(xi ;ω)
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Figure 3. The surface plots of the BHRF for γ1 = γ2 = γ3 = 0.3 and a = 0.1, 0.3 and 0.5, respectively.

It is clear that the joint density has a long left tail as compared to its right tail. Moreover, the BBXEx
distribution presents different shapes for the BHRF. Furthermore, the joint RF decreases for fixed
values of γ1, γ2 and γ3 with a → ∞. Thus, this model can be used to discuss several phenomena
in different fields. [45] defined the local dependence function, say η(x1, x2), in order to study the
dependence between X1 and X2, where

η(x1, x2) =
∂2

∂x1∂x2
f (x1, x2). (32)

If η(x1, x2) ≥ 0, then f (x1, x2) is positivity of order two (PT2). Whereas if η(x1, x2) ≤ 0, then104

f (x1, x2) is reverse rule of order two (RR2). Also, f (x1, x2) is said to be PT2 (RR2) if f (x1, x2) f (u, v)−105

f (x1, v) f (u, x2) ≥ (≤) 0 for all x1 ≤ u and x2 ≤ v. For the BBXEx distribution, it can be verified that106

η(x1, x2) > 0, and then X1 and X2 are PT2. As a consequence,107

1. The linear correlation coefficient between X1 and X2 is always positive.108

2. The conditional hazard rate of X1|X2 = x2 is decreasing in x2.109

3. The conditional hazard rate of X2|X1 = x1 is decreasing in x1.110

Recall, Equations (23) and (24), the correlation, skewness and kurtosis measures of the BBXEx
distribution are listed in Table 1 for (a, γ1, γ2, γ3) = (1.5, 0.6, γ2, 1.5).

Table 1. The correlation, skewness and kurtosis measures of the BBXEx(1.5, 0.6, γ2, 1.5) distribution.

Measures ↓ γ2 −→ 0.2 0.5 0.8 1.1 1.4 1.7 2.0 2.3 2.6 2.9

Correlation 0.147 0.209 0.247 0.279 0.317 0.335 0.387 0.418 0.468 0.479
Skewness 1.879 1.314 1.149 1.045 0.687 0.564 0.001 0.045 0.059 0.098
Kurtosis 7.478 7.114 6.492 6.127 5.214 6.948 6.104 5.179 5.357 5.970

From Table 1, it is observed that the value of correlation increases with γ2 −→ ∞ for fixed values of111

a, γ1 and γ3. Moreover, this distribution can be used to model skewed as well as symmetric data sets.112

5. Estimation Based on Complete and Type-II Censored Samples113

5.1. Maximum likelihood estimation114

In this section, we compute the maximum likelihood estimation (MLE) for the unknown
parameters Θ =(ω, γ1, γ2, γ3) based on complete and Type-II censored data. Suppose that (x11, x21),
(x12, x22),..., (x1n, x2n) be the observed values from the BBX-G family. We use the following notation
I1 = {x1i < x2i}, I2 = {x1i > x2i}, I3 = {x1i = x2i = xi}, I = I1 ∪ I2 ∪ I3, |I1| = n1, |I2| = n2,
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distribution presents different shapes for the BHRF. Furthermore, the joint RF decreases for fixed
values of γ1, γ2 and γ3 with a → ∞. Thus, this model can be used to discuss several phenomena
in different fields. [45] defined the local dependence function, say η(x1, x2), in order to study the
dependence between X1 and X2, where

η(x1, x2) =
∂2
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f (x1, x2). (32)
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1. The linear correlation coefficient between X1 and X2 is always positive.
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It is clear that the joint density has a long left tail as compared to its right tail. Moreover, the BBXEx
distribution presents different shapes for the BHRF. Furthermore, the joint RF decreases for fixed
values of γ1, γ2 and γ3 with a → ∞. Thus, this model can be used to discuss several phenomena in
different fields. Reference [46] defined the local dependence function, say η(x1, x2), in order to study
the dependence between X1 and X2, where

η(x1, x2) =
∂2

∂x1∂x2
f (x1, x2). (32)

If η(x1, x2) ≥ 0, then f (x1, x2) is a positivity of order two (PT2). Whereas if η(x1, x2) ≤ 0, then
f (x1, x2) is a reverse rule of order two (RR2). Also, f (x1, x2) is said to be PT2 (RR2) if f (x1, x2) f (u, v)−
f (x1, v) f (u, x2) ≥ (≤) 0 for all x1 ≤ u and x2 ≤ v. For the BBXEx distribution, it can be verified that
η(x1, x2) > 0, and then X1 and X2 are PT2. As a consequence,

1. The linear correlation coefficient between X1 and X2 is always positive.
2. The conditional hazard rate of X1|X2 = x2 is decreasing in x2.
3. The conditional hazard rate of X2|X1 = x1 is decreasing in x1.

Recall, Equations (23) and (24), the correlation, skewness and kurtosis measures of the BBXEx
distribution are listed in Table 1 for (a, γ1, γ2, γ3) = (1.5, 0.6, γ2, 1.5).

From Table 1, it is observed that the value of correlation increases with γ2 −→ ∞ for fixed values
of a, γ1 and γ3. Moreover, this distribution can be used to model skewed as well as symmetric
data sets.

Table 1. The correlation, skewness and kurtosis measures of the Burr X-exponential (BBXEx)
(1.5,0.6,γ2,1.5) distribution.

Measures ↓ γ2 −→ 0.2 0.5 0.8 1.1 1.4 1.7 2.0 2.3 2.6 2.9

Correlation 0.147 0.209 0.247 0.279 0.317 0.335 0.387 0.418 0.468 0.479

Skewness 1.879 1.314 1.149 1.045 0.687 0.564 0.001 0.045 0.059 0.098

Kurtosis 7.478 7.114 6.492 6.127 5.214 6.948 6.104 5.179 5.357 5.970

5. Estimation Based on Complete and Type-II Censored Samples

5.1. Maximum Likelihood Estimation

In this section, we compute the maximum likelihood estimation (MLE) for the unknown
parameters Θ =(ω, γ1, γ2, γ3) based on complete and Type-II censored data. Suppose that (x11, x21),
(x12, x22),..., (x1n, x2n) are the observed values from the BBX-G family. We use the following notation
I1 = {x1i < x2i}, I2 = {x1i > x2i}, I3 = {x1i = x2i = xi}, I = I1 ∪ I2 ∪ I3, |I1| = n1, |I2| = n2,
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|I3| = n3, and |I| = n1 + n2 + n3 = n. The total likelihood function for Θ based on complete data can
be defined as follows

l(Θ) =
n1

∏
i=1

f1(x1i, x2i)
n2

∏
i=1

f2(x1i, x2i)
n3

∏
i=1

f0(xi). (33)

Substituting Equation (5) into Equation (33), the log-likelihood function L(Θ) is given by

L(Θ) = n1 ln (4γ2 (γ1 + γ3)) +
n1

∑
i=1

ln[g(x1i; ω)] +
n1

∑
i=1

ln[G(x1i; ω)]− 3
n1

∑
i=1

ln[Ḡ(x1i; ω)]

−
n1

∑
i=1

[
G(x1i; ω)

Ḡ(x1i; ω)

]2

+ (γ1 + γ3 − 1)
n1

∑
i=1

ln


1− e

−
(

G(x1i ;ω)

Ḡ(x1i ;ω)

)2
+

n1

∑
i=1

ln[g(x2i; ω)]

+
n1

∑
i=1

ln[G(x2i; ω)]− 3
n1

∑
i=1

ln[Ḡ(x2i; ω)]−
n1

∑
i=1

[
G(x2i; ω)

Ḡ(x2i; ω)

]2

+ (γ2 − 1)
n1

∑
i=1

ln


1− e

−
(

G(x2i ;ω)

Ḡ(x2i ;ω)

)2
+ n2 ln(4γ1(γ2 + γ3)) +

n2

∑
i=1

ln[g(x1i; ω)]

+
n2

∑
i=1

ln[G(x1i; ω)]− 3
n2

∑
i=1

ln[Ḡ(x1i; ω)]−
n2

∑
i=1

[
G(x1i; ω)

Ḡ(x1i; ω)

]2

+ (γ1 − 1)
n2

∑
i=1

ln


1− e

−
(

G(x1i ;ω)

Ḡ(x1i ;ω)

