
mathematics

Article

Digital k-Contractibility of an n-Times Iterated
Connected Sum of Simple Closed k-Surfaces and
Almost Fixed Point Property

Sang-Eon Han

Department of Mathematics Education, Institute of Pure and Applied Mathematics,
Jeonbuk National University, Jeonju-City, Jeonbuk 54896, Korea; sehan@jbnu.ac.kr; Tel.: +82-63-270-4449

Received: 22 January 2020; Accepted: 26 February 2020; Published: 4 March 2020
����������
�������

Abstract: The paper firstly establishes the so-called n-times iterated connected sum of a simple closed
k-surface in Z3, denoted by Cn

k , k ∈ {6, 18, 26}. Secondly, for a simple closed 18-surface MSS18,
we prove that there are only two types of connected sums of it up to 18-isomorphism. Besides,
given a simple closed 6-surface MSS6, we prove that only one type of MSS6]MSS6 exists up to
6-isomorphism, where ] means the digital connected sum operator. Thirdly, we prove the digital

k-contractibility of Cn
k :=

n-times︷ ︸︸ ︷
MSSk] · · · ]MSSk, k ∈ {18, 26}, which leads to the simply k-connectedness

of Cn
k , k ∈ {18, 26}, n ∈ N. Fourthly, we prove that C2

6 and Cn
k do not have the almost fixed point

property (AFPP, for short), k ∈ {18, 26}. Finally, assume a closed k-surface Sk(⊂ Z3) which is
(k, k̄)-isomorphic to (X, k) in the picture (Z3, k, k̄, X) and the set X is symmetric according to each of
xy-, yz-, and xz-planes of R3. Then we prove that Sk does not have the AFPP. In this paper given a
digital image (X, k) is assumed to be k-connected and its cardinality |X | ≥ 2.

Keywords: digital image; digital topology; (k, k̄)-isomorphism; FPP; AFPP; digital k-contractibility;
digital surface; digital connected sum; simple closed k-surface; (almost) fixed point property; iterated
connected sum
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1. Introduction

In Z3, the concept of closed k-surface was introduced in [1–3] and its digital topological
characterizations were also studied in many papers including [4–10]. Many explorations of various
properties of closed k-surfaces have been proceeded from the viewpoints of digital topology, digital
geometry, and fixed point theory [1,2,4–6,9–16]. Despite the studies of the earlier works [5–7,17,18],
given (digital) closed k-surfaces, we need to further study both the digital k-contractibility of n-times
iterated connected sums of closed k-surfaces and the non-almost fixed point property of them. Besides,
we need to find a condition determining if a digital image (X, k) in Zn has the AFPP. This approach
facilitates the studies of digital geometry and fixed point theory.

So far, there were several kinds of approaches to establish a digital k-surface [3,5–7,9]. In the
present paper we will often use the symbol “ :=” to define a new term, and given a digital image (X, k)
is assumed to be k-connected and its cardinality |X | ≥ 2. Since the digital surface theory is related
to computer science, the present paper mainly deals with digital k-surfaces X in Z3. Hence, we need
to consider a binary digital image structure (X, k, k̄) in Z3, denoted by P := (Z3, k, k̄, X), where the
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k̄-adjacency is concerned with the set Z3 \ X. To be precise, in the case of the study of a closed k-surface
X ⊂ Z3, we should assume X in the binary digital picture P. For instance,

P ∈ {(Z3, k, k̄, X) | (k, k̄) ∈ {(6, 26), (18, 6), (26, 6)}}. (1)

Let us now study a (digital) closed k-surface X with one of the above frames P of (1).
Given two closed k-surfaces Sk and S′k in Zn, the concept of digital connected sum of them

was firstly introduced in [5,7] by using several types of simple closed k-curves in Z2, k ∈ {4, 8} (see
Section 4). Hereafter, we denote by Sk a (simple) closed k-surface in Z3 (for the details, see Definition 5).
Indeed, when studying various properties of closed k-surfaces, some digital k-homotopic features of
Sk such as the k-contractibility are very important in digital surface theory.

For convenience, let MSS6 (resp. MSS18) be the minimal simple closed 6-surface (resp. the
minimal simple closed 18-surface) [6]. The present paper deals with the following queries.

(Q1) We may ask if it is possible to propose the simple closed 6-surface MSS6 in the picture
(Z3, 6, 18, MSS6) instead of (Z3, 6, 26, MSS6).
Hereafter, the operator “]” means the digital connected sum (see Section 4 for the details).
(Q2) How many types of MSS6]MSS6 exist ?

Let Cn
6 :=

n-times︷ ︸︸ ︷
MSS6] · · · ]MSS6. Then we have the following queries:

(Q3) How can we formulate Cn
6 , n ∈ N \ {1} ?

Given an MSS18, we may raise the following query.
(Q4) How many types of MSS18]MSS18 exist ?

Let Cn
18 :=

n-times︷ ︸︸ ︷
MSS18] · · · ]MSS18. Then we have the following questions:

(Q5) How can we formulate Cn
18, n ∈ N \ {1} ?

(Q6) How about the almost fixed point property (AFPP for short) of Cn
6 , n ∈ N ?

(Q7) How about the AFPP of Cn
18, n ∈ N ?

(Q8) What are some properties relating to the AFPP of a closed k-surface in Z3.

The rest of the paper is organized as follows: Section 2 refers to some notions involving a digital
k-surface and a connected sum of two digital k-surfaces. Section 3 stresses some utilities of the
minimal simple closed surfaces MSS6, MSS18, MSS′18, and MSS′26 from the viewpoints of digital
curve and digital surface theory. Section 4 shows several types of n-times iterated connected sums
of the minimal simple closed 6-surfaces, e.g., C3

6 := MSS6]MSS6]MSS6. Section 5 proves that there
are only two types of connected sums MSS18]MSS18 up to 18-isomorphism. Besides, in the case of
MSS18]MSS18 6= MSS18, we prove that only one type of C3

18 := MSS18]MSS18]MSS18 exists up to
18-isomorphism. Section 6 intensively explores the 18-contractibility of an n-times iterated connected

sum of simple closed 18-surfaces Cn
18 :=

n-times︷ ︸︸ ︷
MSS18] · · · ]MSS18. Section 7 proves that both C2

6 and Cn
k do

not have the almost fixed point property, k ∈ {18, 26}, n ∈ N. Thus, these approaches play important
roles in digital topology, digital geometry, fixed point theory, and so on. Section 8 concludes the paper
with some remarks.

2. Basic Notions Involving Digital k-Surfaces and Connected Sums of Closed k-Surfaces

Let us now recall some terminology from digital curve and digital surface theories. Let N and Z
represent the sets of natural numbers and integers, respectively.

We call a set X(⊂ Zn) with a k-adjacency a digital image, denoted by (X, k) [4,5,7,9,10].
In particular, in digital surface theory, we are absolutely required to consider a closed k-surface (X, k)
with a k-adjacency in a binary digital picture (Zn, k, k̄, X) [19,20], where n ∈ N and the k̄-adjacency
is concerned with the set Zn \ X. In order to study (X, k) in Zn, n ≥ 1, we need the k-adjacency
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relations of Zn which are generalizations of the commonly used k-adjacency of Z2, k ∈ {4, 8}, and
k-adjacency of Z3, k ∈ {6, 18, 26}. As a generalization of this approach into those of Zn, a paper [17]
firstly established the digital k-connectivity of Zn, as follows: We say that distinct points p, q ∈ Zn are
k-(or k(t, n)-)adjacent if they satisfy the following property [17] (for the details, see also [21,22]).

For a natural number t, 1 ≤ t ≤ n, we say that distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn,

are k(t, n)-(k-, for short)adjacent if (2)

at most t of their coordinates differs by ± 1, and all the others coincide.

