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Abstract: In this paper, we study a hybrid forward–backward algorithm for sparse reconstruction.
Our algorithm involves descent, splitting and inertial ideas. Under suitable conditions on the
algorithm parameters, we establish a strong convergence solution theorem in the framework of
Hilbert spaces. Numerical experiments are also provided to illustrate the application in the field of
signal processing.
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1. Introduction

Let H be a real Hilbert space. 〈·, ·〉 denotes the associated scalar product and ‖ · ‖ stands for the
induced norm. Recall that a set-valued operator G : H → 2H is said to be maximally monotone iff
〈x− x

′
, y− y

′〉 ≥ 0, ∀y ∈ G(x), y
′ ∈ G(x

′
), and its graph, denoted by gph G := {(x, y) ∈ H × H | y ∈

G(x)}, is not properly contained in the graph of any other monotone operator on H.
A fundamental and classical problem is to find a zero of a maximally monotone operator G in a

real Hilbert space H, namely
find x ∈ H such that 0 ∈ G(x). (1)

This problem includes, as special cases, bifunction equilibrium problems, convex-concave
saddle-point problems, minimization problems, non-smooth variational inequalities, etc. Due to
its diverse applications in economics, medicine, and engineering, the techniques and methods
for solving (1) have received much attention in the optimization community, see [1–4]. Indeed,
the interdisciplinary nature of Problem (1) is evident from the viewpoint of algorithmic developments;
see, for instance, [5–8] and the references therein. Among them, a celebrated method for solving (1)
is the following proximal point algorithm. It can be traced back to the early results obtained in [6–9].
Given the current iterate pn, calculate the next iterate pn+1 via

pn+1 = (Id + γnG)−1 pn, ∀n ∈ N, (2)

where Id stands for the identity operator and γn is a positive real number. The operator (Id + γnG)−1

is the so-called resolvent operator, which was introduced by Moreau in [8]. In the context of algorithms,
the resolvent operator is often referred as the backward operator. In [7], Rockefeller studied the
operator and proved that the sequence generated by algorithm (2) is weakly convergent via the
inexact evaluation of the resolvent operator in the framework of infinite-dimensional real Hilbert
spaces. However, the evaluation error has to satisfy a summability restriction. Indeed, this restriction

Mathematics 2020, 8, 447; doi:10.3390/math8030447 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8030447
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/3/447?type=check_update&version=2


Mathematics 2020, 8, 447 2 of 16

essentially implies that the resolvent operator is computed with the increasing accuracy. In fact, due to
the computation of the resolvent operator is often hard to control in practice situation, this is still
somewhat limiting. Quite often, computing the resolvent of a maximally monotone operator, which is
an inverse problem, is not easy in many cases. Thus, this limits the practicability of the proximal
point algorithm in its plain form. Aiming at this, a favorable situation occurs when the operator G
can be written as the sum of two operators. Precisely, let us define G = A + B such that the resolvent
(Id + αA)−1 (implicit, backward step), and the evaluation of B (explicit, forward step) are much easier
to compute than the full resolvent (Id + αG)−1. In so doing, we only consider the following inclusion
problem: find a zero of an additively structured operator A + B, acting on space H, namely

find x ∈ H such that 0 ∈ Ax + Bx, (3)

where B is a smooth operator for which we can use direct evaluations, and A is a proxfriendly
operator for which we can compute the resolvent. For solving (3), Lions and Mercier [10] proposed the
forward–backward splitting method. It is based on the recursive application of a forward step with
respect to B, followed by a backward step with respect to A. For any initial data p0 ∈ H,