)2
+

n2

∑
i=1

ln[g(x2i; ω)] +
n2

∑
i=1

ln[G(x2i; ω)]

− 3
n2

∑
i=1

ln[Ḡ(x2i; ω)]−
n2

∑
i=1

[
G(x2i; ω)

Ḡ(x2i; ω)

]2

+ (γ2 + γ3 − 1)
n2

∑
i=1

ln


1− e

−
(

G(x2i ;ω)

Ḡ(x2i ;ω)

)2


+ n3 ln [2γ3] +
n3

∑
i=1

ln[g(xi; ω)] +
n3

∑
i=1

ln[G(xi; ω)]− 3
n3

∑
i=1

ln[Ḡ(xi; ω)]

−
n3

∑
i=1

[
G(xi; ω)

Ḡ(xi; ω)

]2

+ (γ1 + γ2 + γ3 − 1)
n3

∑
i=1

ln


1− e

−
(

G(xi ;ω)

Ḡ(xi ;ω)

)2
 . (34)

The first partial derivatives of Equation (34) with respect to γ1, γ2, γ3 and ωk (k = 1, 2, 3, ...) are

∂L
∂γ1

=
n1

γ1 + γ3
+

n1

∑
i=1

ln


1− e

−
(

G(x1i ;ω)

Ḡ(x1i ;ω)

)2
+

n2

γ1
+

n2

∑
i=1

ln


1− e

−
(

G(x1i ;ω)

Ḡ(x1i ;ω)

)2


+
n3

∑
i=1

ln


1− e

−
(

G(xi ;ω)

Ḡ(xi ;ω)

)2
 , (35)

∂L
∂γ2

=
n1

γ2
+

n1

∑
i=1

ln


1− e

−
(

G(x2i ;ω)

Ḡ(x2i ;ω)

)2
+

n2

γ2 + γ3
+

n2

∑
i=1

ln


1− e

−
(

G(x2i ;ω)

Ḡ(x2i ;ω)

)2


+
n3

∑
i=1

ln


1− e

−
(

G(xi ;ω)

Ḡ(xi ;ω)

)2
 , (36)
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∂L
∂γ3

=
n1

γ1 + γ3
+

n1

∑
i=1

ln


1− e

−
(

G(x1i ;ω)

Ḡ(x1i ;ω)

)2
+

n2

γ2 + γ3
+

n2

∑
i=1

ln


1− e

−
(

G(x2i ;ω)

Ḡ(x2i ;ω)

)2


+
n3

γ3
+

n3

∑
i=1

ln


1− e

−
(

G(xi ;ω)

Ḡ(xi ;ω)

)2
 (37)

and

∂L
∂ωk

=
n1

∑
i=1

[g(x1i; ω)](ωk)

g(x1i; ω)
+

n1

∑
i=1

[G(x1i; ω)](ωk)

G(x1i; ω)
− 2

n1

∑
i=1

G(x1i; ω)

Ḡ(x1i; ω)

[
G(x1i; ω)

Ḡ(x1i; ω)

](ωk)

− 3
n1

∑
i=1

[Ḡ(x1i; ω)]
(ωk)

Ḡ(x1i; ω)
+ 2(γ1 + γ3 − 1)

n1

∑
i=1

G(x1i; ω)

Ḡ(x1i; ω)

[
G(x1i; ω)

Ḡ(x1i; ω)

](ωk)

×

e

(
G(xi ;ω)

Ḡ(xi ;ω)

)2

− 1



−1

+
n1

∑
i=1

[G(x2i; ω)](ωk)

G(x2i; ω)
− 2

n1

∑
i=1

G(x2i; ω)

Ḡ(x2i; ω)

[
G(x2i; ω)

Ḡ(x2i; ω)

](ωk)

+
n1

∑
i=1

[g(x2i; ω)](ωk)

g(x2i; ω)
− 3

n1

∑
i=1

[Ḡ(x2i; ω)]
(ωk)

Ḡ(x2i; ω)
+

n2

∑
i=1

[g(x1i; ω)](ωk)

g(x1i; ω)

+ 2 (γ2 − 1)
n1

∑
i=1

G(x2i; ω)

Ḡ(x2i; ω)

[
G(x2i; ω)

Ḡ(x2i; ω)

](ωk)

e

(
G(x2i ;ω)

Ḡ(x2i ;ω)

)2

− 1



−1

+
n2

∑
i=1

[G(x1i; ω)](ωk)

G(x1i; ω)
− 3

n2

∑
i=1

[Ḡ(x1i; ω)]
(ωk)

Ḡ(x1i; ω)
+

n2

∑
i=1

[g(x2i; ω)](ωk)

g(x2i; ω)

− 2
n2

∑
i=1

G(x1i; ω)

Ḡ(x1i; ω)

[
G(x1i; ω)

Ḡ(x1i; ω)

](ωk)−1

+
n2

∑
i=1

[G(x2i; ω)](ωk)

G(x2i; ω)

+ 2 (γ1 − 1)
n1

∑
i=1

G(x1i; ω)

Ḡ(x1i; ω)

[
G(x1i; ω)

Ḡ(x1i; ω)

](ωk)

e

(
G(xi ;ω)

Ḡ(xi ;ω)

)2

− 1




− 3
n2

∑
i=1

[Ḡ(x2i; ω)]
(ωk)

Ḡ(x2i; ω)
− 2

n2

∑
i=1

G(x2i; ω)

Ḡ(x2i; ω)

[
G(x2i; ω)

Ḡ(x2i; ω)

](ωk)

+ 2 (γ2 + γ3 − 1)
n2

∑
i=1

G(x2i; ω)

Ḡ(x2i; ω)

[
G(x2i; ω)

Ḡ(x2i; ω)

](ωk)

e

(
G(x2i ;ω)

Ḡ(x2i ;ω)

)2

− 1



−1

+
n2

∑
i=1

g(ωk)(x2i; ω)

g(x2i; ω)
− 2

n2

∑
i=1

(Ḡ(x2i; ω))
(ωk)

Ḡ(x2i; ω)
−α

n2

∑
i=1

(
G(x2i; ω)

Ḡ(x2i; ω)

)(ωk)

+
n3

∑
i=1

[g(xi; ω)](ωk)

g(xi; ω)
+

n3

∑
i=1

[G(xi; ω)](ωk)

G(xi; ω)
− 3

n3

∑
i=1

[Ḡ(xi; ω)]
(ωk)

Ḡ(xi; ω)

+ 2 (γ1 + γ2 + γ3 − 1)
n3

∑
i=1

G(xi; ω)

Ḡ(xi; ω)

[
G(xi; ω)

Ḡ(xi; ω)

](ωk)

e

(
G(xi ;ω)

Ḡ(xi ;ω)

)2

− 1



−1

− 2
n3

∑
i=1

G(xi; ω)

Ḡ(xi; ω)

[
G(xi; ω)

Ḡ(xi; ω)

](ωk)

. (38)
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where [U(.)](ω) means the derivative of the function U (.) with respect to ω. By equating the
Equations (35)–(38) by zeros, we get the non-linear normal equations. The likelihood function for the
bivariate distribution based on Type-II censored data can be written as follows

l∗(Θ) =
n!

(n− r)!
(1− F

(
x1i:n

)
)n−r

r

∏
i=1

fX1,X2

(
x1i:n , x2[i:n ]

)
, (39)

(see [47]). The log-likelihood function L∗(Θ) can be expressed as follows

L∗(Θ) = ln(
n!

(n− r)!
) + (n− r) ln

(
1− F

(
x1i:n

))
+

r

∑
i=1

ln( fX1,X2

(
x1i:n , x2[i:n ]

)
). (40)

Substituting from Equations (5) and (7) into Equation (40), and then differentiation the result
equation with respect to γ1, γ2, γ3 and ωk (k = 1, 2, 3, ...). The MLEs of the parameters can be obtained
by solving the normal equations simultaneously.

