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Abstract: A mathematical model given by a two-dimensional differential system is introduced
in order to understand the transition process from the normal hematopoiesis to the chronic and
accelerated-acute stages in chronic myeloid leukemia. A previous model of Dingli and Michor is
refined by introducing a new parameter in order to differentiate the bone marrow microenvironment
sensitivities of normal and mutant stem cells. In the light of the new parameter, the system now
has three distinct equilibria corresponding to the normal hematopoietic state, to the chronic state,
and to the accelerated-acute phase of the disease. A characterization of the three hematopoietic
states is obtained based on the stability analysis. Numerical simulations are included to illustrate the
theoretical results.

Keywords: mathematical modeling; dynamic system; steady state; stability; hematopoiesis; chronic
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1. Introduction

Mathematics can offer qualitative and quantitative tools for a better understanding, prediction,
and control of biological processes. Particularly, such tools and models have been given for blood
cell production process and hematological disorders. Among the first papers in this direction one can
mention the works of Rubinow and Lebowitz [1,2], Mackey and Glass [3], Mackey [4], and Djulbegovic
and Svetina [5]. For more recent contributions we refer to Fokas et al. [6], Neiman [7], Andersen and
Mackey [8], Colijn and Mackey [9], Adimy et al. [10], Dingli and Michor [11], Kim et al. [12], Cucuianu
and Precup [13], Doumic-Jauffret et al. [14], Komarova [15], Stiehl and Marciniak-Czochra [16],
MacLean et al. [17,18], Radulescu et al. [19], Bianca et al. [20,21], Ragusa and Russo [22], and to the
references therein. For some models concerning stem cell transplantation, we mention the papers of
Vincent et al. [23], De Conde et al. [24], Kim et al. [25], Marciniak-Czochra and Stiehl [26], Precup et
al. [27,28], Precup [29], and Stiehl et al. [30]. Some reviews that work on mathematical models for
cancer, particularly for chronic myeloid leukemia, are the papers of Afenya [31], Michor [32], Foley and
Mackey [33], and Clapp and Levy [34].

Hematological stem cells (HSC) from bone marrow are situated at the origin of the process
of cell formation. They have the self-renewal capacity and the ability to differentiate and produce
various types of blood cells. Perturbations of this complex biological process are at the root of several
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hematological diseases, such as chronic myeloid leukemia (CML), a malignant disease arising from
mutant stem cells affecting the line of myeloid cells and progressing in three phases: chronic (also
called indolent) phase, accelerated or transitory phase, and acute or blast phase. The separation of the
last two phases being difficult, we shall refer to them as a whole, naming it the accelerated-acute phase.

An analogy can be drawn between the evolution of normal and abnormal stem cell populations
and the spread of two species into ecological habitats. Mathematically this evolution is expressed by
a differential system involving a number of specific parameters. Such a model for CML, proposed
by Dingli and Michor [11], yields to a mathematical characterization of two hematological states:
normal state and leukemic state, without being able to make distinction between the chronic and
accelerated-acute phases of the disease. Further analysis of the model and its extensions for bone
marrow transplantation have been undertaken by Precup and co-workers (Cucuianu and Precup [13],
Precup et al. [27,28], and Precup [29]).

In this paper we propose a refined version of the Dingli–Michor differential system that allows us
to make the distinction between the following three hematopoietic states related to chronic myeloid
leukemia: normal hematopoietic state, chronic leukemic state, and accelerated-acute state. We assume
normal hematopoietic state as a biological state in which the population of one or more mutant
hematopoietic stem cells (mHSC) tends to zero due to random events that lead to the extinction of
mutant cells, a fact demonstrated experimentally in stem cell lineages (see Jilkine and Gutenkunst [35],
Driessens et al. [36], Klein et al. [37], Lopez-Garcia et al. [38], and Snippert et al. [39]). We accomplish
our purpose by operating with distinct sensitivity parameters for normal and abnormal cells, instead
of a single common parameter, like the one that was used in the original model. Our modeling choice
is biologically justified by the asymmetry of mutual influences and interactions between normal and
leukemic cells (Gou et al. [40]). The new model, also expressed by a two-dimensional differential
system, has three nontrivial steady states, and their stability analysis shows that only one of them
is asymptotically stable depending on the value of a cumulative parameter D that incorporates the
growth rate, the cell death rate, and the sensitivity rate of the abnormal cells, and represents the
equilibrium amount of abnormal cells. Values of D under some threshold correspond to the normal
hematological state; values of D lying in some interval characterize the chronic phase, while larger
values of D stay for the accelerated-acute phase (see Figure 1 below). In this way, from a mathematical
point of view, the transition from one hematological state to another occurs as the result of a change of
the basic leukemic cell parameters accumulated by D. The transition is progressive as the disease gets
worse, and regressive as a result of treatment. For the last case, our analysis could be a guide to the
improvement of therapeutic agents and strategies, as suggested in Precup et al. [41].

The paper is structured as follows: In Section 2, we consider the new model and we carry out
its mathematical analysis. Based on this model, the normal hematopoietic state, and the chronic
and accelerated-acute phases of CML are mathematically characterized in terms of parameter D.
In Section 3, we provide some numerical simulations of the model. Next, in Section 4, the model is
upgraded by six additional equations so that, as in Michor et al. [42] and Dingli and Michor [11],
it becomes able to describe the cell evolution on four levels: primitive stem cells, progenitors,
differentiated cells and terminally differentiated cells. The numerical simulations show the parallelism
between the dynamics of primitive stem cells and that of the succeeding lines, which allows the analysis
to be performed at any level, particularly for terminally differentiated cells for which laboratory data
can be obtained easier. Finally, in Section 5, some medical remarks and conclusions are included.
We conclude this introductory section with medical background addressed to those readers that would
like to have more biological and medical information about hematopoiesis, malignant disorders,
and related literature.