pn+1 = (Id + γn A)−1(pn − γnBpn), ∀n ∈ N,

where Id stands for the identity operator and γn > 0. Basically, the operator A : H → 2H is maximally
monotone, and the operator B is κ-cocoercive (i.e., ∃κ > 0 such that 〈Bx − By, x − y〉 ≥ ρ‖Bx −
By‖2, ∀x, y ∈ H) and ι-Lipschitz continuous (i.e., ∃ι > 0 such that ‖Bx− By‖ ≤ ι‖x− y‖, ∀x, y ∈ H).
It was proven that the generated sequence (pn)n≥0 converges weakly to a solution of (3). Of course,
the problem decomposition is not the only consideration, the convergence rate is another. Accelerating
first-order method is a subject of active research, which has been extensively studied. Since Polyak [6]
introduced the so-called heavy ball method for minimizing a smooth convex function, much has been
done on the development of first-order accelerated methods; see [11–15]. The inertial nature of the
first-order accelerated method can be exploited in numerical computations to accelerate the trajectories
and speed up the rate of convergence. In the context of algorithms, it is often referred as the inertial
extrapolation, which involves two iterative steps and the second iterative step is defined based on
the previous two iterates. In [16], Alvarez and Attouch employed the first-order accelerated method
to study an initial proximal point algorithm for solving the problem of finding zero of a maximally
monotone operator. This iteration can be written as the following form: for any initial data p0, p1 ∈ H,

pn+1 = (Id + λnG)−1(pn + αn(pn − pn−1)), (4)

where Id stands for the identity operator, G is a maximally monotone operator, the parameters
(λn)n≥0 ⊂ (0, ∞), (αn)n≥0 ⊂ [0, 1], ∑∞

n=1 αn‖pn − pn−1‖2 < ∞. It was showed that the
iterative sequence (pn)n≥0 generated by (4) converges to a solution of inclusion Problem (1) weakly.
An alternative modification to the inertial forward–backward splitting algorithm or its modifications
is the following algorithm proposed by Lorenz and Pock [17]. The algorithm weakly converges to a
zero of the sum of two maximally monotone operators, with one of two operators being Lipschitz
continuous and single valued. Starting with any data p0, p1 ∈ H, we define a sequence (pk)k≥0 as{

wn = pn + αn(pn − pn−1),
pn+1 = (M + γn A)−1(M− γnB)wn,

where M is a positive definite and linear self-adjoint operator that can be used as a preconditioner for
the scheme, γn is a step-size parameter and αn ∈ [0, 1) is an extrapolation factor. The algorithm keeps
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the weak convergence property of the iterates. To motivate the so-called the inertial forward–backward
splitting algorithm, we consider the following differential equation

p̈(t) + ι(t) ṗ(t) + MA,B,γ(p(t)) = 0, (5)

where A : H → H and B : H → H are operators, MA,B,γ : H → H is the operator defined by

MA,B,γ(p) =
1
γ
(Id + γA)−1(p− γB(p))).

It comes naturally by discretizing the continuous dynamics (5) explicitly with a time step hn > 0.
Set tn = ∑n

i=1 hi, ιn = ι(tn), γn = γ(tn) and pn = p(tn). An explicit finite-difference scheme for (5)
with centered second-order variation gives that

1
h2

n
(pn+1 − 2pn + pn−1) +

ιn
hn

(pn − pn−1) + MA,B,γn(wn) = 0, (6)

where wn is a point in the line passing through pn−1 and pn (we have some flexibility for the choice of
wn). The above equality (6) can be rewritten as

pn+1 =

(
1− h2

n
γn

)
(pn + (1− ιnhn)(pn − pn−1)) +

h2
n

γn
(I + γn A)−1(yn − γnB(wn)). (7)

Set γn = h2
n and αn = 1− ιnhn in (7). With the aid of the classical Nesterov extrapolation choice for wn,

continuous dynamics (5) leads to a special case of the algorithm as{
wn = pn + αn(pn − pn−1),
pn+1 = (I + γn A)−1(wn − γnB(wn)),

(8)

where γn is a step-size parameter and αn is an extrapolation factor, the extrapolation term αn(pn− pn−1)

is intended to speed up the rate of convergence. In so doing, this dynamical approach leads to a special
case of the forward–backward algorithm of inertial type.

Consider the following monotone variational inequality problem (VIP, in short), which consists of
finding z ∈ Ω such that

〈S(z), x− z〉 ≥ 0, ∀x ∈ Ω, (9)

where S : Ω → H is a monotone operator. We denote the solution set of the variational inequality
problem by VI(Ω, S).

Remark 1. It is known that x solves the VI(Ω, S) iff x is an equilibrium point of the following dynamical
system, i.e.,

x = ProjΩ(x− µSx), µ > 0,

where ProjΩ is the nearest point (or metric) projection from H onto Ω.