5.2. Bayesian Estimation

In this section, we consider the Bayesian estimation under the assumption that the non-negative
parameters of ω, γ1, γ2 and γ3 are independently distributed with gamma prior distribution where

ω = (ω1, ω2, ..., ωk). So, π(ωj) ∝ ω
Ωj−1
j e−Ψjωj ; j = 1, ..., k and π(γl) ∝ γ

Ωl−1
l e−Ψl γl ; l = 1, 2, 3. All

the hyper parameters Ωj, Ψj, Ωl and Ψl are assumed to be known and non-negative. The joint prior
density of unknown parameters ω, γ1, γ2 and γ3 can be written as follows

π(ω, γ1, γ2, γ3) ∝

(
k

∏
j=1

ω
Ωj−1
j e−Ψjωj

)(
3

∏
l=1

γ
Ωl−1
l e−Ψlγl

)
. (41)

Combining Equations (34) and (41), the posterior density of ω, γ1, γ2 and γ3 can be expressed as follows

π̇(ω, γ1, γ2, γ3|X1, X2) =
l(ω, γ1, γ2, γ3|X1, X2)π(ω, γ1, γ2, γ3)∫

ω

∫
γ1

∫
γ2

∫
γ3

l(ω, γ1, γ2, γ3|X1, X2)π(ω, γ1, γ2, γ3) dγ3dγ2dγ1dω
. (42)

Equation (42) can be expressed in a simple form as follows

π̇(ω, γ1, γ2, γ3|X1, X2) ∝ l(ω, γ1, γ2, γ3|X1, X2)π(ω, γ1, γ2, γ3). (43)

Thus, the Bayesian estimators of the parameters ω and γl under square error loss function can be
calculated through the following equations as follows

ω̂j ∝
∫
ωj

ωj π̇(ω, γ1, γ2, γ3|X1, X2) d ωj, (44)

and

γ̂l ∝
∞∫
0

γl π̇(ω, γ1, γ2, γ3|X1, X2) dγl , (45)

respectively, where j = 1, ..., k and l = 1, 2, 3. Generally, the ratio of k + l integrals given by
Equations (44) and (45) cannot be obtained in a closed form, so we may use the Markov chain
Monte Carlo (MCMC) technique. In MCMC methods, we estimate the posterior distribution and
the intractable integrals using simulated samples from the posterior distribution. We can use Gibbs
sampling and the Metropolis–Hastings (M-H) algorithm as a MCMC technique. This algorithm was
first introduced in [48,49]. Similarly to acceptance–rejection sampling, the M-H algorithm consider
that to each iteration of the algorithm, a candidate value can be generated from a proposal distribution.
So, the candidate value is accepted according to an adequate acceptance probability. This procedure
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guarantees the convergence of the Markov chain for the target density. For more details regarding the
implementation of M-H algorithm, the readers may refer to [50–52].

Regarding to the Type-II censored data, Equation (39) can be used instead of Equation (33) to get
the Bayes estimates of the unknown parameters ω, γ1, γ2 and γ3. At the end of this section, we can
conclude that the advantage of using the MCMC method over the MLE method is that we can always
obtain a reasonable interval estimate of the parameters by constructing the probability intervals based
on empirical posterior distribution. This is often unavailable in MLE.

5.3. Bootstrap Confidence Interval

5.3.1. Percentile Bootstrap Confidence Interval

The following algorithm shows how to calculate the percentile bootstrap confidence interval
(P-BCI) for the model parameters:

1. Compute the MLE of Θk where k =length(Θ) for BBXEx model.

2. Generate the bootstrap samples using Θk to obtain the bootstrap estimate of Θk, say Θ̂
b
k, using

the bootstrap sample.

3. Repeat step 2 T times to have (Θ̂
b(1)
k , Θ̂

b(2)
k , ..., Θ̂

b(T)
k ).

4. Arrange (Θ̂
b(1)
k , Θ̂

b(2)
k , ..., Θ̂

b(T)
k ) in ascending order as (Θ̂

b[1]
k , Θ̂

b[2]
k , ..., Θ̂

b[T]
k ).

5. A two side 100(1 − α)% P-BCI for the unknown parameters Θk is given by[
Θ̂

b[T]α/2
k , Θ̂

b[T](1−α/2)
k

]
.

5.3.2. Percentile Bootstrap-t Confidence Interval

The following algorithm shows how to calculate the percentile bootstrap-t confidence interval
(B-TCI) for the model parameters:

1. Same as steps 1 and 2 in P-BCI.

2. Compute the t−statistic of Θk as (Θ̂
b
k − Θ̂k)/

√
V(Θ̂

b
k) where V(Θ̂

b
k) is asymptotic variances of

Θ̂
b
k and it can be obtained using the Fisher information matrix.

3. Repeat steps 2 and 3 T times and obtain t−statistic(1), t−statistic(2), ..., t−statistic(T).
4. Arrange t−statistic(1), t−statistic(2), ..., t−statistic(T) in ascending order as

t−statistic[1], t−statistic[2], ..., t−statistic[T].
5. A two side 100(1− α)% B-TCI for the unknown parameters Θk is given by

[
Θ̂k + t− statistic[T]α/2 2

√
V(Θ̂

b
k), Θ̂k + t− statistic[T](1−α/2) 2

√
V(Θ̂

b
k)

]
.

6. Simulation Based on Complete and Type-II Censored Samples

6.1. Simulation Results Based on Complete Data

In this section, the MLE, Bayesian estimation (BSE) and bootstrap confidence interval (BCI)
methods are used to estimate the parameters a, γ1, γ2 and γ3 of the BBXEx distribution by using
different sample sizes n = [50, 100, 150, 200, 300] from N =1000 replications. The population
parameters are generated using the software R package. For more details around the R package,
see [50,51]. This study presents an assessment of the properties for both MLE and BSE in terms of bias
and mean square error (MSE) as well as the BCI for the parameters. The following algorithm shows
how to generate data from the BBXEx distribution.

1. Generate A1, A2 and A3 from A(0, 1).
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2. Compute Ui = QG



([
− log

(
1− A

1
γi
i

)]−0.5

+ 1

)−1

 ; i = 1, 2, 3.

3. Obtain X1 = max{U1, U3} and X2 = max{U2, U3}.

The MLEs and BSEs as well as the BCI values are listed in Table 2 for the BBXEx distribution
when (a, γ1, γ2, γ3) = (5, 0.7, 0.8, 0.9) based on complete data.

Table 2. Estimation summaries for the BBXEx distribution based on complete data.

MLE BSE BCI

n Parameter Bias MSE Bias MSE Average CI B-TCI P-BCI

50 a = 5 0.0266 0.0480 0.0177 0.0380 0.8532 0.0272 0.0269
γ1 = 0.7 0.1378 0.0663 0.0391 0.0224 0.8532 0.0270 0.0276
γ2 = 0.8 −0.276 0.1250 −0.057 0.0261 5.7491 0.1781 0.1778
γ3 = 0.9 0.0914 0.0693 0.0231 0.0269 5.0284 0.1610 0.1679

100 a = 5 0.0143 0.0228 0.0152 0.0207 0.5896 0.0186 0.0195
γ1 = 0.7 0.1123 0.0348 0.0389 0.0138 0.5840 0.0184 0.0181
γ2 = 0.8 −0.156 0.1211 −0.050 0.0211 3.2938 0.1026 0.1040
γ3 = 0.9 0.0779 0.0554 0.0210 0.0214 2.9020 0.0913 0.0900

150 a = 5 0.0140 0.0158 0.0144 0.0157 0.4882 0.0156 0.0153
γ1 = 0.7 0.1106 0.0284 0.0293 0.0131 0.4770 0.0150 0.0154
γ2 = 0.8 −0.123 0.0309 −0.047 0.0173 2.0961 0.0662 0.0655
γ3 = 0.9 0.0439 0.0208 0.0177 0.0145 1.7794 0.0560 0.0557

200 a = 5 0.0108 0.0103 0.0114 0.0102 0.3958 0.0125 0.0125
γ1 = 0.7 0.1101 0.0230 0.0178 0.0115 0.4052 0.0133 0.0131
γ2 = 0.8 −0.088 0.0165 −0.033 0.0150 0.3645 0.0115 0.0113
γ3 = 0.9 0.0089 0.0096 0.0108 0.0075 0.3836 0.0126 0.0123

300 a = 5 0.0052 0.0078 0.0083 0.0073 0.3448 0.0110 0.0108
γ1 = 0.7 0.1041 0.0179 0.0097 0.0108 0.3300 0.0105 0.0108
γ2 = 0.8 −0.078 0.0153 −0.013 0.0121 0.2960 0.0095 0.0094
γ3 = 0.9 0.0036 0.0063 0.0045 0.0061 0.3100 0.0098 0.0097

From Table 2, the following observations can be noted:

1. The MSEs for the MLE and BSE always decrease to zero when n grows.
2. The magnitude of bias in general always close to zero when n grows.
3. Based on the MSE, the performance of the BSE method is better than the MLE method.
4. The confidence in the results increases as the sample size increases where the BCI decreases when

n grows.