These k(t, n)-adjacency relations of Zn are determined according to the number t ∈ N [17]
(see also [21,22]). Using the statement of (2), the k-adjacency relations of Zn are obtained [17] (see
also [21,22]), as follows

k := k(t, n) =
t

∑
i=1

2iCn
i , where Cn

i =
n!

(n− i)! i!
. (3)

For instance, [7,22]

(n, t, k) ∈


(3, 1, 6), (3, 2, 18), (3, 3, 26);

(4, 1, 8), (4, 2, 32), (4, 3, 64), (4, 4, 80);

(5, 1, 10), (5, 2, 50), (5, 3, 130), (5, 4, 210), (5, 5, 242).


A digital image (X, k) in Zn can indeed be considered to be a set X(⊂ Zn) with one of the

k-adjacency relations of (3). Using the k-adjacency relations of Zn of (3), we say that a digital
k-neighborhood of p in Zn is the set [20]

Nk(p) := {q | p is k-adjacent to q} ∪ {p}.

Furthermore, we often use the notation [19]

N∗k (p) := Nk(p) \ {p}.

For a, b ∈ Z with a � b, the set [a, b]Z = {n ∈ Z | a ≤ n ≤ b} with 2-adjacency is called a digital
interval [19]. Let us now recall some terminology and notions [17,19] which are used in this paper.

• It is natural to say that a digital image (X, k) is k-disconnected if there are nonempty sets X1, X2 ⊂
X such that X = X1 ∪ X2, X1 ∩ X2 = ∅ and further, there are no points x1 ∈ X1 and x2 ∈ X2 such
that x1 and x2 are k-adjacent.

• We say that a digital image (X, k) is k-connected (or k-path connected) if it is not k-disconnected.
Owing to this approach, we see that a singleton subset of (X, k) is obviously k-connected.

• Given a k-connected digital image (X, k) whose cardinality is greater than 1, the so-called k-path
with l + 1 elements in Zn is assumed to be a finite sequence (xi)i∈[0,l]Z ⊂ Z

n such that xi and xj
are k-adjacent if | i− j | = 1 [19]. Eventually, in the case that a digital image (X, k) is k-connected,
for any distinct points such as x, y in (X, k), we see that there is a k-path (xi)i∈[0,l]Z ⊂ X such that
x = x0 and y = xl .

• For a digital image (X, k), the k-component of x ∈ X is defined to be the maximal k-connected
subset of (X, k) containing the point x [19].

• We say that a simple k-path means a finite set (xi)i∈[0,m]Z
⊂ Zn such that xi and xj are k-adjacent if

and only if | i− j | = 1 [19]. In the case of x0 = x and xm = y, we denote the length of the simple
k-path with lk(x, y) := m.
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• A simple closed k-curve (or simple k-cycle) with l elements in Zn, denoted by SCn,l
k [17,19],

l ≥ 4, l ∈ N0 \ {2}, N0 is the set of even natural numbers, means the finite set (xi)i∈[0,l−1]Z ⊂ Z
n

such that xi and xj are k-adjacent if and only if | i− j | = ±1(mod l).
• For a digital image (X, k), a digital k-neighborhood of x0 ∈ X with radius ε is defined in X as the

following subset [17] of X

Nk(x0, ε) := {x ∈ X | lk(x0, x) ≤ ε} ∪ {x0}, (4)

where lk(x0, x) is the length of a shortest simple k-path from x0 to x and ε ∈ N. For instance, for
X ⊂ Zn, we obtain [17]

Nk(x, 1) = Nk(x) ∩ X. (5)

For a digital image (X, k), since X is a subset of Zn, if it is assumed as a subspace of the
typical n-dimensional Euclidean topological space, it can naturally be a discrete topological subspace.
However, as mentioned above, since a digital image (X, k) with the digital k-connectivity (see (3)) is a
kind of a digital graph in Zn, the paper [17] already established another metric for (X, k). Eventually,
the sets of (4) and (5) can be represented by using this metric on X derived from (X, k). The important
thing is that this metric is different from the typical Euclidean metric. Indeed, a paper [17] firstly
established the metric using the “length of a shortest simple k-path from x0 to x” for two points x0, x
in (X, k). Owing to the length of a shortest k-path in (4), we prove that a k-connected digital image
(X, k) can be considered to be a metric space, as follows:

Let us consider the map dk on a k-connected (or k-path connected) digital image (X, k) defined by

dk : (X, k)× (X, k)→ N∪ {0}

such that

dk(x, x′) :=

{
lk(x, x′), if x 6= x′;

0, if x = x′.

}
(6)

Owing to (6), we can see that dk(x, x′) ≥ 1 if x 6= x′ and further, we obviously see that the function
dk satisfies the metric axioms. Thus, we can represent the set Nk(x0, ε) of (4) in the following way

Nk(x0, ε) = {x ∈ X| dk(x0, x) ≤ ε}. (7)

Consequently, we can represent the set of (5), as follows:

Nk(x0, 1) = {x ∈ X| dk(x0, x) ≤ 1}. (8)

Rosenfeld [23] defined the notion of digital continuity of a map f : (X, k0) → (Y, k1) by saying
that f maps every k0-connected subset of (X, k0) into a k1-connected subset of (Y, k1).

Motivated by this approach, using the set of (5) or (8), we can represent the digital continuity of a
map between digital images by using a digital k-neighborhood (see Proposition 1 below). Due to this
approach, we have strong advantages of calculating digital fundamental groups of digital images (X, k)
in terms of the unique digital lifting theorem [17], the digital homotopy lifting theorem [24], a radius
2-(k0, k1)-isomorphism and its applications [24], the study of multiplicative properties for a digital
fundamental group [25,26], a Cartesian product of the covering spaces [26], and so on, as follows:

Proposition 1. [17,18] Let (X, k0) and (Y, k1) be digital images in Zn0 and Zn1 , respectively. A function
f : (X, k0) → (Y, k1) is (digitally) (k0, k1)-continuous if and only if for every x ∈ X f (Nk0(x, 1)) ⊂
Nk1( f (x), 1).
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In Proposition 1, in the case n0 = n1 and k := k0 = k1, the map f is called a ‘k-continuous’
map. Since an n-dimensional digital image (X, k) is considered to be a set X in Zn with one of the
k-adjacency relations of (3) (or a digital k-graph [27]), regarding a classification of n-dimensional digital
images, we prefer the term a (k0, k1)-isomorphism (or k-isomorphism) as in [27] (see also [18]) to a
(k0, k1)-homeomorphism (or k-homeomorphism) as in [28].

Definition 1. [27] (see also a (k0, k1)-homeomorphism in [28]) Consider two digital images (X, k0) and
(Y, k1) in Zn0 and Zn1 , respectively. Then a map h : X → Y is called a (k0, k1)-isomorphism if h is a
(k0, k1)-continuous bijection and further, h−1 : Y → X is (k1, k0)-continuous. Then we use the notation
X ≈(k0,k1)

Y. Besides, in the case k := k0 = k1, we use the notation X ≈k Y.

The following notion of interior is often used in establishing a digital connected sum of digital
closed k-surfaces.

Definition 2. [5] Let c∗ := (x0, x1, · · · , xn) be a closed k-curve in (Z2, k, k̄, c∗). A point x of c∗, the
complement of c∗ in Z2, is said to be interior to c∗ if it belongs to the bounded k̄-connected component of c∗.

The following digital images MSC∗8 , MSC∗4 , and MSC′∗8 in Z2 [5,6,17] have essentially been used
in establishing a connected sum and studying the digital fundamental group of a digital connected
sum of closed k-surfaces. Thus we now recall them.

