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Abstract: Driver behavior plays a major role in road safety because it is considered as a significant
argument in traffic accident avoidance. Drivers mostly face various risky driving factors which
lead to fatal accidents or serious injury. This study aims to evaluate and prioritize the significant
driver behavior factors related to road safety. In this regard, we integrated a decision-making model
of the Best-Worst Method (BWM) with the triangular fuzzy sets as a solution for optimizing our
complex decision-making problem, which is associated with uncertainty and ambiguity. Driving
characteristics are different in different driving situations which indicate the ambiguous and complex
attitude of individuals, and decision-makers (DMs) need to improve the reliability of the decision.
Since the crisp values of factors may be inadequate to model the real-world problem considering
the vagueness and the ambiguity, and providing the pairwise comparisons with the requirement of
less compared data, the BWM integrated with triangular fuzzy sets is used in the study to evaluate
risky driver behavior factors for a designed three-level hierarchical structure. The model results
provide the most significant driver behavior factors that influence road safety for each level based on
evaluator responses on the Driver Behavior Questionnaire (DBQ). Moreover, the model generates a
more consistent decision process by the new consistency ratio of F-BWM. An adaptable application
process from the model is also generated for future attempts.

Keywords: fuzzy best worst method; driver behavior factors; road safety; DBQ; Budapest city

1. Introduction

According to data from the worldwide road safety status report, annual traffic deaths are reported
to reach 1.35 million [1]. According to this report, it was stated that the road safety performance for
Hungary is below the EU average. In 2018, the proportion of people died on the roads in Hungary was
set at 64 per million, and this statistic increased by 1% compared to the previous year [2]. However, the
Road Safety Action Program (2014–2016) was integrated with the Hungarian Transport Strategy in line
with the goal of reducing the number of road deaths by 50% between 2010 and 2020. According to
the Road Safety Action Program situation analysis, most accidents stemmed from human-induced
factors. Therefore, addressing them becomes a dynamic target of road safety actions [3]. According to
the estimates of some previous studies, approximately 90% of road traffic accidents have been found to
be the sole or major causative factor of human factors [4–6].
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Many driver behavior factors emerge as dynamic, deliberate violations of the rules and mistakes
resulting from less driving experience, while others appear as a result of carelessness, momentary
errors, or failure to perform an action, the latter being generally age-related [7,8]. In order to alleviate
the driver’s workload and increase the basic services of active vehicle safety systems, identification of
risky driver behavior factors has been handled. However, these systems based on the average driver
performance on the road and individual driver’s attitudes were seldom taken into consideration [9].

To analyze the risky driving behavior for road safety, the Driver Behavior Questionnaire (DBQ)
was first introduced as a tool in the studies in the 1990s [10,11]. Reason et al., (1990) detected three
kinds of driving behaviors, i.e., errors, lapses, and violations, and analyzed the association between
driving behavior and accident involvement. Accordingly, human error is an unintended act or decision.
Slips and lapses happen in very familiar tasks that we can execute without very much conscious
consideration. Violations are intended failures—intentionally doing the wrong act [12–14]. In addition,
the Driver Behavior Questionnaire (DBQ), with an extended version, was used to evaluate aberrant
driver behaviors [12]. While the extended version of the DBQ consists of aggressive and ordinary
violations, lapses and errors [14]. An aggressive violation behavior was identified as contradictory
behavior towards other road users [13].

The previous study observed that the analytic hierarchy process (AHP) method was an effective
approach in terms of prioritizing suburban road safety indicator to access the factors which reduce the
number and severity of accidents in Iran [15]. However, the prioritizing of the AHP method is rather
imprecise; and the subjective assessment by perception, evaluation, development, and assortment
based on the preference of decision-makers (DMs) have a significant impact on AHP outcomes [16]. To
deal with such tricky problems, many researchers integrate fuzzy theory with AHP to incorporate
its results [17–21]. The fuzzy AHP, compared to AHP and the statistical methods of prioritization,
has greater precision and certainty. Although in AHP, the experts compare the alternatives using
their competencies and intellectual skills, but it may not completely reflect the human thinking style.
However, the use of fuzzy numbers is more consistent in human linguistic representations. Therefore,
the decisions can be made more reliable and more precise in the real world using fuzzy numbers [22].

However, it is not possible to ignore the inconsistency in AHP-based pairwise comparison matrices
(PCMs) because inconsistency often occurs in practice [23,24]. The inconsistency in PCMs is the main
drawback of AHP and can lead to uncertain results. In general, it is obvious that if the PCM is 5 × 5
or larger in the decision structure, the relatively consistent filling of this size of matrix by non-expert
evaluators requires significant effort [16].

In order to solve this consistency problem in traditional AHP and to minimize PC surveys,
Rezaei introduced the BWM method [25] to reduce the number of pairwise comparisons in the
traditional AHP process. As a new technique, there are still gaps in both the theoretical structure
and application areas of BWM. Thus, some questions remained open in terms of conditions and
limitations on traditional AHP usage. For the BWM itself, the appropriate consistency ratio value
and the inconsistency improving procedures can be addressed. Additionally, the BWM within other
contexts could investigate the uncertainty. The model’s multiple optimality solution in BWM can be
determined from other angles [26].

Due to the statistic that BWM is sensitive to preferences of DMs, it is very complicated to calculate
the accurate weights when the DM utilizes natural language, such as “very high”, “medium”, or
“very low”, to express a type of overall preferences [27]. Therefore, in this study, the crisp preferences
in BMW are stretched with triangular fuzzy numbers to overcome the inherent ambiguity of the
DM’s decision in real decision-making problems. Furthermore, this F-BWM model gives fewer PCs
with high consistency of the pairwise comparison matrix. Saaty explains that consistency will not be
good when the number of factors exceeds 7 ± 2 [28]. This is also a theoretical justification of Miller’s
psychological investigation [29]. Therefore, the proposed model produces more consistent and reliable
results with fewer PCs. In summary, BWM with triangular fuzzy sets merely considers reference
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pairwise comparisons and handles inconsistency in an effective manner versus conventional AHP with
triangular fuzzy sets. Therefore, it presents an easy and accurate decision framework.

2. Literature Review

In the literature, BWM and its fuzzy extended versions are frequently applied to various areas,
from manufacturing to supply chain management and transportation [30]. Although plenty of papers
have been published in these areas, there are very few contributions applied to the evaluation of
driving behaviors for road safety. Most of the recent BWM/F-BWM contributions focus on supply
chain design, supplier or green supplier evaluation, and occupational or environmental safety risk
analysis [31].