6.2. Simulation Results Based on Type-II Censored Samples

The following algorithm shows how to generate Type-II censored bivariate samples from the
BBXEx distribution:

1. Generate A1, A2 and A3 from A(0, 1).

2. Compute Ui = QG



([
− log

(
1− A

1
γi
i

)]−0.5

+ 1

)−1

 ; i = 1, 2, 3.

3. Repeat steps 1 and 2 n times to obtain (X1i , X2i ), i = 1, 2, ..., n.
4. Arrange X1i ; i = 1, 2, ..., n in ascending order to obtain X11:n ≤ X12:n ≤ ... ≤ X1n:n and form

(X1i:n , X2[i:n]); i = 1, 2, ..., n, where X2[i:n] is the X2 sample value associated with X1i ; i = 1, 2, ..., n.
5. Type-II censored data are obtained by keeping the first r pairs of ordered observations

(X1j:n , X2[j:n]); i = 1, 2, ..., n and dropping the remaining n− r observations.
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The MLEs and BSEs as well as the BCI values are reported in Tables 3 and 4 for the BBXEx
distribution when (a, γ1, γ2, γ3) = (5, 0.7, 0.8, 0.9) based on Type-II censored data for different sample
sizes n = 100 and 200, respectively.

Table 3. Estimation summaries for the BBXEx model based on Type-II censored data at n = 100.

MLE BSE BCI

n r Parameter Bias MSE Bias MSE Average CI B-TCI P-BCI

100 30 a = 5 0.1185 0.1347 −0.1841 0.0643 1.3632 0.0614 0.0623
γ1 = 0.7 0.2422 0.1841 0.3428 0.2183 1.2178 0.0547 0.0568
γ2 = 0.8 0.0315 0.0441 −0.0550 0.0302 0.8149 0.0363 0.0360
γ3 = 0.9 −0.3307 0.1085 −0.4699 0.2348 0.4065 0.0179 0.0178

50 a = 5 0.0750 0.0638 −0.1323 0.0636 0.9463 0.0415 0.0416
γ1 = 0.7 0.1355 0.1816 0.2700 0.1565 0.8824 0.0387 0.0396
γ2 = 0.8 0.0139 0.0287 −0.0484 0.0231 0.6626 0.0289 0.0293
γ3 = 0.9 −0.1658 0.0302 −0.3495 0.1356 0.4013 0.0160 0.0165

70 a = 5 0.0253 0.0278 −0.0360 0.0237 0.6464 0.0296 0.0299
γ1 = 0.7 0.0850 0.1781 0.1137 0.0597 0.6782 0.0305 0.0313
γ2 = 0.8 0.0044 0.0218 −0.0384 0.0172 0.5638 0.0239 0.0241
γ3 = 0.9 −0.0935 0.0134 −0.1478 0.0352 0.4001 0.0125 0.0126

Table 4. Estimation summaries for the BBXEx model based on Type-II censored data at n = 200.

MLE BSE BCI

n r Parameter Bias MSE Bias MSE Average CI B-TCI P-BCI

200 70 a = 5 0.0657 0.0501 −0.1284 0.0537 0.8396 0.0373 0.0374
γ1 = 0.7 0.1472 0.1508 0.1961 0.3737 0.7129 0.0309 0.0314
γ2 = 0.8 −0.0108 0.0201 −0.0567 0.0173 0.5543 0.0251 0.0248
γ3 = 0.9 −0.1941 0.1572 −0.1183 0.2737 0.2573 0.0116 0.0120

100 a = 5 0.0424 0.0274 −0.0687 0.0290 0.6284 0.0275 0.0288
γ1 = 0.7 0.1043 0.1180 0.1149 0.2803 0.5821 0.0266 0.0271
γ2 = 0.8 −0.0103 0.0137 −0.0456 0.0128 0.4515 0.0199 0.0198
γ3 = 0.9 −0.1774 0.1329 −0.1073 0.1797 0.2550 0.0110 0.0119

150 a = 5 0.0230 0.0161 −0.0185 0.0148 0.4891 0.0219 0.0222
γ1 = 0.7 0.0119 0.0229 0.1014 0.1179 0.4651 0.0210 0.0204
γ2 = 0.8 −0.0010 0.0116 −0.0268 0.0120 0.3886 0.0174 0.0174
γ3 = 0.9 −0.1440 0.0662 −0.0877 0.0540 0.2504 0.0105 0.0109

Based on the simulation results, it is clear that:

1. The biases and MSEs of both MLEs and BSEs decrease when the sampling r increases for a fixed
sample size n.

2. The MLE and BSE methods provide a fit for estimating the model parameters.
3. The ACI, BT and BP decrease when the sampling r increases for a fixed sample size n. So,

confidence in the results increases as the sample size increases where the results approaching the
real average.

7. Real Data

In this section, we illustrate the empirical importance of the BBXEx distribution using two
applications to real data. The fitted distributions are compared using some criteria, namely,
the maximized log-likelihood (L), Akaike information criterion (AIC), corrected AIC (CAIC), Bayesian
IC (BIC) and Hannan–Quinn IC (HQIC); in addition to the Kolmogorov–Smirnov (KS) statistic and its
p-value for the marginals. For more details regarding these criteria, see [53–56].
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7.1. Data Set I: Football Data

Here, consider the data obtained by [57], which represent football (soccer) data. This data
describes the games where at least one kick goal scored by any team has been considered, and the
home team must have scored at least one goal. This data was analyzed by several authors, see for
example, [24,25,58,59]. We consider the BBXEx model to analyze this data, comparing with other
famous bivariate models, such as bivariate generalized exponential (BGEx), bivariate exponential (BEx),
bivariate Gumbel exponential (BGuEx), bivariate generalized linear failure rate (BGLFR), bivariate
Weibull (BW), bivariate exponentiated Weibull (BEW), bivariate generalized power Weibull (BGPW)
and bivariate Gompertz (BGz) distributions. Figure 4 shows that the scatter plot for data set I.
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Before trying to analyze the data using the BBXEx model, we fit at first the marginals X1, X2 and
min(X1, X2) separately on the UEFA Champion’s League data. The MLEs of the parameters (γ, a)
of the corresponding Burr X-exponential (BXEx) model for X1, X2 and min(X1, X2) are (0.724, 0.013),
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We fit at first the marginals X1, X2 and min(X1, X2) separately on the UEFA Champion’s League
data. The MLEs of the parameters (γ, a) of the corresponding Burr X-exponential (BXEx) model for
X1, X2 and min(X1, X2) are (0.724, 0.013), (0.445, 0.012) and (0.459, 0.014), respectively with standard
error (STER) (0.137, 0.001), (0.080, 0.001) and (0.083, 0.001). The −L, KS distance and its p-value for the
marginals are listed in Table 5.

Table 5. The-L, KS and p-values for the marginals using data set I.

X1 X2 min(X1, X2)

Model −L KS p-value −L KS p-Value −L KS p-Value

BXEx 161.879 0.092 0.912 162.739 0.112 0.743 158.322 0.109 0.769

It is clear that the BXEx model fits the data for the marginals. The fitted PDF, estimated CDF and
PP plots displayed in Figures 5–7 which support our results in Table 5. The fitted PDF, estimated CDF
and Probability-Probability (PP) plots displayed in Figures 5–7 which support our results in Table 5.

Figure 4. The scatter plot for data set I.

We fit at first the marginals X1, X2 and min(X1, X2) separately on the UEFA Champion’s League
data. The MLEs of the parameters (γ, a) of the corresponding Burr X-exponential (BXEx) model for
X1, X2 and min(X1, X2) are (0.724, 0.013), (0.445, 0.012) and (0.459, 0.014), respectively with standard
error (STER) (0.137, 0.001), (0.080, 0.001) and (0.083, 0.001). The −L, KS distance and its p-value for the
marginals are listed in Table 5.

Table 5. The log-likelihood (L), Kolmogorov–Smirnov (KS) and p-values for the marginals using data
set I.