1.1. Medical Background

Hematopoiesis is the process of blood cell formation. The process starts in the intrauterine life in
the mesoderm of the yolk sac and continues in the liver and the spleen during the second and seventh
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month. It then takes place at the level of the bone marrow, where it carries on after birth. During
childhood, hematopoiesis takes place in almost all bones, gradually being replaced with growth by fat
tissue. In adults, hematopoiesis occurs only in the pelvis, vertebrae, sternum (Howard et al. [43] and
Young [44]), ribs, skull, proximal humerus, and femur epiphysis (Kaushansky et al. [45]).

Hematopoiesis and the differentiation process into various blood cell types can be viewed as
an evolutionary tree that grows from one single hematopoietic stem cell (HSC). A HSC can have one
of the following functions: it can renew itself; it can generate two other HSCs; or it can lose the ability
of self-renewal and begin the maturation and differentiation pathway resulting two progenitor cells;
or finally, it can give birth to a HSC and a progenitor cell. Progenitor cells are capable of initiating the
differentiation towards one of the pathways that lead to the formations of various types of blood cells:
common lymphoid progenitor (CLP) that will differentiate and maturate into B or T-lymphocytes,
and the common myeloid progenitor (CMP) that will differentiate and maturate into leukocytes
(white blood cells), erythrocytes (red blood cells), and platelets (Young [44] and Kaushansky et al. [45]).
According to recent studies, there is growing evidence that hematopoietic stem cells produce a common
myeloid progenitor and a common myelo-lymphoid progenitor (CMLP) that in their turn produce
a bipotential myeloid T progenitor and a myeloid B progenitor (Kawamoto et al. [46]).

Although HSCs have the unique properties of leading to the formation of blood cells (self-renewal
capacity and the ability to differentiate and produce different blood cells), they are dependent on several
other factors: the environment that enables cell-to-cell and cell-to-matrix interaction (micromedia,
niche), cytokines (growth, proliferation, differentiation and maturation factors) and humoral feedback
from peripheral target tissue (Howard et al. [43], Young [44], Kaushansky et al. [45], Abkowitz [47],
Cucuianu and Precup [13]). These unique properties are dependent upon two major groups of control
factors: intrinsic cell factors (DNA alterations) and extrinsic cell factors (microenvironment factors,
humoral feedback, cytokines) (Ramalingam et al. [48] and Zon [49]).

Even though mammals, humans included, have a stock of only 2× 104 HSCs (Abkowitz [47]),
they can give birth and release into the blood stream approximately 2.5 billion erythrocytes/kg/day,
2.5 billion platelets/kg/day and 1 billion granulocytes/kg/day.

Leukemias are an heterogeneous group of malignant disorders, also known as cancer, arising
from one mutant hematopoietic stem cell (mHSC) (Howard et al. [43], Jilkine and Gutenkunst [35]
Driessens et al. [36], Klein et al. [37], Lopez-Garcia et al. [38], and Snippert et al. [39]). In this study,
we analyze the dynamics of HSCs and mHSCs by assuming that at least one mHSC can be found in
the human body. Therefore, the complex biological processes on which the hematopoiesis is based are
not completely involved.

There are four main types of leukemia (based on their progression-chronic or acute, and on the
type of the affected cell-myeloid or lymphoid) (Neiman [7]). Although current guidelines include
a more comprehensive and detailed classification of leukemias (with types and subtypes of cells,
mutations acquired, etc.), they do not make the subject of the current study, nor do they bring useful
information to our mathematical model (Arber et al. [50]).

The mHSCs have an abnormal process of differentiation and particular characteristics compared
to HSCs, due to their acquired genetic and epigenetic abnormalities: increased proliferation/growth
advantage; lower sensitivity to apoptosis and to the environment; poor differentiation; squeezing out
of normal HSCs from bone marrow (Roeder and d’Inverno [51]). All these can lead to a wide range of
clinical results with major impacts on patients’ health.

Chronic Myeloid Leukemia (CML) is an acquired myeloproliferative disorder (Howard et al. [43]
and Neiman [7]). The CML is probably the first recognized leukemia, dating back to the 1840s
(Young [44]).

CML represents 15% of all types of leukemia, annually occurring in 2 out of every 100,000 men and
1.1 out of every 100,000 women (Hemminki and Jiang [52]). Most frequently, the diagnosis is established
during routine blood tests, occurring more frequently after the fifth decade of life (Howard et al. [43]).
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The signs and symptoms may include anemia, splenomegaly, weight loss, and dyspnea on exertion.
Among the risk factors, ionizing radiation was observed to have a role in developing CML (Young [44]).

The hallmark of CML is the Philadelphia chromosome (Ph). Ph is characterized by a mutation
in the normal hematopoietic stem cell population (Howard et al. [43]), generated by one abnormal
stem cell, with the t(9;22)(q34;q11) (Young [44]) mutation, a reciprocal translocation of the ABL gene
from chromosome 9 to chromosome 22, next to the BCR gene. This newborn BCR-ABL gene codes
a fusion protein with tyrosine kinase activity, which apparently influences whether the cell lives or
dies, and proliferates or not.

This type of leukemia typically undergoes three phases: chronic (also called indolent) phase,
accelerated or transitory phase, and acute/blast phase (Abkowitz [47] and Arber et al. [50]). Due to
the difficulty of separating the accelerated phase from the blast phase, we will refer to them as a whole,
naming it the accelerated-acute phase. Most cases are diagnosed during the chronic phase and rarely
during one of the other two phases. Once the mutation has occurred in one HSC, it starts a series of
divisions, followed by differentiation and maturation that no longer obey the feedback and control
mechanisms that apply to healthy HSCs. Therefore, the mutant cells divide at a quicker rate, producing
a large number of thrombocytes and leukocytes, resulting in a population of cells where mHSCs
are dominant.