Regarding supply chain performance and supplier assessment, Badi and Ballem [31] studied
supplier selection problems in the pharmaceutical industry using an integrated rough BWM method.
While the Z-number BWM is proposed by Aboutorab et al. [32] for supplier development problem,
intuitionistic F-BWM is applied for the green supplier selection problem by Tian et al. [33]. Wu et
al. [34] integrated the interval type-2 fuzzy sets and BWM for green supplier selection problems.

In the risk assessment literature, AHP or F-AHP is mostly used as a weighted factor scoring
method for risk parameters. After BWM is introduced, researchers have begun to use it instead of
AHP due to its superiorities. BWM/F-BWM is used to assign weights to risk parameters like AHP. In
many studies, it is frequently integrated with FMEA [35–40]. In some other studies, it is integrated
with MCDM such as interval triangular fuzzy Delphi method under 5 × 5 matrix [41], F-TOPSIS [42],
and artificial intelligence-based methods such as Bayesian networks [43,44] and business impact
analysis [45].

In the light of this brief review of the previous studies related to BWM and F-BWM applied to
diverse selection and ranking problems, it is observed that BWM has not integrated yet with fuzzy
sets for the addressed problem “driving behavior evaluation”. Therefore, in the proposed approach,
F-BWM is utilized to determine the importance weight of driver behavior factors related to road
safety. As fuzzy extensions, triangular fuzzy numbers are used in the existed study since they reflect
uncertainty in the decision-making process well. Additionally, the DBQ is attached to the F-BWM
to strengthen the methodology of the study. The benefits of the applied F-BWM methodology are
as follows: (1) From the theoretical viewpoint, it has designed a solid decision-making framework
with the aid of triangular fuzzy numbers and, modeled uncertainty well. Although the literature
covers methods like AHP and BWM in determining the importance weights of factors, the F-BWM
methodology fits well with the structure of the problem handled in this study. The full consistency
method (FUCOM) is the simplest example. It is proposed by Pamučar et al. [46] and applied by many
scholars [47–49] to various MCDM problems. (2) From an application viewpoint, the study considers a
DBQ and priorities the driving behavior factors relating to road safety. Previous studies regarding
driving behavior factor evaluation are mostly based on statistical inference logic either cross-sectional
or cross-cultural. However, this study handles the problem in an MCDM manner. Additionally, as
a case study, the Budapest city of Hungary is studied to demonstrate applicability. Of course, the
approach can be adapted to other cities.

3. Materials and Methods

3.1. Driver Behavior Questionnaire (DBQ) Survey

The study utilized the driver behavior questionnaire (DBQ) as a tool to collect driver behavior data
on perceived road safety issues from Budapest city. To do so, the car drivers having at least fifteen-year
driving experience were asked to fill the DBQ by face-to-face method, which increased its reliability.
The drivers who participated in this study were the faculty members of the Department of Transport
Technology and Economics and the Department of Control for Transportation and Vehicle Systems at
Budapest University of Technology and Economics who also have transportation engineering research
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experience. In addition, the participants were asked to indicate how often they likely to involve in
each of the observed driver behaviors in the recent year using Saaty’s traditional ratio scale (1–9). The
questionnaire survey was designed in two parts: The first part intended to measure demographic
data about the participants and results are tabulated in Table 1. The results stated the mean and
standard deviation (SD) values of observed data such as age, gender, and driving experience based on
drivers’ responses. In addition, we used digits (1, 0) for assessment purposes to explain simply the
characteristics of gender.

Table 1. Sample characteristics.

Variables Data Analysis Results

N 100
Age: Mean (SD) 32.341 (3.421)

Gender (1 = male, 0 = female):
Mean (SD) 0.845 (0.125)

Duration of driving license:
Mean (SD) 15.312 (1.589)

The second part of DBQ designed on Saaty scale (1977) to analyze the significant driver behavior
factors related to road safety. For evaluation purposes, the driver behavior factors were designed in a
three-level hierarchical structure and symbolized each factor with alphabet ‘F’ as shown in Figure 1.
These driver behavior factors have a significant influence on road safety. Some recent studies considered
the specified driver behavior factors for evaluation of road safety performance by different evaluator
groups [50–52].
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3.2. Overview on Best Worst Method (BWM)

The general BWM method was created by Rezaei (2015) to derive the weights of the criteria with
the smaller number of comparisons and more consistent comparisons. The most important factor is
the one which has the most vital role in making the decision, while the less important has the opposite
role in the decision process. Furthermore, the BMW does not only derive the weights independently
but it can also be combined with other multi-criteria-decision-making methods [53–55].

• The procedure of the BWM can be highlighted as follows:
• Identification of the decision-making problem and its factors
• Determination of the most crucial and least crucial factor
• Determination of the preference of the most crucial factor over all the other factors
• Determination of the preference of the least crucial factor over all the other factors
• Make the consistency check
• Determination of the importance weight of the factors
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We consider a set of elements (e1, e2, . . . , en) and then select the most important element and
compare it to others using Saaty’s scale (1–9). Accordingly, this provides the most important element
to other vectors would be: Ea = (ea1, ea2, . . . , ean), and obviously eaa = 1. However, the least important
element to other vectors would be: Eb = (e1b, e2b, . . . , enb)

T by using the same scale.
After deriving the optimal weight scores, the consistency has been checked through computing

the consistency ratio from the following formula:

ξ2
− (1 + 2uBW)ξ+ (u2

BW − uBW) = 0Consistency Ratio =
ξ∗

Consistency Index
(1)

where Table 2 provides us the consistency index values:

Table 2. Consistency index (CI) values.

eab 1 2 3 4 5 6 7 8 9

Consistency Index(max ξ) 0.0 0.44 1.0 1.63 2.3 3.0 3.73 4.47 5.23

To obtain an optimal weight for all elements, the maximum definite differences are
∣∣∣∣wa

w j
− eaj

∣∣∣∣ and∣∣∣∣w j
wb
− e jb

∣∣∣∣, and for all j is minimized. If we assumed a positive-sum for the weights, the following
problem would be solved:

min max j

{∣∣∣∣wa
w j
− eaj

∣∣∣∣, ∣∣∣∣w j
wb
− e jb

∣∣∣∣}
s.t.∑
j

b j = 1

b j ≥ 0, for all j

(2)

The problem could be transferred into the following problem:

minξ
s.t.∣∣∣∣wa

w j
− eaj

∣∣∣∣ ≤ ξ, for all j∣∣∣∣w j
wb
− e jb

∣∣∣∣ ≤ ξfor all j∑
j

b j = 1

b j ≥ 0, for all j

(3)

By solving this problem, we obtain the optimal weights and ξ∗. For further reading on priority
criteria, one may refer to [56,57]. While wB presents the importance weights of best criterion, wW shows
the e importance weights of the worst criterion. eBj denotes the evaluation of the best to others, eW j
denotes the evaluation of the others to worst.