X1 X2 min(X1, X2)

Model −L KS p-Value −L KS p-Value −L KS p-Value

BXEx 161.879 0.092 0.912 162.739 0.112 0.743 158.322 0.109 0.769

It is clear that the BXEx model fits the data for the marginals. The fitted PDF, estimated CDF and
PP plots displayed in Figures 5–7 which support our results in Table 5. The fitted PDF, estimated CDF
and probability–probability (PP) plots displayed in Figures 5–7 which support our results in Table 5.
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(0.445, 0.012) and (0.459, 0.014), respectively with standard error (STER) (0.137, 0.001), (0.080, 0.001) and
(0.083, 0.001). The −L, KS distance and its p-value for the marginals are listed in Table 5.

Table 5. The− L, KS and p-values for the marginals using data set I.

X1 X2 min(X1, X2)

Model −L KS p-value −L KS p-value −L KS p-value
BXEx 161.879 0.092 0.912 162.739 0.112 0.743 158.322 0.109 0.769

Based on the p-values, it is clear that the BXEx model fits the data for the marginals. The fitted PDF,212

estimated CDF and PP plots displayed in Figures 5, 6 and 7 which support our results in Table 5. The213

fitted PDF, estimated CDF and Probability-Probability (PP) plots displayed in Figures 5, 6 and 7 which214

support our results in Table 5.215
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Figure 5. The fitted PDF for X1, X2 and min(X1, X2) for data set I.
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Figure 6. The estimated CDF for X1, X2 and min(X1, X2) for data set I.

Figure 5. The fitted PDF for X1, X2 and min(X1, X2) for data set I.

Version January 29, 2020 submitted to Journal Not Specified 18 of 33

(0.445, 0.012) and (0.459, 0.014), respectively with standard error (STER) (0.137, 0.001), (0.080, 0.001) and
(0.083, 0.001). The −L, KS distance and its p-value for the marginals are listed in Table 5.

Table 5. The− L, KS and p-values for the marginals using data set I.

X1 X2 min(X1, X2)

Model −L KS p-value −L KS p-value −L KS p-value
BXEx 161.879 0.092 0.912 162.739 0.112 0.743 158.322 0.109 0.769

Based on the p-values, it is clear that the BXEx model fits the data for the marginals. The fitted PDF,212

estimated CDF and PP plots displayed in Figures 5, 6 and 7 which support our results in Table 5. The213

fitted PDF, estimated CDF and Probability-Probability (PP) plots displayed in Figures 5, 6 and 7 which214

support our results in Table 5.215

X1

D
en

si
ty

0 20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

0 20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

D
en

si
ty

X2

D
en

si
ty

0 20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

0 20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

D
en

si
ty

min(X1,X2)

D
en

si
ty

0 20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

0 20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

D
en

si
ty

Figure 5. The fitted PDF for X1, X2 and min(X1, X2) for data set I.
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Figure 7. The PP plots for X1, X2 and min(X1, X2) for data set I.

From Figures 5, 6 and 7, it is quite apparent that the marginals can be used to discuss this data.
Therefore, the BBXEx model may be used for this purpose. Now, we fit the BBXEx model on this data.
In the enclosed Table 6, we provide the MLEs with its corresponding standard error (STER), −L, AIC,
CAIC, BIC and HQIC values for tested distributions.

Table 6. The MLEs and goodness-of-fit measures for data set I.

Model
Statistic BBXEx BGEx BEx BGuEx BGLFR BW BEW BGPW BGz

γ̂1 MLE 0.385 1.553 0.012 2.678 0.452 0.397 1.227 3.229 0.033
STER 0.093 0.437 0.772 0.760 0.094 0.063 0.772 4.252 0.001

γ̂2 MLE 0.136 0.499 0.014 0.962 0.156 0.274 0.382 1.983 0.002
STER 0.052 0.198 0.356 0.367 0.055 0.066 0.356 2.580 0.0009

γ̂3 MLE 0.310 1.156 0.022 2.065 0.360 0.339 0.661 4.084 0.021
STER 0.069 0.288 0.454 0.539 0.064 0.067 0.454 5.340 0.004

â MLE 0.012 0.039 − 5.011 0.0002 0.083 0.012 0.037 0.040
STER 0.001 0.006 − 2.823 0.0001 0.025 0.033 0.048 0.006

b̂ MLE − − − 4.081 0.0008 − 1.268 − −
STER − − − 2.073 0.0002 − 0.609 − −

−L 294.79 299.86 298.93 297.77 296.84 346.00 298.93 344.76 303.48
AIC 597.59 607.72 607.86 605.55 603.68 700.00 607.86 697.53 614.97

CAIC 598.85 608.97 609.79 607.48 605.62 701.25 609.79 698.78 616.22
BIC 604.04 614.16 615.91 613.60 611.73 706.44 615.91 703.97 621.41

HQIC 599.87 609.99 610.69 608.39 606.52 702.27 610.69 699.79 617.24

From Table 6, it is observed that, the BBXEx model provides a better fit than the other competitive
models, because it has the smallest value among −L, AIC, CAIC, BIC and HQIC. The BCI for the
BBXEx parameters are [0.312, 0.423], [0.101, 0.153], [0.279, 0.334] and [0, 0.129] respectively. The BSEs
with its Std. Error for the BBXEx model using data set I are reported in Table 7.

Table 7. The BSEs for the BBXEx distribution using data set I.

Statistic ↓ Parameter −→ a γ1 γ2 γ3

Estimation 0.0109 0.2126 0.1097 0.2270
STER 0.0007 0.0340 0.0272 0.0369

Credible Interval [0.0002, 0.0117] [0.1986, 0.2674] [0.0056, 0.1796] [0.1986, 0.2583]

Figure 7. The PP plots for X1, X2 and min(X1, X2) for data set I.

Figure 5. The fitted PDF for X1, X2 and min(X1, X2) for data set I.
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(0.445, 0.012) and (0.459, 0.014), respectively with standard error (STER) (0.137, 0.001), (0.080, 0.001) and
(0.083, 0.001). The −L, KS distance and its p-value for the marginals are listed in Table 5.

Table 5. The− L, KS and p-values for the marginals using data set I.

X1 X2 min(X1, X2)

Model −L KS p-value −L KS p-value −L KS p-value
BXEx 161.879 0.092 0.912 162.739 0.112 0.743 158.322 0.109 0.769

Based on the p-values, it is clear that the BXEx model fits the data for the marginals. The fitted PDF,212

estimated CDF and PP plots displayed in Figures 5, 6 and 7 which support our results in Table 5. The213

fitted PDF, estimated CDF and Probability-Probability (PP) plots displayed in Figures 5, 6 and 7 which214

support our results in Table 5.215
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Figure 5. The fitted PDF for X1, X2 and min(X1, X2) for data set I.
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Figure 6. The estimated CDF for X1, X2 and min(X1, X2) for data set I.Figure 6. The estimated cumulative distribution function (CDF) for X1, X2 and min(X1, X2) for data
set I.
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Figure 7. The PP plots for X1, X2 and min(X1, X2) for data set I.

From Figures 5, 6 and 7, it is quite apparent that the marginals can be used to discuss this data.
Therefore, the BBXEx model may be used for this purpose. Now, we fit the BBXEx model on this data.
In the enclosed Table 6, we provide the MLEs with its corresponding standard error (STER), −L, AIC,
CAIC, BIC and HQIC values for tested distributions.

Table 6. The MLEs and goodness-of-fit measures for data set I.