At a certain point of CML, the occurrence of other events (most probably the acquisition of
other genetic mutations) leads to an instability of the mHSC population, which consequently leads
to an accelerated-acute phase, resulting in an exponential increase of the number of immature stem
cells. Cells multiply in a more accelerated manner and do not undergo differentiation, resulting in
a blast phase, similar to various types of acute leukemia (myeloid—70%, lymphoid—20%, and mixt
type—10%) in terms of symptoms and clinical findings (Young [44], Abkowitz [47], and Neiman [7]).
After reaching the accelerated phase or the blast phase, patients have a median survival of 4.8 years or
6 months, respectively (Kantarjian et al. [53]).

In terms of treatment, even though tyrosinkinase inhibitors are effective in 70%–80% of cases of
CML, stem cell transplantation (SCT) seems to be the only curative treatment, involving, nevertheless,
a high mortality rate due to complications (Howard et al. [43] and Thomas [54]).

2. The Mathematical Model

In this section, we give the mathematical model, we obtain the associated steady states, and we
investigate their stability. Based on this analysis, we characterize the normal hematopoietic state,
and the chronic and accelerated-acute stages in CML.

2.1. The Normal-Leukemic Dynamic System

The mathematical modeling of the time evolution of a population p of any nature begins in a first
approximation (assuming no constraints exist) with the Malthusian equation

dp
dt

= ap− cp,

where p = p (t) is the population size at time t, and a and c are the growth and death (per capita) rates,
respectively. Assuming that the growth rate is bigger than the death rate, the population will increase
exponentially according to the law

p (t) = p(0) exp ((a− c) t) ,

which is non-realistic in the long run, particularly for limited biological populations. Thus, a more
realistic approach is to consider that the growth (and/or death) rate will change during evolution
by a self-limiting mechanism or exterior influences. For instance, the growth rate of a self-limiting
population can be a/ (1 + bp) depending on the population size itself. Here, b is a proportionality
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factor that shows how sensitive that population is with respect to its own size. This shows that
the growth rate decreases as the population size p increases. In addition, the influence over p of
a competitive population q = q (t) can be simulated in the model by a growth rate of the form
a/ (1 + b1 p + b2q) , where the ratio b2/b1 shows how strong the diminishing effect due to population
q is, compared to that of self-limitation.

Applied to the normal and abnormal stem cell populations denoted by x and z, the above
modeling choice leads to the following differential system

dx
dt

=
a

1 + β1x + β2z
x− cx (1)

dz
dt

=
A

1 + γ1x + γ2z
z− Cz.

Here, since abnormal cells have a stronger diminishing effect on the growth rate of normal cells than
on their own growth rate, it is natural to assume that

β2 > γ2. (2)

Additionally, the almost negligible effect of normal cells over the growth rate of population z (i.e., γ1 is
much smaller than β1) justifies the inequality

γ2

γ1
>

β2

β1
. (3)

For the mathematical analysis of most models, it is often convenient that the number of parameters
is reduced as much as possible. Thus, in our case, we can reduce the number of parameters
β1, β2, γ1, γ2 to three by making the change of variable (equivalently, by rescaling the abnormal
cell population)

y =
γ2

γ1
z.

Substituting in (1) yields the system

dx
dt

=
a

1 + b1x + b2y
x− cx (4)

dy
dt

=
A

1 + B(x + y)
y− Cy. (5)

where
b1 = β1, b2 = β2

γ1

γ2
, B = γ1.

Then (3) yields b1 > b2, which shows the different contributions of the normal and abnormal stem cells
to the diminution of the nonrestrictive growth rate of the normal cell population, while (2) guarantees
that b2 > B, reflecting the eventual advantage of the abnormal cells of being less sensitive to the bone
marrow microenvironment.

The system (4)–(5) is our basic model for normal-leukemic cell evolution. Here, the model
parameters a and A are the nonrestrictive growth rates (due to self-renewal) of normal and abnormal
stem cells, respectively; b1, b2 and B are the bone marrow microenvironment sensitivities; while c and
C stand for their cell death rates (due to differentiation, apoptosis, and other elimination mechanisms)
(see Alenzi et al. [55], Cisneros et al. [56], Domen [57], Riether et al. [58], Vivier et al. [59]). The terms

1
1 + b1x + b2y

and
1

1 + B(x + y)
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quantify the impact of the induced crowding in the bone marrow microenvironment, introduce
competition between normal and abnormal cells, and guarantee homeostasis at the level of cell population.
We assume that for both cell populations, the growth rate is greater than the death rate, that is,

a > c and A > C.

Note that an alternative model for normal-abnormal dynamics can be found in Neiman [7],
where the role of the parameter b1/b2 is given by a parameter denoted by g and assumed greater than
or equal to one.

The case b1 = b2 was considered by Dingli and Michor [11] and Cucuianu and Precup [13].
In this case there are only two non-zero steady states, (d, 0) and (0, D), where d and D represent the
homeostatic amounts of normal and abnormal stem cells, and they are given by

d =
1
b1

( a
c
− 1
)

and D =
1
B

(
A
C
− 1
)

. (6)

In this paper we assume that b1 > b2. As we shall see, in this case, besides the non-zero
steady states (d, 0) and (0, D), a steady state (x∗, y∗) could also exist with both positive components,
i.e., x∗ > 0 and y∗ > 0. This makes the new model able to differentiate between chronic and
accelerated-acute phases in CML.