3.3. The Proposed F-BWM Model

3.3.1. General Information on Fuzzy Sets

Prior to explaining F-BWM, some fundamental notations regarding fuzzy sets can be useful.
Zadeh [58] introduced fuzzy sets for better reflecting of the human judgments and assessment in the
decision making process. It is considered as a more robust tool to deal with vagueness, ambiguity, and
uncertainty. Many decision-making problems consist of goals, constraints, and possible actions that
are not known precisely [58]. The usage of fuzzy sets is better for transforming the linguistic decision
of human judgment. Hence, many real-world decision-making problems have used fuzzy sets [59,60].
A triangular fuzzy number consists of lower, medium and upper numbers of the fuzzy as Ã = (l, m, u)
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where l, m and u which is crisp and real numbers (x ≤ y ≤ z. The membership function of a triangular
fuzzy number can be defined as follows:

µÃ =


0, x < l

(x− l)/(m− l), l ≤ x ≤ m

(u− x)/(u−m), m ≤ x ≤ u

0 x ≥ u

(4)

A triangular fuzzy number is presented in Figure 2. The linguistic terms and triangular fuzzy
numbers are also given in Table 3.
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Table 3. The linguistic terms and fuzzy numbers.

Linguistic Term Triangular Fuzzy Number

Equally Importance (EI) (1, 1, 1)
Weakly Important (WI) (2/3, 1, 1.5)

Fairly Important (FI) (1.5, 2, 2.5)
Very Important (VI) (2.5, 3, 3.5)

Absolutely Important (AI) (3.5, 4, 4.5)

Ã1 = (l1, m1, u1) and Ã2 = (l2, m2, u2) are any two triangular fuzzy numbers, and the mathematical
calculation of the two triangular fuzzy numbers is defined as follows:

The addition operation:

Ã1 + Ã2 = (l1 + l2, m1 + m2, u1 + u2) (5)

The subtraction operation:

Ã1 − Ã2 = (l1 − u2, m1 −m2, u1 − l2) (6)

The multiplication operation:

Ã1 x Ã2 = (l1xl2, m1xm2, u1xu2) (7)

The arithmetic operation:

kxÃ1 = (kxl1, kxm1, kxu1), (k > 0) (8)
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Ã1

k
=

(
l1
k

,
m1

k
,

u1

k

)
, (k > 0) (9)

The graded mean integration representation (GMIR) R
(
Ãi

)
of a triangular fuzzy number for the

ranking of triangular fuzzy number is calculate as follows:

R
(
Ãi

)
=

li + 4mi + ui
6

(10)

3.3.2. Fuzzy Best-Worst Method (F-BWM)

The BWM was proposed by Rezai (2015) for multi-criteria decision-making problems considering
pairwise comparison manner. The best and worst criteria are determined in BWM [33]. Different
fuzzy sets-based versions have been proposed as intuitionistic fuzzy sets [32,61], triangular fuzzy
numbers [27,62], Z-numbers [34], dominance degree [63], and interval type-2 fuzzy number [64,65].
Mi et al. [66] presented a survey of BWM applications and extensions. The interested readers and
researchers may refer to this study in detail.

In BWM, there are n criteria, and the fuzzy pairwise comparisons are applied based on the
linguistic terms of decision-makers as presented in Table 3. Then, the linguistic evaluations are
transformed into triangular fuzzy numbers. The fuzzy comparison matrix is getting as follows:

c1 c2 · · · cn

Ã =

c1

c2
...
cn


ã11 ã12 · · · ã1n
ã21 ã22 · · · ã2n

...
...

. . .
...

ãn1 ãn2 · · · ãnn


where ãi j denotes the relative fuzzy preference of criterion i to criterion j, which is a triangular fuzzy
number; ãi j = (1, 1, 1) when i = j.

In this paper, we will present the detailed steps of fuzzy BWM. The detailed steps of fuzzy BWM
are used for obtaining the fuzzy weights [62].

Step 1. Construct the criteria system. A set of criteria reflects the performances of different
criteria. Suppose there are n decision criteria {c1, c2, . . . , cn}.

Step 2. Determine the best criterion and the worst criterion. In this step, the best criterion and
the worst criterion is determined by experts based on the constructed decision criteria system. The
best criterion is denoted as cB, and the worst criterion is also denoted as cW .

Step 3. Perform the fuzzy reference comparisons for the best criterion. According to the
pairwise comparison ãi j, cB is the best criterion; cW is the worst criterion. The fuzzy preferences of the
best criterion over all the criteria can be determined. Then, the fuzzy comparisons are converted to
triangular fuzzy numbers. The fuzzy Best-to-Others vector is obtained as follows:

ÃB =
{̃
aB1, ãB2, . . . , ãBn

}
where ÃB denotes the fuzzy best-to-others vector; ãBj denotes the fuzzy comparison of the best criterion
cB over criterion j, j = 1, 2, . . . , n. It is known that ãBB = (1, 1, 1).

Step 4. Perform the fuzzy reference comparisons for the worst criterion. In this step, the fuzzy
preferences of all the criteria over the worst criterion can be determined. They are transformed into
triangular fuzzy numbers. The fuzzy others-to-worst vector can be obtained as:

ÃW =
{̃
a1W , ã2W , . . . , ãnW

}
where ÃW denotes the fuzzy others-to-worst vector; ãiW denotes the fuzzy comparison of the worst
criterion cW , i = 1, 2, . . . , n. It is known that ãWW = (1, 1, 1).
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Step 5. Determine the optimal fuzzy weights
(
w̃∗1, w̃∗2, . . . , w̃∗n

)
. In this step, the optimal fuzzy

weight for each criterion is determined for each fuzzy pair w̃B/w̃ j and w̃ j/w̃W . It should have

w̃B/w̃ j = ãBj and w̃ j/w̃W = ã jW . A solution is obtained that the maximum absolute gaps
∣∣∣∣∣ w̃B

w̃ j
− ãBj

∣∣∣∣∣ and∣∣∣∣∣ w̃ j

w̃W
− ã jW

∣∣∣∣∣ for all j are minimized to satisfy these conditions for all j. w̃B,w̃ j and w̃W in fuzzy BWM

are triangular fuzzy numbers. In some cases, we prefer to use w̃ j =
(
lwj , mw

j , uw
j

)
for optimal criteria

selection. The triangular fuzzy weight of the criterion w̃ j =
(
lwj , mw

j , uw
j

)
is transformed to a crisp value

using Equation (11). Consequently, the constrained optimization problem is constructed for obtaining
the optimal fuzzy weights

(
w̃∗1, w̃∗2, . . . , w̃∗n

)
as follows:

min max
j

{∣∣∣∣∣ w̃B
w̃ j
− ãBj

∣∣∣∣∣, ∣∣∣∣∣ w̃ j

w̃W
− ã jW

∣∣∣∣∣}

s.t.



n∑
j=1

R(w̃i) = 1

lwj ≤ mw
j ≤ uw

j
lwj ≥ 0

j = 1, 2, . . . , n

(11)

where w̃B =
(
lwB , mw

B , uw
B

)
, w̃ j =

(
lwj , mw

j , uw
j

)
, w̃W =

(
lwW , mw

W , uw
W

)
, ãBj =

(
lwBj, mw

Bj, uw
Bj

)
and ã jW =(

lwjW , mw
jW , uw

jW

)
. Equation (12) is transformed to the nonlinearly constrained optimization problem:

min ξ

s.t.