Model
Statistic BBXEx BGEx BEx BGuEx BGLFR BW BEW BGPW BGz

γ̂1 MLE 0.385 1.553 0.012 2.678 0.452 0.397 1.227 3.229 0.033
STER 0.093 0.437 0.772 0.760 0.094 0.063 0.772 4.252 0.001

γ̂2 MLE 0.136 0.499 0.014 0.962 0.156 0.274 0.382 1.983 0.002
STER 0.052 0.198 0.356 0.367 0.055 0.066 0.356 2.580 0.0009

γ̂3 MLE 0.310 1.156 0.022 2.065 0.360 0.339 0.661 4.084 0.021
STER 0.069 0.288 0.454 0.539 0.064 0.067 0.454 5.340 0.004

â MLE 0.012 0.039 − 5.011 0.0002 0.083 0.012 0.037 0.040
STER 0.001 0.006 − 2.823 0.0001 0.025 0.033 0.048 0.006

b̂ MLE − − − 4.081 0.0008 − 1.268 − −
STER − − − 2.073 0.0002 − 0.609 − −

−L 294.79 299.86 298.93 297.77 296.84 346.00 298.93 344.76 303.48
AIC 597.59 607.72 607.86 605.55 603.68 700.00 607.86 697.53 614.97

CAIC 598.85 608.97 609.79 607.48 605.62 701.25 609.79 698.78 616.22
BIC 604.04 614.16 615.91 613.60 611.73 706.44 615.91 703.97 621.41

HQIC 599.87 609.99 610.69 608.39 606.52 702.27 610.69 699.79 617.24

From Table 6, it is observed that, the BBXEx model provides a better fit than the other competitive
models, because it has the smallest value among −L, AIC, CAIC, BIC and HQIC. The BCI for the
BBXEx parameters are [0.312, 0.423], [0.101, 0.153], [0.279, 0.334] and [0, 0.129] respectively. The BSEs
with its Std. Error for the BBXEx model using data set I are reported in Table 7.

Table 7. The BSEs for the BBXEx distribution using data set I.

Statistic ↓ Parameter −→ a γ1 γ2 γ3

Estimation 0.0109 0.2126 0.1097 0.2270
STER 0.0007 0.0340 0.0272 0.0369

Credible Interval [0.0002, 0.0117] [0.1986, 0.2674] [0.0056, 0.1796] [0.1986, 0.2583]

Figure 7. The probability–probability (PP) plots for X1, X2 and min(X1, X2) for data set I.
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From Figures 5–7, it is quite apparent that the marginals can be used to discuss this data. Therefore,
the BBXEx model may be used for this purpose. Now, we fit the BBXEx model on this data. In the
enclosed Table 6, we provide the MLEs with its corresponding standard error (STER), −L, AIC, CAIC,
BIC and HQIC values for tested distributions.

Table 6. The maximum likelihood estimation (MLE) and goodness-of-fit measures for data set I.

Model

Statistic BBXEx BGEx BEx BGuEx BGLFR BW BEW BGPW BGz

γ̂1 MLE 0.385 1.553 0.012 2.678 0.452 0.397 1.227 3.229 0.033
STER 0.093 0.437 0.772 0.760 0.094 0.063 0.772 4.252 0.001

γ̂2 MLE 0.136 0.499 0.014 0.962 0.156 0.274 0.382 1.983 0.002
STER 0.052 0.198 0.356 0.367 0.055 0.066 0.356 2.580 0.0009

γ̂3 MLE 0.310 1.156 0.022 2.065 0.360 0.339 0.661 4.084 0.021
STER 0.069 0.288 0.454 0.539 0.064 0.067 0.454 5.340 0.004

â MLE 0.012 0.039 − 5.011 0.0002 0.083 0.012 0.037 0.040
STER 0.001 0.006 − 2.823 0.0001 0.025 0.033 0.048 0.006

b̂ MLE − − − 4.081 0.0008 − 1.268 − −
STER − − − 2.073 0.0002 − 0.609 − −

−L 294.79 299.86 298.93 297.77 296.84 346.00 298.93 344.76 303.48
AIC 597.59 607.72 607.86 605.55 603.68 700.00 607.86 697.53 614.97

CAIC 598.85 608.97 609.79 607.48 605.62 701.25 609.79 698.78 616.22
BIC 604.04 614.16 615.91 613.60 611.73 706.44 615.91 703.97 621.41

HQIC 599.87 609.99 610.69 608.39 606.52 702.27 610.69 699.79 617.24

From Table 6, it is observed that, the BBXEx model provides a better fit than the other competitive
models, because it has the smallest value among −L, AIC, CAIC, BIC and HQIC. The BCI for the
BBXEx parameters are [0.312, 0.423], [0.101, 0.153], [0.279, 0.334] and [0, 0.129] respectively. The BSEs
with its Std. Error for the BBXEx model using data set I are reported in Table 7.

Table 7. The Bayesian estimation (BSE) for the BBXEx distribution using data set I.

Statistic ↓ Parameter −→ a γ1 γ2 γ3

Estimation 0.0109 0.2126 0.1097 0.2270

STER 0.0007 0.0340 0.0272 0.0369

Credible Interval [0.0002, 0.0117] [0.1986, 0.2674] [0.0056, 0.1796] [0.1986, 0.2583]

The results presented in Table 7 are very similar to the MLE results. Regarding to the
hyper-parameter elicitation, the elicitation of the hyper-parameters will rely on the informative
priors. These informative priors will be obtained from the maximum likelihood estimates for
(a, γ1, γ2, γ3) by equating the mean and variance with the mean and variance of the considered
priors (Gamma priors). Thus, â = a1

b1
, γ̂1 = a2

b2
, γ̂2 = a3

b3
and γ̂3 = a4

b4
whereas Var(â) = a1

b2
1
,

Var(γ̂1) =
a2
b2

2
, Var(γ̂2) =

a3
b2

3
and Var (γ̂3) =

a4
b2

4
. Now, in regards to solving the above two equations,

the estimated hyper-parameters are a1 = 118.249, a2 = 18.288, a3 = 7.206 and a4 = 7.206 whereas
b1 = 11367.16, b2 = 120.0362, b3 = 77.288 and b4 = 110.049. For more details around credible interval
algorithm, see [60,61]. The MCMC plots for data set I are displayed in Figure 8.
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Figure 8. The MCMC plots for data set I using the BBXEx model.

Table 8 shows some descriptive statistics for data set I utilizing the BBXEx distribution and its marginals.

Table 8. Some descriptive statistics for data set I.

Model ↓Measures→ Mean Variance Skewness Kurtosis Correlation

X1 39.3687 399.6321 0.14693 1.9697 −
X2 31.9867 498.3108 0.5039 1.8693 −

min(X1, X2) 43.6987 411.3377 0.0278 1.6574 −
(X1, X2) − − 0.1986 1.3631 0.5117

According to Table 8, it is clear that the bivariate data has positively skewed with platykurtic.
Moreover, the correlation between the two random variables is positive and strong. Positive correlation

Figure 8. The Markov chain Monte Carlo (MCMC) plots for data set I using the BBXEx model.

Table 8 shows some descriptive statistics for data set I utilizing the BBXEx distribution and its
marginals.

Table 8. Some descriptive statistics for data set I.

Model ↓Measures→ Mean Variance Skewness Kurtosis Correlation

X1 39.3687 399.6321 0.14693 1.9697 −
X2 31.9867 498.3108 0.5039 1.8693 −

min(X1, X2) 43.6987 411.3377 0.0278 1.6574 −
(X1, X2) − − 0.1986 1.3631 0.5117

According to Table 8, it is clear that the bivariate data has positively skewed with platykurtic.
Moreover, the correlation between the two random variables is positive and strong. Positive correlation
is a relationship between two variables in which both variables move in tandem that is, in the
same direction.

Tables 9–11 list estimation summaries for the BBXEx model and the competitive models based on
Type-II censored data using data set I.
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Table 9. The MLEs and goodness-of-fit measures based on Type-II censored data at r = 10 using data
set I.

Model

Statistic BBXEx BGEx BEx BGuEx BGLFR BW BEW BGPW

γ̂1 MLE 0.5739 0.0004 0.0048 4.2907 0.9196 0.4709 1.3010 0.1198
STER 0.1423 0.0003 0.0024 1.1534 0.5953 0.1674 1.8207 0.0627

γ̂2 MLE 0.0507 0.5871 0.0069 0.3603 0.3768 0.3598 0.1336 0.2818
STER 0.0491 0.5806 0.0068 0.3491 0.8904 0.2277 0.2562 0.2554

γ̂3 MLE 0.2324 3.2979 0.0683 1.6571 0.4138 0.8995 0.5511 1.1938
STER 0.0892 1.3024 0.0227 0.6405 0.2839 0.2445 0.8463 0.5997

â MLE 0.0123 0.1405 − 6.9336 0.0026 0.0190 0.0107 0.2248
STER 0.0025 0.0222 − 1.6581 0.0105 0.0134 0.0621 0.1044

b̂ MLE − − − 2.7670 0.0012 − 1.2228 −
STER − − − 0.3521 0.0007 − 1.2988 −

AIC 183.1820 249.0277 191.4764 184.1763 191.1341 158.3580 185.3535 175.1364
CAIC 191.1820 257.0277 195.4764 199.1763 206.1341 166.3580 200.3535 183.1364
BIC 184.3923 250.2380 192.3841 185.6892 192.6470 159.5683 186.8664 176.3468

HQIC 181.8543 247.7000 190.4806 182.5166 189.4744 157.0302 183.6938 173.8087

Table 10. The MLEs and goodness-of-fit measures based on Type-II censored data at r = 20 using data
set I.