(?) MSC∗8 := MSC8 ∪ Int(MSC8) [6], where MSC8 is a digital image 8-isomorphic to the digital image,
MSC8 := SC2,6

8 := {c0 = (0, 0), c1 = (1, 1), c2 = (1, 2), c3 = (0, 3), c4 = (−1, 2), c5 = (−1, 1)}.
(?) MSC∗4 := MSC4 ∪ Int(MSC4) [6], where MSC4 is a digital image 4-isomorphic to the digital image,
MSC4 := SC2,8

4 := {v0 = (0, 0), v1 = (1, 0), v2 = (2, 0), v3 = (2, 1), v4 = (2, 2), v5 = (1, 2), v6 =

(0, 2), v7 = (0, 1)}.
(?) MSC′∗8 := MSC′8 ∪ Int(MSC′8) [6], where MSC′8 is a digital image 8-isomorphic to the digital
image, MSC′8 := SC2,4

8 := {w0 = (0, 0), w1 = (1, 1), w2 = (0, 2), w3 = (−1, 1)}.

Based on the pointed digital homotopy in [29] (see also [28]), the following notion of k-homotopy
relative to a subset A ⊂ X is often used in studying k-homotopic properties of digital images (X, k) in
Zn. For a digital image (X, k) and A ⊂ X, we often call ((X, A), k) a digital image pair.

Definition 3. [17,24,28] Let ((X, A), k0) and (Y, k1) be a digital image pair and a digital image in Zn0 and
Zn1 , respectively. Let f , g : X → Y be (k0, k1)-continuous functions. Suppose there exist m ∈ N and a function
H : X× [0, m]Z → Y such that

• for all x ∈ X, H(x, 0) = f (x) and H(x, m) = g(x);
• for all x ∈ X, the induced function Hx : [0, m]Z → Y given by

Hx(t) = H(x, t) for all t ∈ [0, m]Z is (2, k1)-continuous;
• for all t ∈ [0, m]Z, the induced function Ht : X → Y given by Ht(x) = H(x, t) for all x ∈ X is

(k0, k1)-continuous.
Then we say that H is a (k0, k1)-homotopy between f and g [28].

• Furthermore, for all t ∈ [0, m]Z, assume that the induced map Ht on A is a constant which follows the
prescribed function from A to Y [17] (see also [5]). To be precise, Ht(x) = f (x) = g(x) for all x ∈ A and
for all t ∈ [0, m]Z.

Then we call H a (k0, k1)-homotopy relative to A between f and g, and we say that f and g are
(k0, k1)-homotopic relative to A in Y, f '(k0,k1)rel.A g in symbols [17].

In Definition 3, if a k-continuous map f : X → X is k-homotopic to a certain constant map
c{x0}, x0 ∈ X, then we say that f is (pointed) k-null homotopic in (X, k) [28]. In Definition 3, if
A = {x0} ⊂ X, then we say that F is a pointed (k0, k1)-homotopy at {x0} [28]. When f and g are
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pointed (k0, k1)-homotopic in Y, we use the notation f '(k0,k1)
g. In the case k := k0 = k1 and n0 = n1,

f and g are said to be pointed k-homotopic in Y and we use the notation f 'k g and f ∈ [g] which
denotes the k-homotopy class of g. If, for some x0 ∈ X, 1X is k-homotopic to the constant map in the
space X relative to {x0}, then we say that (X, x0) is pointed k-contractible [28]. Indeed, motivated by
this approach, the notion of strong k-deformation retract was developed in [30].

Based on this k-homotopy, the notion of digital homotopy equivalence was firstly introduced
in [31] (see also [32]), as follows:

Definition 4. [31] (see also [32]) For two digital images (X, k) and (Y, k) in Zn, if there are k-continuous
maps h : X → Y and l : Y → X such that the composite l ◦ h is k-homotopic to 1X and the composite h ◦ l is
k-homotopic to 1Y, then the map h : X → Y is called a k-homotopy equivalence and is denoted by X 'k·h·e Y.
Besides, we say that (X, k) is k-homotopy equivalent to (Y, k). In the case that the identity map 1X is k-homotopy
equivalent to a certain constant map c{x0}, x0 ∈ X, we say that (X, k) is k-contractible.

In Definition 4, in the case X 'k·h·e Y, we say that (X, k) is the same k-homotopy type as
(Y, k). In view of Definitions 3 and 4, we obviously see that the pointed k-contractibility implies the
k-contractibility, the converse does not hold. Let (X, k) be k-contractible. Then it is obvious that any
k-loop in (X, k) is k-null homotopic in (X, k).

The digital k-fundamental group is induced from the pointed k-homotopy [28]. For a given
digital image (X, k), by using several notions such as digital k-homotopy class [29], Khalimsky
operation of two k-homotopy classes [29], trivial extension [28], the paper [28] defined the digital
k-fundamental group, denoted by πk(X, x0), x0 ∈ X. Indeed, in digital topology there are several kinds
of digital fundamental groups [33]. In addition, we have the following: If X is pointed k-contractible,
then πk(X, x0) is a trivial group [28]. Hereafter, we shall assume that each digital image (X, k) is
k-connected.

Using the unique digital lifting theorem [17] and the homotopy lifting theorem [24] in digital
covering theory [4,17,18,25,26], for a non-k-contractible space SCn,l

k , we obtain the following:

Theorem 1. [17] For a non-k-contractible SCn,l
k , πk

1(SCn,l
k ) is an infinite cyclic group.

Namely, for an SCn,l
k , l ≥ 6, it turns out that πk

1(SCn,l
k ) is an infinite cyclic group. Regarding

Theorem 1, we see that SCn,4
3n−1 has the trivial group, n ≥ 2 [24,28] and further, SC2,4

4 also has the trivial
group because SC2,4

4 is 4-contractible (see a certain idea from Example 1 below).

The following are proven in [5,7,17,18,28].

• MSC8 := SC2,6
8 is not 8-contractible and MSC4 := SC2,8

4 is not 4-contractible either [5,17].
• MSC′8 are 8-contractible [5,7,28].
• Due to Theorem 1, it turns out that SCn,l

k is not k-contractible if l ≥ 6.

In particular, both the non-8-contractibility of MSC8 and the non-4-contractibility of MSC4 play
important roles in formulating a connected sum of two closed k-surfaces (see Section 4 for the details).

Whereas SC3,6
6 itself is not 6-contractible (see Theorem 1), identity map 1SC3,6

6
is 6-null homotopic

in (I3, 6), where SC3,6
6 ⊂ I3. To be precise, we obtain the following:

Example 1. Let us consider SC3,6
6 := (ci)i∈[0,5]Z embedded in (I3, 6) (see Figure 1), where c0 := (0, 0, 0), c1 :=

(0, 0, 1), c2 := (0, 1, 1), c3 := (−1, 1, 1, ), c4 := (−1, 1, 0), c5 := (−1, 0, 0). It is obvious that SC3,6
6 itself is
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not 6-contractible (see Theorem 1) because its 6-fundamental group is an infinite cyclic group [17]. However,
identity map 1SC3,6

6
is clearly 6-null homotopic in (I3, 6) (see Figure 1). To be specific, consider the map

H : SC3,6
6 × [0, 3]Z → (I3, 6)

such that for x ∈ SC3,6
6 

H(x, 0) = x, i.e., H(x, 0) = 1SC3,6
6
(x);

H(x, 1) = {c0, c1, d1, c5} by using the mappings

c0 → c0, {c1, c2} → {c1}, c3 → d1 and {c4, c5} → {c5};
H(x, 2) = {c0, c5} in terms of the mappings

{c0, c1, c2} → {c0} and {c3, c4, c5} → {c5},
i.e., c3 → c5 via c3 → d1 → c5; and

H(x, 3) = {c0}, x ∈ SC3,6
6 , i.e., H(x, 3) = c{c0}(x).


Then we see that the map H is a 6-homotopy making 1SC3,6

6
6-null homotopic in (I3, 6).

c


c


c


c
c
3


5


1


4


2


c
0


d
1


Figure 1. Configuration of the pointed 6-null homotopic of 1SC3,6
6

in (I3, 6).