∣∣∣∣∣ w̃B
w̃ j
− ãBj

∣∣∣∣∣ ≤ ξ∣∣∣∣∣ w̃ j

w̃W
− ã jW

∣∣∣∣∣ ≤ ξ
n∑

j=1
R(w̃i) = 1

lwj ≤ mw
j ≤ uw

j
lwj ≥ 0

j = 1, 2, . . . , n

(12)

where ξ =
(
lξ, mξ, uξ

)
.

Considering lξ ≤ mξ
≤ uξ, it is supposed that ξ∗ = (k∗, k∗, k∗), k∗ ≤ lξ then Equation (13) can be

transferred as:
min ξ∗

s.t.



∣∣∣∣∣∣∣ (lwB ,mw
B ,uw

B )(
lwj ,mw

j ,uw
j

) − (
lBj, mBj, uBj

)∣∣∣∣∣∣∣ ≤ (k∗, k∗, k∗)∣∣∣∣∣∣∣
(
lwj ,mw

j ,uw
j

)
(lwW ,mw

W ,uw
W)
−

(
l jW , m jW , u jW

)∣∣∣∣∣∣∣ ≤ (k∗, k∗, k∗)

n∑
j=1

R(w̃i) = 1

lwj ≤ mw
j ≤ uw

j
lwj ≥ 0

j = 1, 2, . . . , n

(13)

Step 6. Determine the consistency ratio. The consistency ratio is determined in the same way as
BWM. In this step, the consistency index for fuzzy BWM is calculated.
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The main steps of the proposed F-BWM model are discussed in Figure 3.
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4. Results

The F-BWM model was applied to evaluate driver behavior factors related to road safety and to
compute weight scores. Furthermore, the reliability of the PCs consistency in F-BWM was checked,
and it was acceptable for each matrix. In the following, step by step application of F-BWM to the
problem is provided. In this application, three main factors, eight sub-factors, and nine sub-sub-factors
are evaluated. We will first present the F-BWM model for main factors as violations (F1), lapses (F2),
and errors (F3). The violations (F1) and lapses (F2) are determined as the most significant and the less
significant factor, respectively (Step 2). The fuzzy reference comparisons are applied, and the linguistic
terms for fuzzy preferences of the most significant factor and the less significant factor are given in
Tables 4 and 5, respectively.

Table 4. The linguistic terms for fuzzy preferences of the most important factor.

Factor F1 F2 F3

Best factor (F1) EI FI WI

Table 5. The linguistic terms for fuzzy preferences of the less important factor.

Factor Worst Factor (F2)

F1 FI
F2 EI
F3 WI

Then, the fuzzy most significant-to-others vector and the fuzzy others-to-less significant can be
obtained with respect to Table 3 as follows (Step 3).

ãB = [(1, 1, 1), (3/2, 2, 5/2), (2/3, 1, 3/2)]̃aW = [(3/2, 2, 5/2), (1, 1, 1), (2/3, 1, 3/2)]
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Then, for obtaining the optimal fuzzy weights of all the main factors, the nonlinearly constrained
model is constructed as follows in Equation (14):

min ξ∗

s.t.



∣∣∣∣∣∣∣
(
lwf 1,mw

f 1,uw
f 1

)
(
lwf 1,mw

f 1,uw
f 1

) − (
l f 11, m f 11, u f 11

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)∣∣∣∣∣∣∣
(
lwf 1,mw

f 1,uw
f 1

)
(
lwf 2,mw

f 2,uw
f 2

) − (
l f 12, m f 12, u f 1||2

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)∣∣∣∣∣∣∣
(
lwf 1,mw

f 1,uw
f 1

)
(
lwf 3,mw

f 3,uw
f 3

) − (
l f 13, m f 13, u f 13

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)∣∣∣∣∣∣∣
(
lwf 1,mw

f 1,uw
f 1

)
(
lwf 2,mw

f 2,uw
f 2

) − (
l f 12, m f 12, u f 12

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)∣∣∣∣∣∣∣
(
lwf 2,mw

f 2,uw
f 2

)
(
lwf 2,mw

f 2,uw
f 2

) − (
l f 22, m f 22, u f 22

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)∣∣∣∣∣∣∣
(
lwf 3,mw

f 3,uw
f 3

)
(
lwf 2,mw

f 2,uw
f 2

) − (
l f 32, m f 32, u f 32

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)

3∑
j=1

R(w̃ j) = 1

lwf j ≤ mw
f j ≤ uw

f j
lwf j ≥ 0

j = 1, 2, 3

(14)

Then, the following nonlinearly constrained optimization problem is obtained using represented
by crisp numbers as in Equation (15).

min e

s.t.



l f 1 − 1.5 ∗ u f 2 − u f 2 ∗ e ≤ 0; l f 1 − 1.5 ∗ u f 2 + u f 2 ∗ e ≥ 0; m f 1 − 2 ∗m f 2 −m f 2 ∗ e ≤ 0;
m f 1 − 2 ∗m f 2 + m f 2 ∗ e ≥ 0; u f 1 − 2.5 ∗ l f 2 − l f 2 ∗ e ≤ 0; u f 1 − 2.5 ∗ l f 2 + l f 2 ∗ e ≥ 0;
l f 1 −

2
3 ∗ u f 3 − u f 3 ∗ e ≤ 0; l f 1 −

2
3 ∗ u f 3 + u f 3 ∗ e ≥ 0; m f 1 − 1 ∗m f 3 −m f 3 ∗ e ≤ 0;

m f 1 − 1 ∗m f 3 + m f 3 ∗ e ≥ 0; u f 1 − 1.5 ∗ l f 3 − l f 3 ∗ e ≤ 0; u f 1 − 1.5 ∗ l f 3 + l f 3 ∗ e ≥ 0;
l f 3 −