Model

Statistic BBXEx BGEx BEx BGuEx BGLFR BW BEW BGPW

γ̂1 MLE 0.4694 0.0021 0.0052 1.7371 0.9331 0.2630 0.5056 0.2453
STER 0.1147 0.0014 0.0021 0.5834 0.2469 0.0871 0.2269 0.1024

γ̂2 MLE 0.1120 0.6721 0.0092 4.8482 0.6221 0.3130 0.0044 0.5688
STER 0.0546 0.3406 0.0045 3.9168 0.3982 0.1040 0.0071 0.2910

γ̂3 MLE 0.2746 2.1077 0.0425 4.5543 0.7142 0.5565 1.4242 1.3662
STER 0.0795 0.6120 0.0103 3.2232 0.2611 0.1166 0.3663 0.6433

â MLE 0.0125 0.0717 − 3.0075 0.0323 0.0521 0.8669 0.1503
STER 0.0016 0.0110 − 0.9186 0.0200 0.0233 0.3660 0.0633

b̂ MLE − − − 0.7050 0.0007 − 0.2049 −
STER − − − 0.3670 0.0007 − 0.1220 −

AIC 338.1156 417.8976 389.5858 340.7217 361.1384 338.3551 341.4218 349.6559
CAIC 340.7823 420.5643 391.0858 345.0074 365.4242 341.0217 345.7075 352.3225
BIC 342.0985 421.8805 392.5730 345.7003 366.1171 342.3380 346.4005 353.6388

HQIC 338.8931 418.6751 390.1689 341.6936 362.1103 339.1326 342.3937 350.4334

Regarding Tables 9–11, it is clear that both BW and BGPW models are better than the BBXEx
model in case of small values of r as seen in Table 9, whereas the BBXEx model provides better fit than
other competitive models when the value of r grows as seen in Tables 10 and 11.
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Table 11. The MLEs and goodness-of-fit measures based on Type-II censored data at r = 30 using data
set I.

Model

Statistic BBXEx BGEx BEx BGuEx BGLFR BW BEW BGPW

γ̂1 MLE 0.4333 0.0287 0.0101 3.0075 0.5281 0.3658 0.8348 0.6274
STER 0.1024 0.0084 0.0027 0.9186 0.1329 0.0713 0.7409 0.1622

γ̂2 MLE 0.0959 0.3171 0.0080 0.7050 0.4257 0.2264 0.1738 0.5415
STER 0.0455 0.1575 0.0039 0.3670 0.2939 0.0783 0.1647 0.2412

γ̂3 MLE 0.2842 1.1211 0.0393 1.7371 0.8251 0.4461 0.5305 1.3712
STER 0.0676 0.2849 0.0081 0.5834 0.3469 0.0865 0.4661 0.5034

â MLE 0.0125 0.0385 − 4.8482 0.0205 0.0757 0.0033 0.1345
STER 0.0011 0.0069 − 3.9168 0.0192 0.0258 0.0130 0.0408

b̂ MLE − − − 4.5543 0.0012 − 1.5365 −
STER − − − 3.2232 0.0006 − 0.8817 −

AIC 490.7070 609.9449 556.3474 492.9298 522.8255 539.1251 492.0913 548.0223
CAIC 492.3070 611.5449 557.2705 495.4298 525.3255 540.7251 494.5913 549.6223
BIC 496.3118 615.5496 560.5510 499.9358 529.8315 544.7299 499.0973 553.6271

HQIC 492.5001 611.7379 557.6922 495.1710 525.0668 540.9182 494.3326 549.8153

7.2. Data Set II: Motor Data

This data is reported in [62], and it represents the failure times of a parallel system constituted by
two identical motors in days. We consider the BBXEx model to analyze the censored samples. We fit at
first the marginals X1, X2 and max(X1, X2) separately on the motor data. The MLEs of the parameters
(γ, a) of the BXEx model for X1, X2 and min(X1, X2) are (1.548, 0.004), (1.233, 0.003) and (1.343, 0.004),
respectively with STER (0.465, 0.0003), (0.359, 0.0003) and (0.394, 0.0003). The −L, KS distance and its
p-value for the marginals are reported in Table 12.

Table 12. The L, KS and p-values for the marginals using data set II.

X1 X2 min(X1, X2)

Model −L KS p-Value −L KS p-Value −L KS p-Value

BXEx 99.494 0.222 0.338 102.935 0.114 0.953 99.026 0.180 0.604

It is clear that the BXEx model fits the data for the marginals. The fitted PDF, estimated CDF, PP,
scatter and TTT plots are displayed in Figures 9–12.
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Figure 9. The fitted PDF for X1, X2 and min(X1, X2) for data set II.
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Figure 10. The estimated CDF for X1, X2 and min(X1, X2) for data set II.

Figure 9. The fitted PDF for X1, X2 and min(X1, X2) for data set II.
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Figure 9. The fitted PDF for X1, X2 and min(X1, X2) for data set II.
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Figure 12. The TTT (left panel) and scatter (right panel) plots for data set II.
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From Figure 12, it is clear that the marginals have increasing HRF. Now, we fit the BBXEx model
based on a complete sample. In the enclosed Table 13, we provide the MLEs with its corresponding
STER, −L, AIC, CAIC, BIC and HQIC values for tested distributions.

Table 13. The MLE and goodness-of-fit measures based on data set II.

Model

Statistic BBXEx BGEx BW BGPW BEx BGuEx BEW BGLFR

γ̂1 MLE 0.362 2.454 0.200 1.559 0.002 3.066 30.138 0.417
STER 0.129 1.019 0.051 3.043 0.0005 1.209 9.676 9.71× 10−7

γ̂2 MLE 0.424 2.880 0.238 1.858 0.002 4.485 24.135 0.486
STER 0.137 1.116 0.052 3.679 0.0005 1.747 7.676 1.05× 10−6

γ̂3 MLE 0.907 6.064 0.339 3.719 0.005 8.043 61.805 1.019
STER 0.198 1.811 0.062 7.263 0.0009 2.229 6.378 1.33× 10−6

â MLE 0.003 0.014 0.039 0.029 − 6.311 0.520 6.99× 10−5

STER 0.0002 0.002 0.016 0.056 − 0.851 0.051 1.09× 10−5

b̂ MLE − − − − − 10.533 0.325 0.001
STER − − − − − 0.863 0.084 0.0008

AIC 667.52 678.46 853.90 871.58 717.46 679.26 688.54 673.54
CAIC 670.59 681.53 856.98 874.66 719.17 684.26 693.54 678.54
BIC 671.08 682.02 857.47 875.14 720.13 683.71 692.99 677.99

HQIC 668.01 678.95 854.39 872.07 717.83 679.87 689.15 674.15

From Table 13, it is clear that, the BBXEx model provides a better fit than the other competitive
models. The BCI for the BBXEx parameters are [0.287, 0.438], [0.299, 0.543], [0.811, 1.236] and
[0.002, 0.005], respectively. The BSEs with its STER for the BBXEx model using data set II are listed in
Table 14.

Table 14. The BSEs for the BBXEx distribution using data set II.

Statistic ↓ Parameter −→ a γ1 γ2 γ3

Estimation 0.0033 0.3674 0.4191 0.8892

STER 0.0001 0.0856 0.0906 0.1346

Credible Interval [0.0031, 0.0062] [0.1996, 0.4768] [0.2416, 0.5642] [0.6255, 1.3605]

The results presented in Table 14 are very similar to the MLE results. For the BSE of the BBXEx
parameters, the estimated hyper-parameters are a1 = 354.948, a2 = 7.899, a3 = 9.601 and a4 = 21.055
whereas b1 = 106405.318, b2 = 21.849, b3 = 22.623 and b4 = 23.216. The MCMC plots for data set II
based on complete sample are displayed in Figure 13.
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Figure 13. The MCMC plots for data set II using the BBXEx model based on complete sample.Figure 13. The MCMC plots for data set II using the BBXEx model based on the complete sample.