In view of Example 1, we observe that SC3,6
6 is not 6-contractible in itself because its digital

6-fundamental group is an infinite cyclic group (see Theorem 1, for the details, see [4,17]).

Remark 1. The digital image (I3, 6) is 6-contractible (see [34]).

Hereafter, we denote the n-dimensional digital cube (or digital n-cube) with

In :=
n

∏
i=1

[xi, xi + 1]Z ⊂ Zn, n ∈ N.

Based on the 6-contractibility of (I3, 6) (see [34]), using a similar method as the proof of it (see
Remark 2 of [8]), it is obvious that (In, k) is pointed k-contractible for any k-adjacency of Zn, where the
k-adjacency is that of (3) according to the dimension “n”.

Let us now examine if a k-isomorphism preserves a k-homotopy between two k-continuous maps.

Theorem 2. A k-isomorphism preserves a k-homotopy.

Proof. Given two spaces X := (X, k), Y := (Y, k) in Zn, consider two k-continuous functions f , g :
X → Y, relating to a k-homotopy F : X × [a, b]Z → Y, i.e., f 'k g. Besides, further assume two
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k-isomorphisms h1 : X → X′ and h2 : Y → Y′, where (X′, k) and (Y′, k) are considered in Zn. Then, it
is clear that the two composites

h2 ◦ f ◦ h−1
1 and h2 ◦ g ◦ h−1

1

are also k-continuous maps from X′ to Y′. Based on the given k-homotopy and the two k-isomorphisms
h1 and h2, we now define the new map

G := h2 ◦ F ◦ h−1
1 : X′ × [a, b]Z → Y′.

Then, we obtain the following:

(1) for all x′ ∈ X′, G(x′, a) = h2 ◦ f ◦ h−1
1 (x′) and G(x′, b) = h2 ◦ g ◦ h−1

1 (x′);
(2) for all x′ ∈ X′, the induced function Gx′ : [a, b]Z → Y′ defined by Gx′(t) := G(x′, t) for all

t ∈ [a, b]Z is k-continuous;
(3) for all t ∈ [a, b]Z, the induced function Gt : X′ → Y′ defined by Gt(x′) := G(x′, t) for all x′ ∈ X′

is k-continuous.

Thus we have a conclusion that G is a k-homotopy between h2 ◦ f ◦ h−1
1 and h2 ◦ g ◦ h−1

1 .

Corollary 1. A k-isomorphism preserves the k-contractibility.

Proof. In Theorem 2, consider a k-contractible space (X, k) such that X 'k·h·e {x0} for some point
x0 ∈ X. Then, after replacing f (resp. g) by 1X (resp. the constant map c{x0}), we prove the assertion.

Corollary 2. A k-isomorphism preserves the pointed k-contractibility.

Proof. In Theorem 2 and Corollary 1, consider a pointed k-contractible space (X, k) such that 1X is
k-homotopic to the constant map in the space {x0} relative to {x0}. After replacing f (resp. g) with 1X
(resp. the constant map c{x0}), we complete the proof.

Using a method similar to the proof of Theorem 2, we obtain the following:

Corollary 3. A (k0, k1)-isomorphism preserves a (k0, k1)-homotopy equivalence.

3. Utilities of the Minimal Simple Closed 6-, 18- and 26-Surfaces; MSS6, MSS18, MSS′18, MSS′26

This section stresses some utilities of the minimal simple closed 6-, 18-, 26-surfaces, e.g., MSS6,
MSS18, MSS′18, MSS′26 [6] from the viewpoints of digital surface and digital homotopy theory. Indeed,
these models for simple closed k-surfaces play important roles in digital homotopy theory, digital
surface theory, and fixed point theory. Furthermore, these have been used in formulating connected
sums of some simple closed k-surfaces, k ∈ {6, 18, 26} [5–7]. Besides, these were essentially used in
proceeding with geometric realizations of digital k-surfaces [7,8].

In order to study closed k-surfaces in Zn, let us recall some terminology from digital surface
theory, as follows: A point x ∈ (X, k) is called a k-corner if x is k-adjacent to two and only two points y,
z ∈ X such that y and z are k-adjacent to each other [2]. The k-corner x is called simple if y, z are not
k-corners and if x is the only point k-adjacent to both y, z. (X, k) is called a generalized simple closed
k-curve if what is obtained by removing all simple k-corners of X is a simple closed k-curve [2,9]. For a
k-connected digital image (X, k) in X ⊂ Z3, we recall [1,2,6]

|X|x := N26(x, 1) \ {x}. (9)

In general, for a k-connected digital image (X, k) in Zn, n ≥ 3, we can state [7]

|X|x := N3n−1(x, 1) \ {x}. (10)
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Hereafter, for a k-surface in Zn, n ∈ N \ {1, 2} [5,6], we call the set |X|x of (9) the minimal (3n −
1)-adjacency neighborhood of x in X.

We say that two subsets, (A, k) and (B, k) of (X, k), are k-adjacent if A ∩ B = ∅ and there are
points a ∈ A and b ∈ B such that a and b are k-adjacent [19]. In particular, in the case that B is a
singleton, say B = {x}, we say that A is k-adjacent to x.

Papers [5–7] introduced the notion of a closed k-surface in Zn, n ≥ 3 and various properties of it.
However, in the present paper, we will stress the study of closed k-surfaces in Z3 with the following
approach in [3,9,10].

Definition 5. [3,10] Let (X, k) be a digital image in Z3, and X := Z3 \ X. Then, X is called a closed k-surface
if it satisfies the following.
(1) In the case (k, k̄) ∈ {(26, 6), (6, 26)}, for each point x ∈ X,

(a) |X|x has exactly one k-component k-adjacent to x;
(b) |X|x has exactly two k̄-components which are k̄-adjacent to x; we denote by Cx x and Dx x these two

components; and
(c) for any point y ∈ Nk(x) ∩ X (or Nk(x, 1) in (X, k)), Nk̄(y) ∩ Cx x 6= φ and Nk̄(y) ∩ Dx x 6= φ.
Furthermore, if a closed k-surface X does not have a simple k-point, then X is called simple.

(2) In the case (k, k̄) = (18, 6),
(a) X is k-connected,
(b) for each point x ∈ X, |X|x is a generalized simple closed k-curve.

Furthermore, if the image |X|x is a simple closed k-curve, then the closed k-surface X is called simple.

Hereafter, we denote by MSSk a minimal simple closed k-surface in Z3 (see Figure 2). Furthermore,
we recall the following closed k-surfaces, k ∈ {6, 18, 26} [5]:

Remark 2. (1) MSS6 ≈6 [−1, 1]3Z \ {03}, where 03 := (0, 0, 0). Then, MSS6 is the minimal simple closed
6-surface which is not 6-contractible (see Figure 2c). Namely, we obtain the digital picture (Z3, 6, 26, MSS6)

according to (1).
(2) MSS′18 ≈18 {p ∈ Z3 | d(p, 03) = 1}, where d is the typical Euclidean distance in R3. Thus we obtain the
digital picture (Z3, 18, 6, MSS′18) according to (1).
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Figure 2. (a) MSS18 [5,6]: (b) MSS′18 = MSS′26 [5,6]; (c) MSS6 [5].

Papers [5,6] indeed stated that MSS′18 is 18-contractible and it is the minimal simple closed
18-surface. Besides, a paper [5] proved the simply 18-connectedness of MSS′18 and MSS18. In addition,
we see that MSS6 is simply 6-connected [6,8].

Let us further recall two simple closed k-surface, k ∈ {18, 26}, as follows:

• MSS18 ≈18 (MSC8 × {1}) ∪ (Int(MSC8) × {0, 2}) [5,6]. Thus we obtain the digital picture
(Z3, 18, 6, MSS18) according to (1).