2
3 ∗ u f 2 − u f 2 ∗ e ≤ 0; l f 3 −

2
3 ∗ u f 2 + u f 2 ∗ e ≥ 0; m f 3 − 1 ∗m f 2 −m f 2 ∗ e ≤ 0;

m f 3 − 1 ∗m f 2 + m f 2 ∗ e ≥ 0; u f 3 − 1.5 ∗ l f 2 − l f 2 ∗ e ≤ 0; u f 3 − 1.5 ∗ l f 2 + l f 2 ∗ e ≥ 0;
l f 1 ≤ m f 1 ≤ u f 1; l f 2 ≤ m f 2 ≤ u f 2; l f 3 ≤ m f 3 ≤ u f 3;
1
6 ∗ (l f 1 + 4 ∗m f 1 + u f 1) +

1
6 ∗ (l f 2 + 4 ∗m f 2 + u f 2) +

1
6 ∗ (l f 3 + 4 ∗m f 3 + u f 3) = 1;

l f 1 > 0; l f 2 > 0; l f 3 > 0
e ≥ 0

(15)

The optimal fuzzy weights of three factors (‘violations’, ‘lapses’, and ‘errors’) are calculated
as follows:

w∗F1 = (0.365, 0.418, 0.500), w∗F2 = (0.223, 0.246, 0.296), w∗F3 = (0.283, 0.321, 0.393) and
ξ∗ = (0.303, 0.303, 0.303)

Then, the crisp weights of three factors ‘violations’, ‘lapses’, and ‘errors’, are determined as
follows: w∗F1 = 0.423, w∗F2 = 0.251, w∗F3 = 0.327. In this process, the consistency ratio is calculated.
ãBw = a12 = (1.5, 2, 2.5) is the largest in the interval, hence, CI is considered as 5.29 using Table 6.
The consistency ratio is CR = 0.303/5.29 = 0.0573 which shows a very high consistency because the
consistency ratio 0.0573 is very close to zero.
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Table 6. Consistency index (CI) for fuzzy BWM.

Linguistic
Terms.

Equally
Importance (EI)

Weakly
Important (WI)

Fairly
Important (FI)

Very
Important (VI)

Absolutely
Important (AI)

ãBw (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (5/2, 3, 7/2) (7/2, 4, 9/2)
CI 3 3.8 5.29 6.69 8.04

According to the results of the F-BWM model, among the main factors at the first level, “violations”
(F1) were found to be the most crucial driver behavior factor related to road safety based on the
responses given by the assessors in DBQ. One of the previous studies [67] stated that Road Traffic
Violations (RTVs) are the most important factor causing certain risks for other road users. Subsequently,
“errors” (F3) followed by “lapses” (F2) as shown in Table 7, as the second-ranking factor.

Table 7. The importance weights of the first-level factors.

Factor Weight Rank

F1 0.423 1
F2 0.251 3
F3 0.327 2

Among the second level factors, “aggressive violation” (F12) has emerged as the most crucial
driver behavior factor related to road safety. According to the results of a previous study carried
for Finland and Iran [68], it is found a significant relationship between aggressive violations and the
number of accidents. Additionally, the results demonstrated that “fail to apply brakes in road hazards”
(F33) was determined as the second most crucial factor as compared to other related factors. The
previous study noticed that more fatalities can occur if the driver does not apply the brakes and has
higher impact-speed crashes [69,70]. While “pull away from traffic lights in wrong gear” (F22) is
observed as the lowest ranked driver behavior factor related to road safety as shown in Table 8.

Table 8. The global importance weights of the second-level factors.

Factor Weight Rank

F11 0.106 4
F12 0.317 1
F21 0.076 6
F22 0.042 8
F23 0.133 3
F31 0.094 5
F32 0.047 7
F33 0.186 2

According to the evaluation results of the third level factors, the most important driver behavior
factor related to road safety was identified as “driving with alcohol” (F126). This result is directly
proportional to the zero-tolerance policy in practice in drinking and driving according to Hungarian
driving laws and can be verified in this context [71]. Subsequently, the model results observed, “failing
to yield pedestrian” (F122) as second rank factor followed by “disobey traffic lights” (F123). The
previous study revealed that one of the possible causes for the high number of crashes and injuries is
due to beating traffic lights [72]. While the results showed “no deterrence of punishing” (F124) as the
least rank driver behavior factor as compared to other related factors as shown in Table 9.
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Table 9. The global importance weights of the third-level factors.

Factor Weight Rank

F111 0.068 7
F112 0.112 4
F113 0.071 5
F121 0.114 3
F122 0.177 2
F123 0.114 3
F124 0.057 8
F125 0.070 6
F126 0.216 1

Due to space limitations, open forms of mathematical models for the remaining two levels (levels
2 and level 3) are provided in the Appendix A. All mathematical models for the F-BWM are solved in
GAMS version 23.5.1 as minimization problems by mixed-integer non-linear programming (MINLP).

5. Comparative Study

In this section, we make a comparative study between the results of the existed approach (F-BWM
model) and a recent hybrid study covering AHP and BWM models [51]. Moslem et al. [51] handled
evaluation of the driver behavior factors related to road safety using both AHP and BWM. They used
AHP in PCMs that have a 4 × 4 or smaller structure. On the other side, they used BWM in 5 × 5
matrices or larger ones. We then observe the variations in factor rankings of both approaches. The
results are shown in Table 10.

Table 10. Comparative study results of factor ranks.

Factor/Sub-Factor/Sub-sub-Factor
Rank

AHP-BWM Model (Moslem et al. [51]) F-BWM Model (Existed Study)

F1 1 1
F2 3 3
F3 2 2

F11 7 4
F12 1 1
F21 4 6
F22 6 8
F23 3 3
F31 5 5
F32 8 7
F33 2 2

F111 9 7
F112 6 4
F113 8 5
F121 7 3
F122 3 2
F123 2 3
F124 5 8
F125 4 6
F126 1 1

It is observed from Table 10 that, by both approaches, the ranks of main factors have remained the
same. By using the AHP-BWM model of Moslem et al. [51], we notice that the ranks of sub-factors
F11, F21, and F22 are changed. Regarding sub-sub-factors, F126 is the most important one by both
approaches. When we compare the results obtained by both approaches, we observe that there are
very small rank variations between them. The highest difference is observed in sub-sub-factor ranking
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results. Although we do not observe drastic rank variations between the benchmarking model that
have been previously proved in the literature and our current approach, it can be claimed that the
application of this approach is new in the application domain. It is also noted that, according to a
correlation analysis, which measures the association between the rank of factors, there is a significant
and strong positive correlation between both approaches. The Spearman rank correlation coefficient
(RHO) values for every three groups are obtained as 1.00, 0.79, and 0.62.