We continue to analyze the system (4)–(5).
(a) Monotonicity of the solutions. The function x(t) increases during the time intervals where

dx/dt > 0, i.e., a/(1 + b1x (t) + b2y (t))− c > 0, or equivalently x(t) + (b2/b1)y(t) < d. Hence,

x(t) increases as long as x(t) + b2
b1

y(t) < d,

x(t) decreases as long as x(t) + b2
b1

y(t) > d.

From a biological point of view, the increasing or decreasing of the normal cell population occurs on
those intervals of time where the weighted total of cells remains under or upper the normal homeostatic
level, respectively.

Similarly,
y(t) increases as long as x(t) + y(t) < D,
y(t) decreases as long as x(t) + y(t) > D.

(b) Steady states. A steady state (or an equilibrium) is a constant solution, i.e., a solution for
which dx/dt = dy/dt = 0. Hence, the steady states are obtained by solving the algebraic system

a
1 + b1x + b2y

x− cx = 0 (7a)

A
1 + B(x + y)

y− Cy = 0. (7b)

The solutions of the system (7a)–(7b) are the pairs

(0, 0), (d, 0), (0, D) and (x∗, y∗),

where d, D are given by (6),

x∗ = − b2c(A− C)− BC(a− c)
BCc(b1 − b2)

and

y∗ =
b1c(A− C)− BC(a− c)

BCc(b1 − b2)
.
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Direct calculation leads to

x∗ =
b1

b1 − b2
d− b2

b1 − b2
D, y∗ =

b1

b1 − b2
(D− d) .

It is easy to see that under the assumption that b1 > b2, both numbers x∗ and y∗ are positive (acceptable
values from a biological point of view) if and only if

d < D <
b1

b2
d.

Therefore, in addition to the non-zero steady states (d, 0) and (0, D) , a positive steady state (x∗, y∗)
appears, contrary to the case where b1 = b2.

(c) Stability. We study the stability of the steady states of the system (4)–(5) using the standard
first approximation method (for details see Kaplan and Glass [60], Coddington and Levinson [61] and
Jones et al. [62]). According to this method, an equilibrium (α, β) is asymptotically stable if the Jacobian
matrix J(α, β) is a Hurwitz matrix, i.e., Re λ < 0 for all its characteristic roots λ, and is unstable if
Re λ > 0 for at least one of its characteristic roots.

It should be emphasized that the local stability that we analyze below coincides with the global
stability of the corresponding equilibria. This guarantees that the predictions are robust to uncertainties
in the initial cell counts.

Note that the steady state (0, 0) is unstable as can be shown based on the assumptions a > c and
A > C.

For the steady state (d, 0), the eigenvalues of the Jacobian matrix J(d, 0) are

λ1 = − c(a− c)
a

, λ2 =
b1c(A− C)− BC(a− c)

b1c + B(a− c)
.

Obviously λ1 < 0. Thus, the steady state (d, 0) is asymptotically stable if and only if λ2 < 0,
or equivalently, if D < d. On the contrary, if D > d, then the equilibrium (d, 0) is unstable.

The eigenvalues of the Jacobian matrix J(0, D) associated to the equilibrium (0, D) are

λ1 = − b2c(A− C)− BC(a− c)
b2(A− C) + BC

, λ2 = −C(A− C)
A

.

Here λ2 < 0, and so the steady state (0, D) is asymptotically stable if and only if λ1 < 0. This happens
if D > (b1/b2)d. Contrarily, if D < (b1/b2)d, then the steady state (0, D) is unstable.

In the chronic case d < D < (b1/b2)d, by direct computation, we easily find the following
representation of the Jacobian matrix J(x∗, y∗)

J (x∗, y∗) =

(
− b1c2

a x∗ − b2c2

a x∗

− BC2

A y∗ − BC2

A y∗

)

whose characteristic polynomial is

λ2 − λtr J (x∗, y∗) + det J (x∗, y∗) ,

where

tr J (x∗, y∗) = − b1c2

a
x∗ − BC2

A
y∗, det J (x∗, y∗) =

Bc2C2

aA
(b1 − b2) x∗y∗.

Obviously tr J (x∗, y∗) < 0 and det J (x∗, y∗) > 0. These imply that J (x∗, y∗) is a Hurwitz matrix.
Hence the equilibrium (x∗, y∗) is asymptotically stable.
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The above discussion shows a qualitative change of the system’s behavior, i.e., a change of stable
equilibrium where the parameter D varies. The values of this parameter at which the stable equilibrium
changes (called bifurcation points) are D = d and D = (b1/b2)d. We can summarize the bifurcation
analysis of our system as follows (see Figure 1):

• If D < d, then the steady state (d, 0) is asymptotically stable, and the steady state (0, D) is unstable.
• If d < D < (b1/b2)d, then the steady state (x∗, y∗) is positive and asymptotically stable, and the

steady states (d, 0) and (0, D) are unstable.
• If D > (b1/b2)d, then the steady state (0, D) is asymptotically stable, and the steady state (d, 0)

is unstable.

Figure 1. Diagram of the transition from the normal hematopoiesis to the chronic and accelerated-acute
stages in myeloid leukemia. Values of D less than d correspond to the normal hematopoietic state;
values of D between d and (b1/b2)d correspond to the chronic phase of leukemia; values of D larger
than (b1/b2)d characterize the accelerated-acute phase of the disease.

From a biological point of view, as long as normal cells have an advantage over abnormal cells
(d > D) , the healthy state may not present any perceptible changes. A balance between normal and
abnormal cells will exist as long as abnormal cells have a not too large advantage over normal cells
(d < D < (b1/b2) d) , and the balance is disturbed, leading to an accelerated-acute phase of the disease,
once the advantage of leukemic cells becomes significant (D > (b1/b2) d) (see Stine and Matunis [63]).