• MSS′26 := MSS′18 which is 26-contractible [5,6] and is the minimal simple closed 26-surface (see
Figure 2b). Finally, we obtain the binary digital picture (Z3, 26, 6, MSS′26) according to (1). Besides,
we recall the following:
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Remark 3. [8] MSS18 is pointed 18-contractible.

Proposition 2. If given a digital image (X, k) is not k-connected, then it is not k-contractible.

Proof. Owing to the second property of Definition 3, the assertion is proved.

• (Correction) In the Figure 4c of [35], the given K-topological space (Z, κ2
Z) should be referred to as

“non-K-retractible” instead of “K-retractible”.

4. Several Types of Models for Cn
6 :=

n-times︷ ︸︸ ︷
MSS6] · · · ]MSS6

From now on we denote a (simple) closed k-surface in Z3 with Sk, k ∈ {6, 18, 26}, which will be
used in this paper. In particular, we will mainly consider an Sk, k ∈ {6, 18, 26} in the picture as referred
to in (1), i.e.,

{(Z3, 26, 6, S26), (Z3, 18, 6, S18), (Z3, 6, 26, S6)}. (11)

Definition 6. [5] In Z3, let Sk0 (resp. Sk1) be a closed k0-(resp. a closed k1-)surface, where k0 = k1 ∈
{6, 18, 26}.

• Consider A′k0
⊂ Ak0 ⊂ Sk0 and take Ak0 \ A′k0

⊂ Sk0 , where Ak0 ≈(k0,4) MSC∗4 or Ak0 ≈(k0,8) MSC∗8 ,
or Ak0 ≈(k0,8) MSC′∗8 , and further, A′k0

≈(k0,4) Int(MSC4) or A′k0
≈(k0,8) Int(MSC8), or A′k0

≈(k0,8)
Int(MSC′8), respectively.

• Let f : Ak0 → f (Ak0) ⊂ S′k1
be a (k0, k1)-isomorphism. Remove A′k0

and f (A′k0
) from Sk0 and Sk1 ,

respectively.
• Identify Ak0 \ A′k0

and f (Ak0 \ A′k0
) by using the (k0, k1)-isomorphism f . Then, the quotient space

S′k0
∪ S′k1

/ ∼ is obtained by i(x) ∼ f (x) ∈ S′k1
for x ∈ Ak0 \ A′k0

and is denoted by Sk0]Sk1 , where
S′k0

= Sk0 \ A′k0
, S′k1

= Sk1 \ f (A′k0
), and the map i : Ak0 \ A′k0

→ S′k0
is the inclusion map.

Owing to Definition 6, Sk0]Sk1 is obtained in Z3. Besides, the digital topological type of Sk0]Sk1

absolutely depends on the choice of the subset Ak0 ⊂ Sk0 [7]. Furthermore, the k-adjacency of Sk0]Sk1

is required as follows:

Remark 4. [5] In the quotient space Sk0]Sk1 := S′k0
∪ S′k1

/ ∼, the subsets A := S′k0
\ (Ak0 \ A′k0

) and
B := S′k1

\ f (Ak0 \ A′k0
) in Sk0]Sk1 are assumed to be disjoint and there are no points x ∈ A and x′ ∈ B such

that x and x′ are k-adjacent, where k := k0 = k1. Then, the digital image (Sk0]Sk1 , k) is called a (digital)
connected sum of Sk0 and Sk1 .

As mentioned in Remark 4, the requirement involving the k-adjacency of (Sk0]Sk1 , k) in Z3 plays
an important role in studying connected sums of closed ki-surfaces, i ∈ {0, 1}, k = ki. Indeed, it turns
out that [8] (Sk]S′k, k) is also a closed k-surface in the picture (Z3, k, k̄, Sk]S′k), where Sk and S′k are
closed k-surfaces in the pictures (Z3, k, k̄, Sk) and (Z3, k, k̄, S′k), respectively.

This section explores several methods of formulating the digital connected sums MSS6]MSS6,
MSS18]MSS18 and an n-times iterated connected sum of MSS6 and that of MSS18.

At the moment, let us recall the previously-mentioned queries in Section 1:

(Q1) After replacing (6, 26) in Definition 5(1) with (6, 18), we may ask if it is possible to propose the
simple closed 6-surface MSS6 in the picture (Z3, 6, 18, MSS6) instead of (Z3, 6, 26, MSS6) .
This query is a reminder of the importance of the k̄-adjacency of Z3 \ Sk of a simple closed k-surface Sk
in the picture (Z3, k, k̄, Sk).
(Q2) Given the MSS6, how many models for MSS6]MSS6 exist ?
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Let Cn
6 :=

n-times︷ ︸︸ ︷
MSS6] · · · ]MSS6. Then we also have the following question:

(Q3) How can we formulate Cn
6 , n ∈ N \ {1} ?

To address these queries, we now study some properties of MSS6 and Cn
6 . First of all, let us

represent the question (Q1), as follows:
Unlike the three cases of (1), we may ask if there are other binary relations (6, k̄) for MSS6,

k̄ ∈ {6, 18}.

Remark 5. Regarding the question (Q1), we have a negative answer.

Proof. Consider the point indicated by the number “3” in Figure 2c. Since the set |MSS6 |3 does not
satisfy the properties of Definition 5(b) and (c), we cannot consider the picture (Z3, 6, 18, MSS6) for the
simple closed 6-surface MSS6.

Similarly, using a method similar to the above approach, we cannot take the picture
(Z3, 6, 6, MSS6) for MSS6.

To address the above question (Q2), we have the following:

Lemma 1. Given an MSS6, the only one type of MSS6]MSS6 exists up to 6-isomorphism.

Proof. In order to formulate MSS6]MSS6, we should follow Definition 6 and Remark 4. In this
situation, it is obvious that we obtain six cases of MSS6]MSS6 (see one of the cases in Figure 3a) which
are 6-isomorphic to each other. Regarding the establishment of a connected sum MSS6]MSS6, suppose
some possibility of taking one of the points indicated by the numbers “8” or “7” in Figure 3a except
the above-mentioned six points of MSS6, e.g., the point p of Figure 3b. Then we have a contradiction
to Remark 4. Hence we have the only one type of MSS6]MSS6 as suggested in Figure 3a up to
6-isomorphism.

Regarding the question (Q3), we obtain the following:

Theorem 3. In the case of Cn
6 , n ∈ N \ {1, 2}, many types of models for Cn

6 exist.

Proof. Let us formulate C3
6 := MSS6]MSS6]MSS6. As shown in Figure 3b, take a certain subset of

MSS6 which is (6, 4)-isomorphic to the set MSC∗4 , e.g., the set (ci)i∈[0,7]Z ∪ {p} in MSS6 (Figure 3b).
Depending on the choice of the corresponding part in MSS6]MSS6 (see Figure 3b), e.g., (1), (2), (3),
and (4) in Figure 3b, we have different types of shapes for C3

6 := MSS6]MSS6]MSS6. To be precise,
if we follow Case (1) in Figure 3b, after deleting the two points p and d10 in Figure 3b, we obtain C3

6
by identifying the two sets {ci| i ∈ [0, 7]Z} and {d27, d11, d21, d22, d23, d9, d29, d28} (see the method of
Definition 6).

If we follow Case (2) in Figure 3b, after deleting the two points p and d13 in Figure 3b, we obtain
C3

6 by identifying the two sets {ci| i ∈ [0, 7]Z} and {d12, d19, d20, d15, d14, d23, d22, d21} (see the method
of Definition 6).

Using a method similar to these two approaches, after following Cases (3) and (4), we can also
obtain C3

6 . Then we observe some different shapes between the C3
6 established via (2) and those

formulated via (1) or (3). As a generalization of C3
6 , we obviously obtain several types of models for

Cn
6 , n ∈ N \ {1, 2}.