From the methodological perspective, there exist some similar contributions in the literature [73–76].
Gerogiannis et al. [73] studied a group-AHP scoring model. The method used in [73] is differentiated
from our current approach considering that the decision is based on the aggregation of both experts’
and users’ judgements. Similar to our approach, [73] seeks a solution in facing a very large number of
PCs. However, in BWM/FBWM-based approaches, decreased PCMs are designed according to the
best and the worst criterion. The two studies of [74] and [75] have focused on the improvement of the
traditional BWM approach. While the first one proposes a mixed-integer linear programming model
approximation, the other deals with a robust solution to BWM. In [76], the same problem which we
handle in the current study is aimed to solve by using the analytic network process (ANP). A primitive
version of the criteria set which we used in the current study is used to prioritize. It has also taken into
account the interrelationships between the decision criteria. In light of the above critics, the integrated
BWM approach with triangular fuzzy sets enables decision-makers more freedom in making the final
decision and face with a decreased number of PCMs.

6. Conclusions

The significance of driver behavior factors for road safety is critical and difficult to analyze due to
uncertain driver behavior. The novelty of this study is the combined use of the best-worst method
(BWM) and triangular fuzzy sets as a supporting tool for ranking and prioritizing the critical driver
behavior criteria. For the first level of hierarchical structure, the study evaluation results observed the
‘violations’ as the most significant factor related to road safety followed by ‘errors’. Subsequently, for
the second level, the study results observed the ‘aggressive violations’ as the most significant driver
behavior factor related to road safety followed by ‘fail to apply brakes in road hazards’. While the
study results revealed the ‘visual scan wrongly’ as the least important driver behavior factor related to
road safety. Furthermore, for the third level, the F-BWM model results evaluated the ‘drive alcohol use’
as the most important factor followed by ‘disobey traffic lights’ as compared to other specified factors.
While ‘failing to use personal intelligence’ was observed as the least important driver behavior factor
related to road safety.

Driver behavior recognition has been noticed as a significant and complex concern to obviate road
issues due to the huge amount of driver behavior data and its variation [47–49]. In the current study,
we explained some AHP drawbacks and then utilized an advanced F-BWM model for estimating
the driver behavior factors related to road safety. To collect driver behavior data, the study utilized
the driver behavior questionnaire from experienced drivers with fifteen years of driving experience
or more. This causes less evaluation time and better understandability for evaluators due to fewer
comparisons as compared to conventional methods, like AHP. The acquired model results are more
coherent due to more consistent PCs which increase the efficiency of the proposed model.

Considering further research, more applications of the F-BWM model are essential to obtain
familiar to analyze different real-world features. The objective advantages are evident: it gives quicker
and cheaper survey processes, and undoubtedly the survey pattern can more easily be expanded by
this method than employing the classical AHP with complex PC questionnaires. However, this paper
only provided one example, but many other applications can ultimately validate the technique. The
F-BWM model will help the researchers to enhance their future studies by developing consistency
with fewer PCs and save time for analyzing the collected data.

For future directions, BWM can be applied to the same problem under recently released fuzzy
extensions such as Pythagorean fuzzy sets [77–79], spherical fuzzy sets [80], and hexagonal fuzzy



Mathematics 2020, 8, 414 14 of 20

sets [81]. By doing this, a comparative framework may be developed and used to test the solidity of
the integration of BWM and fuzzy set extensions.
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Appendix A

Nonlinear constrained optimization problem represented by crisp numbers for F11 and F12:

min e

s.t.



l f 11 − 2.5 ∗ u f 12 − u f 12 ∗ e ≤ 0; l f 11 − 2.5 ∗ u f 12 + u f 12 ∗ e ≥ 0; m f 11 − 3 ∗m f 12 −m f 12 ∗ e ≤ 0;
m f 11 − 3 ∗m f 12 + m f 12 ∗ e ≥ 0; u f 11 − 3.5 ∗ l f 12 − l f 12 ∗ e ≤ 0; u f 11 − 3.5 ∗ l f 12 + l f 12 ∗ e ≥ 0;
l f 11 ≤ m f 11 ≤ u f 11; l f 12 ≤ m f 12 ≤ u f 12;
1
6 ∗ (l f 11 + 4 ∗m f 11 + u f 11) +

1
6 ∗ (l f 12 + 4 ∗m f 12 + u f 12) = 1;

l f 11 > 0; l f 12 > 0;
e ≥ 0

Solving this model, the optimal f uzzy weights o f the F11 and F12 :
W∗f 11 = (0.232, 0.250, 0.275)

W∗f 12 = (0.687, 0.749, 0.812)

e = (0.000, 0.000, 0.000)

Nonlinear constrained optimization problem represented by crisp numbers for F21, F22, and F23:

min e

s.t.



l f 23 − 1.5 ∗ u f 21 − u f 21 ∗ e ≤ 0; l f 23 − 1.5 ∗ u f 21 + u f 21 ∗ e ≥ 0; m f 23 − 2 ∗m f 21 −m f 21 ∗ e ≤ 0;
m f 23 − 2 ∗m f 21 + m f 21 ∗ e ≥ 0; u f 23 − 2.5 ∗ l f 21 − l f 21 ∗ e ≤ 0; u f 23 − 2.5 ∗ l f 21 + l f 21 ∗ e ≥ 0;
l f 23 − 2.5 ∗ u f 22 − u f 22 ∗ e ≤ 0; l f 23 − 2.5 ∗ u f 22 + u f 22 ∗ e ≥ 0; m f 23 − 3 ∗m f 22 −m f 22 ∗ e ≤ 0;
m f 23 − 3 ∗m f 22 + m f 22 ∗ e ≥ 0; u f 23 − 3.5 ∗ l f 22 − l f 22 ∗ e ≤ 0; u f 23 − 3.5 ∗ l f 22 + l f 22 ∗ e ≥ 0;
l f 21 − 1.5 ∗ u f 22 − u f 22 ∗ e ≤ 0; l f 21 − 1.5 ∗ u f 22 + u f 22 ∗ e ≥ 0; m f 21 − 2 ∗m f 22 −m f 22 ∗ e ≤ 0;
m f 21 − 2 ∗m f 22 + m f 22 ∗ e ≥ 0; u f 21 − 2.5 ∗ l f 22 − l f 22 ∗ e ≤ 0; u f 21 − 2.5 ∗ l f 22 + l f 22 ∗ e ≥ 0;
l f 21 ≤ m f 21 ≤ u f 21; l f 22 ≤ m f 22 ≤ u f 22; l f 23 ≤ m f 23 ≤ u f 23;
1
6 ∗ (l f 21 + 4 ∗m f 21 + u f 21) +