Here, we fit the BBXEx model on data set II based on censored samples. In the enclosed
Tables 15–17, we provide the MLEs, BSEs, AIC, CAIC, BIC and HQIC values for all tested models.
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Table 15. The MLEs and goodness-of-fit measures based on the censored sample at r = 7.

Model

Statistic BBXEx BGEx BW BGPW BEx BGuEx BEW BGLFR

γ̂1 MLE 0.287 0.001 0.197 0.129 0.003 1.715 27.831 0.455
STER 0.160 0.0009 0.085 0.070 0.001 1.094 15.865 1.4× 10−5

γ̂2 MLE 0.220 1.788 0.454 0.439 0.001 1.231 20.518 0.317
STER 0.114 0.918 0.097 0.175 0.0006 0.738 10.467 1.7× 10−5

γ̂3 MLE 0.754 0.003 0.331 0.268 0.003 3.998 69.221 1.138
STER 0.233 0.001 0.101 0.096 0.0009 1.708 7.468 1.5× 10−5

â MLE 0.003 0.012 0.018 0.223 − 1.629 0.393 6.1× 10−5

STER 0.0004 0.003 0.013 0.069 − 0.764 0.067 2.4× 10−5

b̂ MLE − − − − − 50.678 0.644 1.9× 10−5

STER − − − − − 27.828 0.210 0.002

AIC 284.01 530.81 327.82 354.68 293.69 284.21 283.65 285.16
CAIC 304.01 550.81 347.82 374.68 301.69 344.21 343.65 345.16
BIC 283.79 530.59 327.60 354.46 293.53 283.94 283.38 284.89

HQIC 281.34 528.13 325.15 352.01 291.69 280.87 280.31 281.82

Table 16. The MLE and goodness-of-fit measures based on the censored sample at r = 10.

Model

Statistic BBXEx BGEx BW BGPW BEx BGuEx BEW BGLFR

γ̂1 MLE 0.318 0.003 0.184 0.169 0.002 2.402 27.989 0.438
STER 0.156 0.002 0.068 0.078 0.0009 1.275 13.848 3× 10−6

γ̂2 MLE 0.324 1.053 0.362 0.424 0.001 2.437 26.847 0.415
STER 0.137 0.454 0.076 0.154 0.0006 1.134 10.998 3× 10−6

γ̂3 MLE 0.882 0.008 0.334 0.363 0.004 6.554 72.792 1.112
STER 0.238 0.0028 0.083 0.111 0.0009 2.150 7.181 4× 10−6

â MLE 0.004 0.0078 0.026 0.201 − 6.886 0.438 7.1× 10−5

STER 0.0003 0.002 0.015 0.056 − 16.361 0.059 1.8× 10−5

b̂ MLE − − − − − 10.185 0.520 8.3× 10−4

STER − − − − − 24.175 0.154 0.001

AIC 386.63 677.15 471.29 499.95 410.95 391.44 393.62 389.69
CAIC 394.63 685.15 479.29 507.95 414.95 406.44 408.62 404.69
BIC 387.84 678.36 472.51 501.16 411.86 392.95 395.13 391.21

HQIC 385.29 675.82 469.97 498.62 409.95 389.78 391.96 388.04
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Table 17. The MLE and goodness-of-fit measures based on the censored sample at r = 15.

Model

Statistic BBXEx BGEx BW BGPW BEx BGuEx BEW BGLFR

γ̂1 MLE 0.396 0.012 0.208 0.311 0.002 3.244 24.801 0.431
STER 0.149 0.004 0.056 0.110 0.0007 1.374 9.259 1.3× 10−6

γ̂2 MLE 0.395 0.619 0.271 0.443 0.002 3.271 25.415 0.394
STER 0.143 0.232 0.059 0.157 0.0006 1.333 8.847 1.7× 10−6

γ̂3 MLE 0.942 0.027 0.335 0.577 0.005 7.709 60.435 1.059
STER 0.221 0.006 0.068 0.172 0.0009 2.264 5.453 2.7× 10−6

â MLE 0.004 0.004 0.034 0.151 − 6.322 0.521 7.7× 10−5

STER 0.0002 0.001 0.016 0.041 − 3.099 0.054 1.3× 10−5

b̂ MLE − − − − − 10.358 0.3264 0.002
STER − − − − − 4.942 0.088 8.9× 10−4

AIC 557.96 860.01 708.24 736.17 600.83 567.33 573.49 563.39
CAIC 561.96 864.01 712.24 740.17 603.01 573.99 580.16 570.05
BIC 560.79 862.85 711.08 738.99 602.96 570.87 577.03 566.93

HQIC 557.93 859.99 708.21 736.14 600.81 567.29 573.45 563.35

From Tables 15–17 it is observed that, the BBXEx model provides a better fit than the other
competitive models. Table 18 shows some descriptive statistics for data set II utilizing the BBXEx
distribution and its marginals.

Table 18. Some descriptive statistics for data set II.

Model ↓Measures→ Mean Variance Skewness Kurtosis Correlation

X1 165.3615 4011.2368 −0.5253 2.0475 −
X2 205.9992 5793.1260 0.1610 2.2299 −

min(X1, X2) 229.0103 4669.9687 −0.0332 2.0445 −
(X1, X2) − − 0.2394 1.0097 0.7531

According to Table 18, it is clear that the bivariate data has positively skewed with platykurtic.
Moreover, the correlation between the two random variables is positive and strong. Positive correlation
is a relationship between two variables in which both variables move in tandem that is, in the
same direction.

8. Conclusions

In this paper, we have proposed a bivariate BBX-G family of distributions, whose marginal
distributions are BX-G families. It was found that the BBX-G family is suitable of modeling positive
skewness and symmetric data sets with leptokurtic phenomena. Moreover, the stress–strength
reliability does not depend on the baseline function, but only on the family parameters. The family
parameters have been estimated using Bayesian and maximum likelihood methods based on complete
and Type-II censored samples, and it was found that the two methods performed quite well in
estimating the family parameters. The usefulness of the proposed family is illustrated by two real data
sets and it was found that the new family provides a better fit than others sub models and non-nested
models. Finally, we can say that the new family will serve as an alternative model to other models
available in the literature for modeling positive real data in many areas.
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Appendix A

1. Abbreviation Section

• PDF: Probability density function.
• CDF: Cumulative distribution function.
• BX-G: Burr X-G.
• BBX-G: Bivariate Burr X-G.
• exp-G: exponential-G.
• RF: Reliability function.
• BHRF: Bivariate hazard rate function.
• BRHRF: Bivariate reversed hazard rate function.
• BBXEx: Bivariate Burr X-exponential.
• PT2: Positivity of order two.
• RR2: Reverse rule of order two.
• MLE: Maximum likelihood estimation.
• BSE: Bayesian estimation.
• BCI: Bootstrap confidence interval.
• P-BCI: Percentile bootstrap confidence interval.
• B-TCI: Bootstrap-t Confidence Interval.
• MSE: Mean square error.
• STER: Standard error.
• MCMC: Markov chain Monte Carlo.
• L : Log-likelihood.
• AIC: Akaike information criterion.
• CAIC: Corrected AIC.
• BIC: Bayesian information criterion.
• HQIC: Hannan–Quinn information criterion.
• KS: Kolmogorov–Smirnov statistic.
• PP: Probability–Probability.
• TTT: Total time in test.

2. Preliminary Section

• Transformed–Transformer family: See [10].
• Marshall–Olkin shock model: See [35].
• Exponential-G (exp-G) family of distributions: See [36].
• Marshall–Olkin copula: See [37].
• Bivariate hazard rate function: See [44].
• Bivariate reversed hazard rate function: See [45].
• Positive quadrant dependent: See [38].
• Median correlation coefficient: See [40].
• Bivariate skewness and kurtosis: See [43].
• Local dependence function: See [46].
• Markov chain Monte Carlo technique: See [48,49,60].
• Kolmogorov and Smirnov (KS) statistics: See [53].
• Corrected (Akaike information criterion) CAIC (AIC): See [54].
• Bayesian information criterion (BIC): See [55].
• Hannan–Quinn information criterion (HQIC): See [56].
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• Credible interval algorithm: See [60,61].
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