Motivated by Theorem 1 of [8], we obtain the following:

Remark 6. [7] Given a closed 6-surface S6 in the picture (Z3, 6, 26, S6), we obtain that S6]MSS6 is a simple
closed 6-surface in the picture (Z3, 6, 26, S6]MSS6).
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Figure 3. (a) Process of constructing MSS6]MSS6 [5]; (b) Configuration of C3
6 := MSS6]MSS6]MSS6.

5. Existence of Only Two Types of Cn
18 :=

n-times︷ ︸︸ ︷
MSS18] · · · ]MSS18, n ≥ 2

This section proves an existence of only two types of Cn
18 :=

n-times︷ ︸︸ ︷
MSS18] · · · ]MSS18, n ≥ 2. When

establishing Cn
18, we assume Cn

18 := Cn−1
18 ]MSS18, n ≥ 2. Before studying Cn

18, n ≥ 2, we now investigate
some properties of MSS18 involving a choice of a suitable digital picture for MSS18.

Remark 7. Using a similar method as that of Remark 5, we obtain the following:
(1) The set MSS18 cannot be a simple closed 18-surface in the picture (Z3, 18, 18, MSS18).
(2) The set MSS′26 cannot be a simple closed 26-surface in the picture (Z3, 26, 18, MSS′26).

Based on the digital connected sums of MSS6, MSS18, MSS′18, and MSS′26 introduced [5], in order
to study them more systematically, we need to address the following query.

(Q4) Given an MSS18, how many types of MSS18]MSS18 exist ?

Let Cn
18 :=

n-times︷ ︸︸ ︷
MSS18] · · · ]MSS18. Then we have the following question:

(Q5) How can we formulate Cn
18, n ∈ N \ {1} ?

Based on the establishment of MSS18]MSS18 in [5,7], we need to address the query of (Q4),
as follows:

Theorem 4. Given an MSS18, we obtain the following:
(1) Only two types of MSS18]MSS18 exist up to 18-isomorphism.
(2) In the case of Cn

18, n ∈ N \ {1, 2}, only two methods are admissible in establishing Cn
18 up to 18-isomorphism.
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Proof. First of all, we need to ask if there is a certain possibility of taking a set A18(⊂ MSS18) which is
respectively (18, 4)- and (18, 8)-isomorphic to MSC∗4 and MSC∗8 , or MSC′∗8 (see Definition 6). Then we
can recognize that there are only six subsets in MSS18 satisfying this requirement, such as (see the set
in Figure 4a) 

(1){c0, c1, c2, c3, c4, c5, c8, c9}, {ci | i ∈ [0, 7]Z},
(2){c0, c1, c2, c3, c6, c7, c8, c9}, {c0, c6, c7, c3, c4, c5, c8, c9},
(3){c2, c7, c4, c8, c3}, {c1, c6, c5, c9, c0}.

 (12)

According to these considerations of (12), we now consider two cases, as follows:

(Case 1) Based on the cases of (12) (1)–(2), in the case that we follow the method suggested in Figure 4a,
we obtain MSS18]MSS18 = MSS18 [5]. Eventually, if we take this process for obtaining Cn

18, then we
have Cn

18 = MSS18.
(Case 2) Based on the cases of (12) (3), according to the method suggested in Figure 4b, i.e., in the
case MSS18]MSS18 6= MSS18, we now prove that there is only one type of MSS18]MSS18 up to
18-isomorphism. To be precise, after identifying two sets denoted by the set {1, 2, 3, 4} of MSS18 (see
Figure 4b), we obtain MSS18]MSS18. Hence, we have only one way to proceed to MSS18]MSS18

as proposed in Figure 4b up to 18-isomorphism. Eventually, we uniquely obtain Cn
18 in terms of

Cn
18 := Cn−1

18 ]MSS18.
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Figure 4. Explanation of the only two types of MSS18]MSS18 in terms of the processes via (a) or (b) [5].

Remark 8. When constructing MSS18]MSS′18, we only take the part suggested in (12) (3) so that we obtain
MSS18]MSS′18 = MSS18 [5].

As mentioned in [5], we obtain the following:

Corollary 4. (1) For a simple closed 18-surface S18, MSS′18]S18 is a simple closed 18-surface.
(2) MSS′18]MSS′18 = MSS′18 [7].
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6. Digital 18-Contractibility of Cn
18 and Simply k-Connectedness of Cn

k , k ∈ {6, 18, 26}

This section explores the digital 18-contractibility of Cn
18 and the simply k-connectedness of

Cn
k , k ∈ {6, 18, 26}. Hereafter, we consider the process Cn

18 := Cn−1
18 ]MSS18 and assume the case

MSS′18]MSS18 6= MSS18. As stated in the proof of Theorem 4, we obtain the following:

Lemma 2. In case C2
18 := MSS18]MSS18 6= MSS18, C3

18 = C2
18]MSS18 uniquely exists up to 18-isomorphism.

Definition 7. [17] For a k-connected digital image (X, k), if πk
1(X) trivial, then we say that (X, k) is

simply k-connected.

Lemma 3. [4–6,8] Each of π6
1(MSS6), π18

1 (MSS18), π18
1 (MSS′18), and π26

1 (MSS′26) is trivial.

Proof. First of all, we see that the 6-fundamental group of MSS6 is a trivial group [8]. Next, we
see that each of MSS18 and MSS′18 is 18-contractible and further, MSS′26 is 26-contractible, the proof
is completed.

Proposition 3. A simple closed 6-surface S6 is simply 6-connected.

Proof. It is obvious that S6 is 6-connected. Using a trivial extension of a 6-loop on S6, we see that any
6-loop on S6 is 6-null homotopic in S6 so that π6

1(S6) is trivial, which completes the proof.

Indeed, in [5] we stated the simple closed k-surface structure of a connected sum of two simple
closed k-surfaces (see Theorem 5.4 of [5]).

Corollary 5. [8] Given two simple closed k-surfaces Sk and S′k in Z3, Sk]S′k is a simple closed k-surface in Z3.

Theorem 5. The n-times of connected sums of MSS6, Cn
6 :=

n-times︷ ︸︸ ︷
MSS6] · · · ]MSS6, is simply 6-connected.

Proof. For convenience, for Cn
6 :=

n-times︷ ︸︸ ︷
MSS6] · · · ]MSS6, using a method similar to the proof of the

triviality of π6
1(MSS6), since any 6-loop on Cn

6 is proved to be 6-null homotopic in Cn
6 by using a trivial

extension, we obtain that π6
1(Cn

6 ) is trivial. Besides, since Cn
6 is 6-connected, the proof is completed.

Since MSS6 is not 6-contractible, we obtain the following:

Remark 9. The connected sum Cn
6 is not 6-contractible.

Let us now prove the 18-contractibility of Cn
18, n ∈ N, as follows:

Theorem 6. The n-times of connected sums of MSS18, Cn
18 :=

n-times︷ ︸︸ ︷
MSS18] · · · ]MSS18, is 18-contractible.

Before proving the assertion, as mentioned in (Case 1) of Theorem 4, at the moment we may only
deal with the case MSS18]MSS18 6= MSS18 because MSS18 is 18-contractible (see the 18-homotopy of
(9) of [8] and Figure 2b of [8]).

Proof. Let us prove the assertion using the mathematical induction.
(Step 1) A paper [8] proved that C1

18 := MSS18 is 18-contractible (Remark 3 or the 18-homotopy of (9)
proposed at the just above of Remark 2 of [8]).
(Step 2) For any n ∈ N, assume that Cn

18 is 18-contractible.
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Let us now prove that Cn+1
18 is 18-contractible. Owing to the 18-contractibility of Cn

18, for some m ∈ N,
we may assume an 18-homotopy

H : Cn
18 × [0, m]Z → Cn

18 (13)

supporting
1Cn

18
'18 c{x0}

for a certain point x0 ∈ Cn
18.