(a) Normal state (b) Chronic phase (c) Accelerated-acute phase

Figure 2. Phase portrait of the two-dimensional system (4)–(5), in the normal state (a) D < d; in the
chronic phase (b) d < D < (b1/b2)d; and in the accelerated-acute phase (c) (b1/b2)d < D. The orbits
(x(t), y(t)) approach the unique asymptotically stable equilibrium (represented by a thickened red
point): (d, 0), in case (a); (x∗, y∗), in case (b); (0, D), in case (c).

2.2. The Mathematical–Biological Interpretation

In view of the above discussion, we can claim that the relationship D < d characterizes the
normal hematopoiesis; the relationship d < D < (b1/b2)d stands for the chronic phase of leukemia;
meanwhile, the inequality D > (b1/b2)d characterizes the accelerated-acute phase of the disease. Indeed
(see Figure 2), in the case where D < d, the normal cell population x (t) approaches the equilibrium
abundance d (normal homeostatic state) while the abnormal cell population y (t) tends in time to zero;
in the case where d < D < (b1/b2)d, the cell populations x (t) and y (t) approach their equilibrium
abundances x∗ and y∗, respectively; finally, if D > (b1/b2)d, then the leukemic cell population becomes
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dominant approaching its equilibrium abundance D (leukemic homeostatic state) and leads to the
elimination of the normal cells, i.e., x (t) tends to zero.

Finally, a condition like D = d or D = (b1/b2)d is physiologically very unstable, since small
variations of the kinetic parameters can switch the normal state into the chronic leukemic state and
vice-versa, if D = d, and can switch the chronic state into the accelerated-acute phase and vice-versa, if
D = (b1/b2)d. Additionally, from a medical point of view, the situations D = d and D = (b1/b2)d are
practically undetectable.

In terms of the system’s biological growth parameters, the hematological states are characterized
as follows:

1
B

(
A
C − 1

)
< 1

b1

( a
c − 1

)
(normal state) ;

1
b1

( a
c − 1

)
< 1

B

(
A
C − 1

)
< 1

b2

( a
c − 1

)
(chronic phase) ;

1
b2

( a
c − 1

)
< 1

B

(
A
C − 1

)
(accelerated-acute phase) .

A diagram of the transition from normal hematopoiesis to chronic and accelerated-acute stages
in CML is presented in Figure 1. Notice that the length of the interval [d, (b1/b2) d] that corresponds
to the chronic phase is (b1/b2 − 1) d and depends on the ratio b1/b2. The bigger the ratio b1/b2 is,
the larger the interval in which a patient’s parameter D can lay in chronic phase. Notice that the
patient-related parameter b1/b2 gives the ratio of contributions of the normal and abnormal stem
cells to the diminution of the nonrestrictive growth rate of the normal cell population, aiming to
restore homeostasis.

According to our model, values of parameter D close to d correspond to early stages of the disease,
while values of D close to (b1/b2) d indicate advanced stages of the disease moving towards the
accelerated-acute phase.

3. Numerical Simulation of the Model

Further on, we illustrate the theoretical results on the system (4)–(5) by numerical simulations
using the Maple package.

3.1. Parameter Estimations

The parameters employed by our model depend on a large number of biophysical and biochemical
mechanisms. The latter make the exact estimation of these parameters almost impossible. Instead, one
may expect that from any estimation procedure with confidence intervals, parameters are obtained.
For a qualitative analysis such as ours, parameter estimation is not essential, and as already seen,
relationships between parameters are enough. Parameter estimation becomes essential when the
model is applied for real-time predictions and individual patients.

According to the paper of Dingli and Michor [11], the number of the stem cells in a healthy
adult body is approximately d = 2× 104 (normal homeostatic state), and the growth and death rates
of normal stem cells could be taken a = 0.005 and c = 0.002. However, recent studies have shown
different growth rates of HSC. One study concluded that HSCs divide on average every 40 weeks,
with a range from 25 to 50 weeks (see Catlin et al. [64]). Others even suggested the existence of
two types of HSCs with different replication rates (dormant HSCs divide about every 145 days, active
HSCs divide about every 36 days) (see Wilson et al. [65]). Regarding the life span of HSC, recent studies
have suggested a death rate ranging from 10 to 60 months (see Sieburg et al. [66] and Sieburg et al. [67]).
The factor b1/b2 allows for the possibility that the abnormal stem cells are less sensitive to the bone
marrow microenvironment than the normal cells. The parameter b1 that stands for the bone marrow
microenvironment sensitivity of the normal stem cells can be estimated from the expression of d,
namely, b1 = (a/c− 1) /d = 0.75× 10−4.
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Parameters A, B, C and b2 vary from patient to patient, and so do parameter D and the length of
the chronicity interval [d, (b1/b2) d] . For our numerical simulations we choose value 2 for b1/b2 and
we then have b2 ' 0.38× 10−4. Additionally, as in Dingli and Michor [11], we assume that the value of
parameter B is approximately half of b2; hence, B ' 0.19× 10−4. As regards the parameters A and C,
several values are considered in our simulations such that all the previous relationships between the
model parameters hold.

3.2. Numerical Simulations

We simulate numerically system (4)–(5) in order to investigate the behavior of normal and
abnormal stem cell populations in each of the cases: D < d (normal state); d < D < (b1/b2)d (chronic
state); and (b1/b2)d < D (accelerated-acute state). The graphs of x(t) (blue solid line) and y(t) (red
broken line) for a time interval 0 ≤ t ≤ T, are represented for different sets of values of the model
parameters: a, b1, b2, c, A, B, C; initial values x(0), y(0); and length T of the time interval.