1
6 ∗ (l f 22 + 4 ∗m f 22 + u f 22) +

1
6 ∗ (l f 23 + 4 ∗m f 23 + u f 23) = 1;

l f 21 > 0; l f 22 > 0; l f 23 > 0
e ≥ 0

Solving this model, the optimal f uzzy weights o f the F21, F22 and F23 :
W∗f 21 = (0.248, 0.295, 0.374)

W∗f 22 = (0.159, 0.165, 0.188)

W∗f 23 = (0.495, 0.529, 0.581)

e = (0.209, 0.209, 0.209)
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Nonlinear constrained optimization problem represented by crisp numbers for F31, F32, and F33:

min e

s.t.



l f 33 − 1.5 ∗ u f 31 − u f 31 ∗ e ≤ 0; l f 33 − 1.5 ∗ u f 31 + u f 31 ∗ e ≥ 0; m f 33 − 2 ∗m f 31 −m f 31 ∗ e ≤ 0;
m f 33 − 2 ∗m f 31 + m f 31 ∗ e ≥ 0; u f 33 − 2.5 ∗ l f 31 − l f 31 ∗ e ≤ 0; u f 33 − 2.5 ∗ l f 31 + l f 31 ∗ e ≥ 0;
l f 33 − 3.5 ∗ u f 32 − u f 32 ∗ e ≤ 0; l f 33 − 3.5 ∗ u f 32 + u f 32 ∗ e ≥ 0; m f 33 − 4 ∗m f 32 −m f 32 ∗ e ≤ 0;
m f 33 − 4 ∗m f 32 + m f 32 ∗ e ≥ 0; u f 33 − 4.5 ∗ l f 32 − l f 32 ∗ e ≤ 0; u f 33 − 4.5 ∗ l f 32 + l f 32 ∗ e ≥ 0;
l f 31 − 1.5 ∗ u f 32 − u f 32 ∗ e ≤ 0; l f 31 − 1.5 ∗ u f 32 + u f 32 ∗ e ≥ 0; m f 31 − 2 ∗m f 32 −m f 32 ∗ e ≤ 0;
m f 31 − 2 ∗m f 32 + m f 32 ∗ e ≥ 0; u f 31 − 2.5 ∗ l f 32 − l f 32 ∗ e ≤ 0; u f 31 − 2.5 ∗ l f 32 + l f 32 ∗ e ≥ 0;
l f 31 ≤ m f 31 ≤ u f 31; l f 32 ≤ m f 32 ≤ u f 32; l f 33 ≤ m f 33 ≤ u f 33;
1
6 ∗ (l f 31 + 4 ∗m f 31 + u f 31) +

1
6 ∗ (l f 32 + 4 ∗m f 32 + u f 32) +

1
6 ∗ (l f 33 + 4 ∗m f 33 + u f 33) = 1;

l f 31 > 0; l f 32 > 0; l f 33 > 0
e ≥ 0

Solving this model, the optimal f uzzy weights o f the F31, F32 and F33 :
W∗f 31 = (0.234, 0.288, 0.339)

W∗f 32 = (0.133, 0.144, 0.151)

W∗f 33 = (0.523, 0.575, 0.594)

e = (0.043, 0.043, 0.043)

Nonlinear constrained optimization problem represented by crisp numbers for level F111, F112,
and F113:

min e

s.t.



l f 112 − 1.5 ∗ u f 111 − u f 111 ∗ e ≤ 0; l f 112 − 1.5 ∗ u f 111 + u f 111 ∗ e ≥ 0; m f 112 − 2 ∗m f 111 −m f 111 ∗ e ≤ 0;
m f 112 − 2 ∗m f 111 + m f 111 ∗ e ≥ 0; u f 112 − 2.5 ∗ l f 111 − l f 111 ∗ e ≤ 0; u f 112 − 2.5 ∗ l f 111 + l f 111 ∗ e ≥ 0;
l f 112 − 1.5 ∗ u f 113 − u f 113 ∗ e ≤ 0; l f 112 − 1.5 ∗ u f 113 + u f 113 ∗ e ≥ 0; m f 112 − 2 ∗m f 113 −m f 113 ∗ e ≤ 0;
m f 112 − 2 ∗m f 113 + m f 113 ∗ e ≥ 0; u f 112 − 2.5 ∗ l f 113 − l f 113 ∗ e ≤ 0; u f 112 − 2.5 ∗ l f 113 + l f 113 ∗ e ≥ 0;
l f 111 − 1.5 ∗ u f 112 − u f 112 ∗ e ≤ 0; l f 111 − 1.5 ∗ u f 112 + u f 112 ∗ e ≥ 0; m f 111 − 2 ∗m f 112 −m f 112 ∗ e ≤ 0;
m f 111 − 2 ∗m f 112 + m f 112 ∗ e ≥ 0; u f 111 − 2.5 ∗ l f 112 − l f 112 ∗ e ≤ 0; u f 111 − 2.5 ∗ l f 112 + l f 112 ∗ e ≥ 0;
l f 111 ≤ m f 111 ≤ u f 111; l f 112 ≤ m f 112 ≤ u f 112; l f 113 ≤ m f 113 ≤ u f 113;
1
6 ∗ (l f 111 + 4 ∗m f 111 + u f 111) +

1
6 ∗ (l f 112 + 4 ∗m f 112 + u f 112) +

1
6 ∗ (l f 113 + 4 ∗m f 113 + u f 113) = 1;

l f 111 > 0; l f 112 > 0; l f 113 > 0
e ≥ 0

Solving this model, the optimal f uzzy weights o f the F111, F112 and F113 :
W∗f 111 = (0.233, 0.266, 0.334)

W∗f 112 = (0.334, 0.431, 0.614)

W∗f 113 = (0.237, 0.287, 0.313)

e = (0.500, 0.500, 0.500)

Nonlinear constrained optimization problem represented by crisp numbers for F121, F122, F123,
F124, F125, and F126:
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min e

s.t.



l f 126 − 1.5 ∗ u f 121 − u f 121 ∗ e ≤ 0; l f 126 − 1.5 ∗ u f 121 + u f 121 ∗ e ≥ 0; m f 126 − 2 ∗m f 121 −m f 121 ∗ e ≤ 0; m f 126 − 2 ∗m f 121 + m f 121 ∗ e ≥ 0;

u f 126 − 2.5 ∗ l f 121 − l f 121 ∗ e ≤ 0; u f 126 − 2.5 ∗ l f 121 + l f 121 ∗ e ≥ 0; l f 126 −
2
3 ∗ u f 122 − u f 122 ∗ e ≤ 0; l f 126 −