As usual, let
Cn+1

18 := Cn
18]MSS18. (14)

At the moment we should assume that the point x0 is not deleted in the process of (14). Then we now
establish a map

H′ : Cn+1
18 × [0, m + m′]Z → Cn+1

18 , m′ ≥ 1 (15)

such that the restriction of H′ of (15) to the set B := Cn+1
18 \MSS18 is equal to the 18-homotopy H of (13)

on B, where this MSS18 is that of (14). Besides, we may assume x0 ∈ B and the singleton {x0} is that of
(13). We now need only consider the remaining part Cn+1

18 \ Cn
18 (see the right part of the dotted arrow

of Figure 5b). Using a method of the 18-contractibility of MSS18 combined with the given 18-homotopy
H of (13) (see Figure 5b), we finally have an 18-homotopy H′ on Cn+1

18 as in (15) supporting

1Cn+1
18
'18 c{x0}

for a the point x0 ∈ Cn+1
18 (see the right part of Figure 5b shown by using the bold dotted arrow or the

dotted ones).

To explain the process of the proof of Theorem 6.7, motivated by the 18-contractibility of MSS18

(see Lemma 1 and Figure 2 of [8]), we now consider the following:

Corollary 6. C2
18 is 18-contractible.

Proof. Let us consider the map (see Figure 6)

H : C2
18 × [0, 4]Z → C2

18 (16)

defined by
H(x, 0) = 1C2

18
(x), x ∈ C2

18.

H(x, 1) =



5, x ∈ {1, 5};
12, x ∈ {4, 11, 12};
6, x ∈ {2, 6};
13, x ∈ {10, 13};
7, x ∈ {3, 7}; and

14, x ∈ {8, 9, 14}.


H(x, 2) =


12, x ∈ {1, 4, 5, 11, 12}
13, x ∈ {2, 6, 10, 13}; and

14, x ∈ {3, 7, 8, 9, 14}.


H(x, 3) =

{
12, x ∈ {1, 2, 4, 5, 6, 10, 11, 12, 13}; and

13, x ∈ {3, 7, 8, 9, 14}.

}
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H(x, 4) = c{12}(x), x ∈ C2
18.

Then the map of (16) is an 18-homotopy making C2
18 18-contractible, i.e., 1C2

18
'18 c{12}.
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Figure 6. Configuration of the 18-homotopy of (16) involving the 18-contractibility of C2
18 (see the proof

of Corollary 6).

Corollary 7. The n-times of connected sum of MSS′26, denoted by Cn
26, is 26-contractible.

Proof. Since there is only one type of MSS′26]MSS′26 = MSS′26, Cn
26 is equal to MSS′26 which is

26-contractible, the proof is completed.

7. Non-almost Fixed Point Property of Cn
k , k ∈ {6, 18}

This section investigates if each of C2
6 and Cn

18 has the AFPP. In order to address the problems
proposed with (Q6)–(Q8), let us now recall the category of digital topological spaces and further, the
fixed point property and the almost fixed point property from the viewpoint of digital topology.

• We denote by DTC the category consisting of two data: The set of digital images (X, k) as
Ob(DTC) and the set of (k0, k1)-continuous maps between every pair of digital images (X, k0)

and (Y, k1) in Ob(DTC) as Mor(DTC) [18].
• We say that a digital image (X, k) in Zn has the fixed point property (for short FPP) [23] if for

every k-continuous map f : (X, k)→ (X, k) there is a point x ∈ X such that f (x) = x.

Due to the study of the non-FPP of a digital picture (or digital image) in [23](see Theorem 4.1
of [23]), it is clear that only the digital image (or a digital picture) (X, k) with |X| = 1 has the
FPP because a singleton set obviously has the FPP in DTC. Thus we need to recall the following
(see Theorem 4.1 of [23] and Remark 4.3 of [34]):

Remark 10. [23,34] Only a digital image (X, k) with |X| = 1 has the FPP.

This property is obviously a certain implication of Theorems 3.3 and 4.1 of [23]. For the
convenience of readers, we now confirm the assertion more precisely.

Proof. To wit the assertion, when establishing the notion of AFPP in [23] (see the bottom of the page
179 of [23]), we obviously find that Rosenfeld [23] stated two theorems such as Theorems 3.3 and 4.1
of [23] relating to the above assertion. More precisely, as mentioned in the above part (see the part
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just below Section 4 of [23]), a paper [23] finally mentioned the AFPP of an n-dimensional digital
picture (In, 3n − 1) or a general picture (X, 3n − 1) in Zn. For instance, for the case of ([a, b]Z, 2), a 6= b,
Rosenfeld [23] proved the AFPP of it (see Theorem 3.3 of [23]). To be precise, for any 2-continuous
self-map f of ([a, b]Z, 2), it turns out that ([a, b]Z, 2) has the AFPP instead of the FPP. Then, Theorem
3.3 implies that not every 2-continuous self-map f of ([a, b]Z, 2) support the FPP of it. However, the
assertion supports the AFPP of ([a, b]Z, 2) instead of the FPP. Obviously, take a point x ∈ [a, b]Z and
N2(x, 1) ⊂ [a, b]Z. Then consider any point x′( 6= x) ∈ N2(x, 1) and further, according to Theorem 3.3
of [23], consider a self-map f of ([a, b]Z, 2) defined by f (t) = x for all t( 6= x) ∈ [a, b]Z, and f (x) = x′.
Then, the map f is obviously 2-continuous and f implies that ([a, b]Z, 2) does not have the FPP. As
a good example, consider a simple digital interval ([0, 1]Z, 2) and consider the self-map f of it, say
f (0) = 1 and f (1) = 0 which supports Theorem 3.3 of [23], which implies the AFPP of it instead of the
FPP. Similarly, as mentioned in the beginning part of Section 4 of [23], the paper [23] proved that the
n-dimensional case (In, 3n − 1) or a general picture (X, 3n − 1) in Zn (see Theorem 4.1 of [23]) has the
AFPP instead of the FPP. Eventually, with the same method as above, for any general digital image
(X, k) in Zn, we confirm the assertion of Remark 10.

Owing to Remark 10, it turns out that the study of the FPP in DTC is very trivial. Henceforth,
Rosenfeld [23] firstly studied the almost fixed point property for digital images. Hence we need to
stress the AFPP in DTC.

• We say that a digital image (X, k) in Zn has the almost fixed point property (for short AFPP) [23] if
for every k-continuous self-map f of (X, k), there is a point x ∈ X such that f (x) = x or f (x) is
k-adjacent to x.

Furthermore, a paper [8] proved that each of MSS18 and MSS′18 does not have the AFPP (see
Theorem 7 below). Thus the study of the AFPP of Cn

k , n ∈ N \ {1}, k ∈ {6, 18} remains. Let us now
address this issue.

Theorem 7. [8] (1) MSS18 does not have the AFPP.
(2) MSS′18 does not have the AFPP.

For Cn
6 :=

n-times︷ ︸︸ ︷
MSS6] · · · ]MSS6 and Cn

18 :=

n-times︷ ︸︸ ︷
MSS18] · · · ]MSS18, motivated by Theorem 7, we may

impose the following queries involving the AFPP of Cn
6 and Cn

18.
(Q6) How about the AFPP of Cn

6 , n ∈ N ?
(Q7) How about the AFPP of Cn

18, n ∈ N ?
To address these two queries, we first prove the non-AFPP of MSS6, as follows:

Lemma 4. MSS6 does not have the AFPP.

Proof. Consider the set MSS6 in Figure 7a(1). Then, let f be a self-map of MSS6 which is the composite
of the three times reflections of MSS6 according to the three xy-, yz-, and xz-planes in R3 (see the
image of the map f on the set MSS6 of Figure 7a(2)). Whereas the map f of Figure 7a is obviously a
6-continuous self-bijection of MSS6, it does not support the AFPP of MSS6.