We shall restrict our simulations to the situations presented in Table 1. In all of the cases we
assume that the abnormal stem cells are less sensitive to environmental crowding than the normal
stem cells, that is, b1 > b2 > B.

Table 1. The numerical simulation cases. a, A = growth rates; b1, b2, B = bone marrow microenvironment
sensitivity; c, C = death rates; a, b1, b2, c = normal stem cell parameters; and A, B, C = abnormal
(leukemic) stem cell parameters.

Case I Case II Case III Case IV

a < A a < A a > A a > A
c < C c > C c < C c > C

b1 > b2 > B b1 > b2 > B b1 > b2 > B b1 > b2 > B

Case I : In this case the growth and death rates of normal stem cells are smaller than the growth
and death rates of abnormal stem cells. Figure 3a shows the behavior in time (T = 3, 000 days) of
the two cell populations for the parameter values provided in the first line in Table 2, values that
correspond to the normal hematopoietic state (D < d). The normal stem cell population x(t) (blue solid
line) tends to the value d while the abnormal stem cell population y(t) (red broken line) tends towards
0. Biologically, this mutant/abnormal cell extinction, due to random events, has been explained and
demonstrated in several studies using stem cell lineages (see Jilkine and Gutenkunst [35], Driessens et
al. [36], Klein et al. [37], Lopez-Garcia et al. [38], and Snippert et al. [39]). Figure 3b shows the behavior
in time (T = 25,000 days) of the two cell populations for the parameter values from the second line
of Table 2, values that correspond to the chronic state d < D < (b1/b2)d. The normal and leukemic
stem cell populations x(t), y(t) tend toward x∗ and y∗, respectively. Figure 3c shows the behavior
in time (T = 8, 000 days) of the two cell populations for the corresponding parameter values from
Table 2, values that lead to the accelerated-acute state D > (b1/b2)d. The normal stem cell population
x(t) tends towards 0, while the leukemic stem cell population y(t) tends to the value D.

Case II: Here the growth rate of normal stem cells is smaller than the growth rate of abnormal
stem cells, and the death rate of normal stem cells is greater than the death rate of abnormal stem
cells. Then A/C > a/c, and since 1/B > 1/b2, we immediately see that (1/B) (A/C− 1) >

(1/b2) (a/c− 1) , or equivalently D > (b1/b2) d. Hence, in this case only the accelerated acute state
is possible. Figure 4 shows the behavior in time (T = 6, 000 days) of the two cell populations for the
corresponding parameter values from Table 2. The normal stem cell population x(t) tends towards 0,
while the leukemic stem cell population y(t) tends to the value D.
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(a) Normal state (b) Chronic phase (c) Accelerated-acute phase

Figure 3. Behavior of the normal and abnormal (leukemic) stem cell populations in Case I. Initial
conditions: (a) x(0) = 1.5× 104, y(0) = 5× 103; (b) x(0) = 2× 104, y(0) = 1× 103; (c) x(0) = 2× 104,
y(0) = 1.

Figure 4. Behavior of the normal and leukemic stem cell populations in Case II (accelerated-acute
phase). Initial conditions: x(0) = 2× 104, y(0) = 1.

Case III: In this case, the growth rate of normal stem cells is greater than the growth rate of
abnormal stem cells, and the death rate of normal stem cells is smaller than the death rate of abnormal
stem cells. Figure 5a shows the behavior in time (T = 25,000 days) of the two cell populations for the
corresponding parameter values from Table 2, values that correspond to the normal hematopoietic
state D < d. The normal stem cell population x(t) becomes arbitrarily close to the value d, while the
abnormal stem cell population y(t) tends towards 0. Figure 5b shows the behavior in time (T = 25,000
days) of the two cell populations for the corresponding parameter values from Table 2, values that
correspond to the chronic state d < D < (b1/b2)d. The normal and leukemic stem cell populations
x(t), y(t) tend toward x∗ and y∗, respectively. Figure 5c shows the behavior in time (T =40,000 days)
of the two cell populations for the corresponding parameter values from Table 2, values that lead to the
accelerated acute state D > (b1/b2)d. The normal stem cell population x(t) tends towards 0, while the
leukemic stem cell population y(t) tends to the value D.

(a) Normal state (b) Chronic phase (c) Accelerated-acute phase

Figure 5. Behavior of the normal and abnormal (leukemic) stem cell populations in Case III. Initial
conditions: (a) x(0) = 1.5× 104, y(0) = 5× 103; (b) x(0) = 2× 104, y(0) = 5× 103; (c) x(0) = 2× 104,
y(0) = 1.
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Case IV: In this case, the growth rate of normal stem cells is greater than the growth rate of
abnormal stem cells, and the death rate of normal stem cells is greater than the death rate of abnormal
stem cells. Figure 6a shows the behavior in time (T = 25,000 days) of the two cell populations for the
corresponding parameter values from Table 2, values that correspond to the normal hematopoietic
state D < d. Normal stem cell population x(t) tends to the value d, and abnormal stem cell population
y(t) approaches 0. Figure 6b shows the behavior in time (T = 25,000 days) of the two cell populations
for the corresponding parameter values from Table 2, values that correspond to the chronic state
d < D < (b1/b2)d. The normal and leukemic stem cell populations x(t), y(t) tend toward x∗ and
y∗, respectively. Figure 6c shows the behavior in time (T = 25,000 days) of the two cell populations
for the corresponding parameter values from Table 2, values that lead to the accelerated-acute state
D > (b1/b2)d. The normal stem cell population x(t) approaches 0, while the leukemic stem cell
population y(t) tends to the value D.