2
3 ∗ u f 122 + u f 122 ∗ e ≥ 0;

m f 126 − 1 ∗m f 122 −m f 122 ∗ e ≤ 0; m f 126 − 1 ∗m f 122 + m f 122 ∗ e ≥ 0; u f 126 − 1.5 ∗ l f 122 − l f 122 ∗ e ≤ 0; u f 126 − 1.5 ∗ l f 122 + l f 122 ∗ e ≥ 0;

l f 126 − 1.5 ∗ u f 123 − u f 123 ∗ e ≤ 0; l f 126 − 1.5 ∗ u f 123 + u f 123 ∗ e ≥ 0; m f 126 − 2 ∗m f 123 −m f 123 ∗ e ≤ 0; m f 126 − 2 ∗m f 123 + m f 123 ∗ e ≥ 0;

u f 126 − 2.5 ∗ l f 123 − l f 123 ∗ e ≤ 0; u f 126 − 2.5 ∗ l f 123 + l f 123 ∗ e ≥ 0; l f 126 − 3.5 ∗ u f 124 − u f 124 ∗ e ≤ 0; l f 126 − 3.5 ∗ u f 124 + u f 124 ∗ e ≥ 0;

m f 126 − 4 ∗m f 124 −m f 124 ∗ e ≤ 0; m f 126 − 4 ∗m f 124 + m f 124 ∗ e ≥ 0; u f 126 − 4.5 ∗ l f 124 − l f 124 ∗ e ≤ 0; u f 126 − 4.5 ∗ l f 124 + l f 124 ∗ e ≥ 0;

l f 126 − 2.5 ∗ u f 125 − u f 125 ∗ e ≤ 0; l f 126 − 2.5 ∗ u f 125 + u f 125 ∗ e ≥ 0; m f 126 − 3 ∗m f 125 −m f 125 ∗ e ≤ 0; m f 126 − 3 ∗m f 125 + m f 125 ∗ e ≥ 0;

u f 126 − 3.5 ∗ l f 125 − l f 125 ∗ e ≤ 0; u f 126 − 3.5 ∗ l f 125 + l f 125 ∗ e ≥ 0; l f 121 − 1.5 ∗ u f 124 − u f 124 ∗ e ≤ 0; l f 121 − 1.5 ∗ u f 124 + u f 124 ∗ e ≥ 0;

m f 121 − 2 ∗m f 124 −m f 124 ∗ e ≤ 0; m f 121 − 2 ∗m f 124 + m f 124 ∗ e ≥ 0; u f 121 − 2.5 ∗ l f 124 − l f 124 ∗ e ≤ 0; u f 121 − 2.5 ∗ l f 124 + l f 124 ∗ e ≥ 0;

l f 122 − 2.5 ∗ u f 124 − u f 124 ∗ e ≤ 0; l f 122 − 2.5 ∗ u f 124 + u f 124 ∗ e ≥ 0; m f 122 − 3 ∗m f 124 −m f 124 ∗ e ≤ 0; m f 122 − 3 ∗m f 124 + m f 124 ∗ e ≥ 0;

u f 122 − 3.5 ∗ l f 124 − l f 124 ∗ e ≤ 0; u f 122 − 3.5 ∗ l f 124 + l f 124 ∗ e ≥ 0; l f 123 − 1.5 ∗ u f 124 − u f 124 ∗ e ≤ 0; l f 123 − 1.5 ∗ u f 124 + u f 124 ∗ e ≥ 0;

m f 123 − 2 ∗m f 124 −m f 124 ∗ e ≤ 0; m f 123 − 2 ∗m f 124 + m f 124 ∗ e ≥ 0; u f 123 − 2.5 ∗ l f 124 − l f 124 ∗ e ≤ 0; u f 123 − 2.5 ∗ l f 124 + l f 124 ∗ e ≥ 0;

l f 125 −
2
3 ∗ u f 124 − u f 124 ∗ e ≤ 0; l f 125 −

2
3 ∗ u f 124 + u f 124 ∗ e ≥ 0; m f 125 − 1 ∗m f 124 −m f 124 ∗ e ≤ 0; m f 125 − 1 ∗m f 124 + m f 124 ∗ e ≥ 0;

u f 125 − 1.5 ∗ l f 124 − l f 124 ∗ e ≤ 0; u f 125 − 1.5 ∗ l f 124 + l f 124 ∗ e ≥ 0; l f 121 ≤ m f 121 ≤ u f 121; l f 122 ≤ m f 122 ≤ u f 122; l f 123 ≤ m f 123 ≤ u f 123;

l f 124 ≤ m f 124 ≤ u f 124; l f 125 ≤ m f 125 ≤ u f 125; l f 126 ≤ m f 126 ≤ u f 126;
1
6 ∗ (l f 121 + 4 ∗m f 121 + u f 121) +

1
6 ∗ (l f 122 + 4 ∗m f 122 + u f 122) +

1
6 ∗ (l f 123 + 4 ∗m f 123 + u f 123)+

1
6 ∗ (l f 124 + 4 ∗m f 124 + u f 124) +

1
6 ∗ (l f 125 + 4 ∗m f 125 + u f 125) +

1
6 ∗ (l f 126 + 4 ∗m f 126 + u f 126)

 = 1;

l f 121 > 0; l f 122 > 0; l f 123 > 0; l f 124 > 0; l f 125 > 0; l f 126 > 0

e ≥ 0

Solving this model, the optimal f uzzy weights o f the F121, F122, F123, F124, F125 and F126 :

W∗

f 121 = (0.118, 0.151, 0.192)

W∗

f 122 = (0.199, 0.235, 0.254)

W∗

f 123 = (0.118, 0.151, 0.192)

W∗

f 124 = (0.072, 0.076, 0.083)

W∗

f 125 = (0.080, 0.093, 0.112)

W∗

f 126 = (0.265, 0.291, 0.303)

e = (0.299, 0.299, 0.299)

The consistency of the relative expert’s responses regarding the weights of the factors, sub-factors,
and sub-sub-factors have been checked. For each level, it is obtained a consistency ratio value lower
than 0.1 as given in Table A1 below:

Table A1. The consistency ratio of all factors.

Factor/Sub-Factor/Sub-sub-Factor Epsilon Value Consistency Ratio

F1, F2, and F3 0.3030 0.0573
F11 and F12: 0.0000 0.0000

F21, F22 and F23: 0.2090 0.0312
F31, F32 and F33: 0.0430 0.0053

F111, F112 and F113: 0.5000 0.0945
F121, F122, F123, F124, F125, and

F126 0.2990 0.0372
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