Theorem 8. The digital image C2
6 in the binary picture (Z3, 6, 26, C2

6 ) does not have the AFPP.

Before proving the assertion, due to Lemma 1, we recall that C2
6 uniquely exists up to

6-isomorphism.

Proof. Consider the set C2
6 in Figure 7a(2). Then assume a self-map g of C2

6 which is the composite of
the three times reflections of MSS6 according to the three xy-, yz-, and xz-planes in R3 (see the image
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of the map g of C2
6 in Figure 7a(2)). Whereas the map g is obviously a 6-continuous bijection, it does

not support the AFPP of C2
6 .

Corollary 8. Let Cn
6 be assumed as the set formulated via the method suggested in Figure 3b(1). The image Cn

6
in the binary picture (Z3, 6, 26, Cn

6 ) does not have the AFPP.

As a generalization of the non-AFPP of MSS18 referred to in Theorem 7, we obtain the following:

Theorem 9. The digital image Cn
18 in the binary picture (Z3, 18, 6, Cn

18) does not have the AFPP.

Proof. (Case 1) In case MSS18]MSS18 = MSS18, we observe that Cn
18 = MSS18. To be specific, by

Theorem 7, we obtain Cn
18 := Cn−1

18 ]MSS18 does not have the AFPP in DTC.
(Case 2) In case MSS18]MSS18 6= MSS18, let us now prove the non-AFPP of Cn

18. With the
hypothesis, by Theorem 4, we see that Cn

18 has the shape suggested in Figure 7c (just an example for
C2

18 in Figure 7c). Then, let h be a self-map of Cn
18 which is the composite of the three times reflections

of Cn
18 according to the xy-, yz-, and xz-planes in R3. Whereas the map h is obviously an 18-continuous

map, it does not support the AFPP of Cn
18.
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Figure 7. (a) Configuration of the AFPP of MSS6. (b) Configuration of the non-AFPP of C2
6 :=

MSS6]MSS6. (c) In case MSS18]MSS18 6= MSS18, configuration of the non-AFPP of C2
18.

In order to generalize Theorem 9, we need the following notion which is stronger than the
isomorphism of Definition 1.

Definition 8. We say that a closed k-surface Sk in the picture (Z3, k, k̄, Sk) is (k, k̄)-isomorphic to (X, k) in the
picture (Z3, k, k̄, X), k ∈ {6, 18, 26} if
(1) Sk(⊂ Z3) is k-isomorphic to (X, k) and
(2) (Z3 \ Sk, k̄) is k̄-isomorphic to (Z3 \ X, k̄).
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Remark 11. Comparing the isomorphism of Definition 1 and that of Definition 8, we observe that they
are different.

As a generalization of Theorems 8 and 9, and Corollary 8, we obtain the following:

Proposition 4. Consider a (simple) closed k-surface Sk in (Z3, k, k̄, Sk), k ∈ {6, 18, 26} with the binary
relations of (11). If it is (k, k̄)-isomorphic to (X, k) in the picture (Z3, k, k̄, X) and the set X is symmetric
according to each of xy-, yz-, and xz-planes of R3, then Sk does not have the AFPP.

Proof. With the hypothesis, we proceed with the following several steps for proving the assertion. For
convenience we may assume Sk := {si | i ∈ [1, m]Z} for some m ∈ Z.

(Step 1) Take a (k, k̄)-isomorphism h from Sk to (X, k) in the given digital pictures (see Figure 8),
where X := {xi | i ∈ [1, m]Z, xi := h(si)}. Namely, we may assume a (k, k̄)-isomorphism h : Sk → (X, k)
defined by h(si) = xi, i ∈ [1, m]Z.

(Step 2) Given the set (X, k), proceed to the composite of the three times of different reflections
of (X, k) according to the certain xy-, yz-, and xz-planes in R3 which is a k-continuous bijection (or a
k-isomorphism). Then we denote the composite with the self-map f of (X, k). For convenience, put
f (xi) = xj, i, j ∈ [1, m]Z and we see i 6= j.

(Step 3) We denote the digital image being proceeded with (Step 2) with (X′, k), i.e., f (X) :=
X′ := {xj | xj = f (xi) | j ∈ [1, m]Z}. Then we see that the k-isomorphism f supports the non-AFPP (see
the proof of Theorem 8). Indeed, although the set X′ is equal to the set X, the subscript of each of all
elements is completely changed from xi to xj, i 6= j.

(Step 4) After assigning each element si ∈ Sk with sj ∈ Sk such that

sj := h−1 ◦ f−1(xi), i, j ∈ [1, m]Z,

we obtain the set S′k := {sj | j ∈ [1, m]Z}. Indeed, although S′k = Sk as a set, we see that each element
si ∈ Sk is changed into another element sj ∈ Sk. Consider the map h′ : (X(= X′), k) → Sk(= S′k)
defined by

h′(xj) = sj ∈ S′k = Sk, j ∈ [1, m]Z.

(Step 5) We finally obtain the composite of h, f , and h′(see Figure 8), i.e.,

h′ ◦ f ◦ h : Sk → Sk, (17)

such that
h′ ◦ f ◦ h(si) = h′( f (h(si))) = h′( f (xi)) = h′(xj) = sj.

Finally, we see that the composite h′ ◦ f ◦ h is a certain k-continuous bijection (or a k-isomorphism)
of Sk which does not support the AFPP of Sk.

f


k


h


h


S
 (X, k)


(X, k)
k
S


Figure 8. Explanation of the composite h′ ◦ f ◦ h.
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Remark 12. Proposition 4 includes the assertions of Theorems 7, 8, 9, and Lemma 4.

8. Conclusions and Further Work

After formulating Cn
k , k ∈ {6, 18, 26}, the present paper proved that there are only two types

of connected sums MSS18]MSS18 up to 18-isomorphism, only one type of MSS6]MSS6 up to
6-isomorphism and further, several types of connected sums C3

6 := MSS6]MSS6]MSS6. Furthermore,
it turns out that there are several types of connected sums for C3

6 := MSS6]MSS6]MSS6. Besides, in

case MSS18]MSS18 6= MSS18 up to 18-isomorphism, we proved that Cn
18 :=

n-times︷ ︸︸ ︷
MSS18] · · · ]MSS18

uniquely exists up to 18-isomorphism. In addition, we proved the digital k-contractibility of

Cn
k :=

n-times︷ ︸︸ ︷
MSSk] · · · ]MSSk, k ∈ {18, 26} and further, the simply k-connectedness of Cn

k , k ∈ {6, 18, 26},
n ∈ N. Finally, we explored the non-AFPP of each of C2

6 , Cn
18 and Cn

26. In view of several homotopic
properties of MSS6, MSS18, MSS′18, and MSS′26 and further, the non-AFPP of them and their connected
sums, we obtain the following:

As a further work, based on Proposition 4, we need to further study the AFPP of Cn
6 , n ∈ N \ {1, 2}

according to the processes associated with Figure 3b(2), (3), and (4). As mentioned above, some
homotopic features of the models MSS6, MSS18, MSS′18, MSS′26 play important roles in digital topology
and digital geometry because each of them can be considered to be the typical sphere-like model
in Euclidean topology. Hence, the features referred to in Figure 9 facilitate studying many objects
involving AFPP for digital images. Furthermore, the notion of digital connected sum also plays a
crucial role in digital geometry because it can contribute to formulating another surface from two
given surfaces. Besides, using the new topological structures in [36], we can study the FPP and
AFPP of Sk as subspaces of the newly-established topological structures. Finally, considering the
geometric realization of a digital k-surface with an SST-structure in [37], we can deal with them from
the viewpoint of computational geometry. In addition, after establishing a certain cone metric on a
digital image [38–42], we need to further compare the current digital metric spaces using a length of
simple k-path with cone metric spaces.
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