Table 2. Parameter values for simulations. S-S = steady state; d = 2× 104 (normal); D = variable
parameter (leukemic).

Fig. a b1 × 10−4 b2 × 10−4 c A B × 10−4 C S − S

3(a) 0.005 0.75 0.38 0.002 0.01 0.19 0.009 (d, 0)
3(b) 0.005 0.75 0.38 0.002 0.01 0.19 0.007 (x∗, y∗)
3(c) 0.005 0.75 0.38 0.002 0.01 0.19 0.004 (0, D)

4 0.005 0.75 0.38 0.002 0.007 0.19 0.001 (0, D)
5(a) 0.005 0.75 0.38 0.002 0.004 0.19 0.003 (d, 0)
5(b) 0.005 0.75 0.38 0.002 0.0045 0.19 0.003 (x∗, y∗)
5(c) 0.005 0.75 0.38 0.002 0.0045 0.19 0.0025 (0, D)
6(a) 0.005 0.75 0.38 0.002 0.0012 0.19 0.001 (d, 0)
6(b) 0.005 0.75 0.38 0.002 0.0015 0.19 0.001 (x∗, y∗)
6(c) 0.005 0.75 0.38 0.002 0.0025 0.19 0.001 (0, D)

(a) Normal state (b) Chronic phase (c) Accelerated-acute phase

Figure 6. Behavior of the normal and leukemic stem cell populations in Case IV. Initial conditions:
(a) x(0) = 1.5× 104, y(0) = 5× 103; (b) x(0) = 2× 104, y(0) = 5× 103; (c) x(0) = 2× 104, y(0) = 1.

4. The Model Extended to Terminally Differentiated Cells

Working at the level of primitive stem cells, there is not an ordinary method to determine the
sizes of cell populations. Therefore, it would be useful to have a reflection of the primitive stem cell
evolution at the level of terminally differentiated cells, since the latter can be easily estimated by current
blood tests.

The idea appears in Michor et al. [42], and when applied to our model yields the extended system

dx1
dt = a1

1+b1x1+b2y1
x1 − c1x1 (NSC) dy1

dt = A1
1+B(x1+y1)

y1 − C1y1 (ASC)

dx2
dt = a2x1 − c2x2 (NPC) dy2

dt = A2y1 − C2y2 (APC)

dx3
dt = a3x2 − c3x3 (NDC) dy3

dt = A3y2 − C3y3 (ADC)

dx4
dt = a4x3 − c4x4 (NTC) dy4

dt = A4y3 − C4y4 (ATC).
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Here, x2 (t) , y2 (t) stand for the normal (N) and abnormal (A) progenitor cell (PC) populations; x3 (t) ,
y3 (t) stand for the normal and abnormal differentiated cell (DC) populations; and x4 (t) , y4 (t) stand
for the normal and abnormal terminally differentiated cell (TC) populations, respectively.

Notice the different form of the additional six equations associated to the succeeding cell
compartments. It is the balance expression of the transfer from one compartment to the next; namely,
it states that the rate of change of cell population equals the amount of new cells produced by the
anterior compartment minus the amount of cells that leave (by differentiation or apoptosis) that
compartment. Thus, the new parameters a2, A2 are the rates at which normal and abnormal progenitor
cells are produced from normal and abnormal stem cells; a3, A3 are the rates at which normal and
abnormal differentiated cells are produced from normal and abnormal progenitor cells; a4, A4 are the
rates at which normal and abnormal terminally differentiated cells are produced from normal and
abnormal differentiated cells; and c2, c3, c4, C2, C3, C4 are the death rates of normal and abnormal
progenitors, and differentiated and terminally differentiated cells.

In the equilibrium state, we assume that in a healthy adult body the number of stem cells is
d = x∗1 = 2× 105, the number of progenitor cells is x∗2 = 1× 108, the number of differentiated cells is
x∗3 = 1× 1010, and the number of terminally differentiated cells is x∗4 = 1× 1012 (see Michor et al. [42]).
Consequently, in the equilibrium state, we have for progenitor cells a2x∗1 − c2x∗2 = 0, whence a2/c2 =

x∗2/x∗1 = 5 × 102, for differentiated cells a3x∗2 − c3x∗3 = 0, whence a3/c3 = x∗3/x∗2 = 1 × 102,
and for terminally differentiated cells a4x∗3 − c4x∗4 = 0; hence a4/c4 = x∗4/x∗3 = 1× 102. Therefore,
if c2 = 0.008, c3 = 0.05 and c4 = 1 (see Michor et al. [42]), then a2 = 4, a3 = 5, and a4 = 100.

Note that if
(x1E, y1E)

is any equilibrium (E) of the initial system (4)–(5), then

(x1E, y1E, a2x1E/c2, A2y1E/C2, a2a3x1E/c2c3, A2 A3y1E/C2C3,

a2a3a4x1E/c2c3c4, A2 A3 A4y1E/C2C3C4)

is an equilibrium of the extended system, and the two equilibria have the same stability property.
Therefore, working at the level of primitive stem cells is equivalent to working at the level of any
one of the succeeding classes of cells. Thus, if by blood tests one estimates the steady state ration
x4E/y4E between healthy and unhealthy terminally differentiated cells as being equal to λ, then we
can immediately calculate the analogue steady state ratios of differentiated, progenitor, and stem cells,
as follows:

x3E
y3E

= λ
A4c4

a4C4
,

x2E
y2E

= λ
A3 A4c3c4

a3a4C3C4
,

x1E
y1E

= λ
A2 A3 A4c2c3c4

a2a3a4C2C3C4
.

Figure 7a–d show that there is indeed a parallelism between the behaviors of normal and abnormal
cell populations in all four cell compartments.
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(a) Stem cell populations (b) Progenitor cell populations

(c) Differentiated cell populations (d) Terminally differentiated cell populations

Figure 7. Behavior of (a) stem cell populations, (b) progenitor cell populations, (c) differentiated cell
populations, and (d) terminally differentiated cell populations for the parameter values: a1 = 0.005,
a2 = 4, a3 = 5, a4 = 100, b1 = 0.75× 10−5, b2 = 0.38× 10−5, c1 = 0.002, c2 = 0.008, c3 = 0.05,
c4 = 1, A1 = 0.01, A2 = 8, A3 = 10, A4 = 100, B = 0.19× 10−5, C1 = 0.004, C2 = c2, C3 = c3,
C4 = c4, and initial conditions: x1(0) = 2× 105, x2(0) = 1× 108, x3(0) = 1× 1010, x4(0) = 1× 1012,
y1(0) = y2(0) = y3(0) = y4(0) = 1.

5. Discussion and Conclusions

By resuming and adding a new parameter to the system created by Dingli and Michor, the present
study tried to bring the model and the numerical simulations one step closer to the complex reality of
leukemic stem cell evolution, while also maintaining the model simple enough to draw conclusions.

We were able to analyze elements and characteristics of both normal and mutant stem cells,
unproven or unnoticed on the original model, but hopefully of some use for the upcoming research
and mathematical modeling of leukemic pathology.

By analyzing the numerical simulation for the first case, in which leukemic stem cells had a rate
of multiplication higher than that of normal stem cells (in our case two times higher), we observed
that the evolution of leukemic pathology was dependent on the ratio given by death rates of the two
types of stem cells lines. Therefore, at a mHSC death rate four times higher than that of normal HSC,
the disease progressed and led to the disappearance of mHSCs, while in case of a lower death rate of
the leukemic stem cells ranging between 4× c and 3× c, the disease evolved towards a stabilization
of the two stem cell lines; that is, to the chronic phase of CML. Finally, the disease evolution shifted
towards the accelerated-acute phase when the mHSC death rate decreased below 3× c, a situation
clinically similar to acute myeloid leukemia (AML). The analysis of the second case reveals to us
a very logical conclusion. The leukemic stem cells, having all the advantages (proliferation rate higher
than normal stem cells, death rate lower than normal stem cells, and lower sensitivity towards the
microenvironment) apparently leads us to only one possible case, that of the accelerated-acute phase of
CML. This allowed us to confirm our previously mentioned conclusion, which stated that the disease
evolved towards the specific course of the accelerated-acute phase of chronic myeloid leukemia in
the absence of a death rate of mHSC several times higher than the death rate of normal stem cells.
In terms of medical treatment, this case appears to underline the importance of microenvironment in
the evolution of the leukemic disease. Furthermore, assuming that medical treatments fail to decrease
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the proliferation rate or increase the death rate of mHSC, the microenvironment seems to be the only
therapeutic target left available. Additionally, we noticed that the accelerated-acute phase of CML
developed approximately 6 years after the occurrence of the first leukemic stem cell (if the initial
parameters were maintained constant).

A special situation is represented by the analysis of Cases III and IV, when the leukemic stem
cells multiplication rate is lower than that of normal stem cells. Although the advantage gained by
leukemic stem cells proliferation and growth rate is mentioned by many medical sources (Howard
et al. [43], Young [44], Kaushansky et al. [45], Abkowitz [47], Cucuianu and Precup [13], Hemminki
and Jiang [52], and Thomas [54]), the analysis of numerical simulations for our model showed the
possibility of chronic myeloid leukemia occurring and shifting between its three stages. Therefore,
in Cases III and IV, we observed the occurrence of all three stages, the disease following a similar
course to that seen in Case I, but characterized by a longer evolutionary time frame, probably due to
the slowness of the mHSCs proliferation rate. In clinical practice, though rare, such cases can be seen
in elderly people that present a very slow evolution of the disease.

The analysis of the mathematical model and numerical simulations led us to clues and conclusions
that are otherwise difficult to notice, explain, or even measure, relying solely on the gross figures
produced by laboratory studies or clinical observation. According to the analysis of our mathematical
model and numerical simulations, we can state that:

1. The mHSCs proliferation rate is a predictive factor for the development of the accelerated-acute
state: an increased rate of proliferation of these cells in comparison to normal stem cells
determines the accelerated-acute phase to occur earlier;

2. The death rate of leukemic stem cells is predictive for the global evolution of the disease,
influencing the shifts between the different phases of the chronic myeloid leukemia.

Therefore, the clinical judgment, treatment plan, and research to improve therapy for leukemic
disease could be influenced or based on the importance of these two factors. In terms of treatment,
according to our mathematical model, we should probably focus more on controlling values of these
parameters of mHSC in order to reach a coexisting phase of the two populations, taking into account
patients’ symptoms and quality of life, rather than being aggressive and trying to eradicate all leukemic
cells. In light of recent research and opinions (Enriquez-Navas et al. [68] and Gerlinger et al. [69]),
trying to live and collaborate with cancer could be a more intelligent strategy than trying to eradicate it.

Certainly, real clinical experience regarding the shift of leukemic disease from one phase to another
is more complex and may comprise other parameters that have not been taken into account by this
study, either because they were impossible to include in our mathematical model or because they are
still unknown by medical researchers. However, mathematical models and numerical simulations that
are applied in the biomedical field can reveal aspects and ideas that deserve to be closely investigated in
correlation with the medical practice and research. Furthermore, these interdisciplinary collaborations
may be considered groundwork for the necessary reasoning process that will consequently identify
research directions for improved treatments of extensively investigated pathologies, such as leukemia.
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