Variational inequality problems, which serve as a powerful mathematical model, unify several
important concepts in applied mathematics, such as systems of nonlinear equations, complementarity
problems, and equilibrium problems under a general and unified framework [18–20]. Recently,
spotlight has been shed on developing efficient and implementable iterative schemes for solving
monotone variational inequality problems, see [21–24]. A significant body of the work on iteration
methods for VIPs has accumulated in the literature recently. In 2001, Yamada [25] investigated a
so-called hybrid steepest descent method. Given the current iterate pn, calculate the next iterate
pn+1 via

pn+1 = (I − αχnS)Tpn, ∀n ≥ 0,
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where the operator T : Ω → H is nonexpansive, the operator S is ι-Lipschitz continuous for some
ι ≥ 0 and κ-strongly monotone (i.e., ∃κ > 0 such that 〈Sx − Sy, x − y〉 ≥ ρ‖x − y‖2, ∀x, y ∈ H),
while the parameters α ∈ (0, 2κ/ι2), (χn)n≥0 ∈ (0, 1], limn→∞ χn = 0 and ∑∞

n=1 χn = ∞. In this
paper, the set Ω can be regarded as the solution set of the inclusion problem. In continuous
case, Attouch and Mainǵe [26] developed a second-order autonomous system with a Tikhonov-like
regularizing term ∇F, which reads{

p̈(t) + α ṗ(t) +∇φ(p(t)) + B(p(t)) + β(t)∇F(p(t)) = 0,
p(0) = p0, ṗ(0) = q0,

(10)

where α > 0 and (p0, q0) ∈ H2 is an arbitrarily given initial data. With the assumptions: (i) F : H → R is
a convex, differentiable operator with ∇F strongly monotone and Lipschitz continuous; (ii) φ : H → R
is a convex, differentiable operator with ∇φ : H → H Lipschitz continuous; (iii) B : H → H is a
maximally monotone and cocoercive operator; (iv) β : [0,+∞)→ (0,+∞) is a positive and decreasing
function of class C1 such that

∫ +∞
0 β(t)dt = +∞ and β(t)→ 0 as t→ +∞, with β̇ Lipschitz continuous

and bounded, they proved that each trajectory of (10) strongly converges to p∗ as t→ ∞, which solves
the following variational inequality problem:

find p∗ ∈ (B +∇φ)−1(0) such that 〈∇F(p∗), q− p∗〉 ≥ 0, q ∈ (B +∇φ)−1(0).

In the spirit of the splitting forward–backward method and the hybrid steepest descent method,
we present an iterative scheme as a new strategy, parallel to that of the autonomous system (10).
We analyze the convergence with the underlying operator B cocoercive and the extension from
condition (ii) to the general maximally monotone case, which is considered in Section 3. From this
perspective, our study is the natural extension of the convergence results obtained by Attouch and
Mainǵe [26] in the case of continuous dynamical systems.

2. Preliminaries

Lemma 1 ([25]). Suppose that W : H → R is Fréchet differentiable with ∇W : H → H being κ-strongly
monotone and ι-Lipschitz continuous. Define S := Id − χα∇W, where χ ∈ [0, 1] and α ∈ (0, 2κ/ι2).
Then ‖S(x)− S(y)‖ ≤ (1− χϑ)‖x− y‖(x, y ∈ H), where ϑ := 1−

√
1− α(2κ − αι2) ∈ (0, 1].

Lemma 2 ([27]). If B : H → H is a ρ-cocoercive operator, then

(i) B is a 1
ρ -Lipschitz continuous and monotone operator;

(ii) if ν is any constant in (0, 2ρ], then Id− νB is nonexpansive, where Id stands for the identity operator
on H.

Lemma 3. Let H be a Hilbert space, A : H → 2H be a maximally monotone operator and B : E → E be a
κ-cocoercive on H. Then

(i)
‖(Id + sA)−1(Id− sB)x− x‖ ≤ 2‖(Id + tA)−1(Id− tB)x− x‖, ∀x ∈ H,

where t and s are any positive real numbers with t ≥ s.
(ii) (A + B)−1(0) = Fix((Id + λA)−1(Id− λB)), ∀λ > 0.

Proof. Since A is maximally monotone, one has

〈(Id + sA)−1(Id− sB)x− (Id + tA)−1(Id− tB)x,

x− (Id + sA)−1(Id− sB)x
s

− x− (Id + tA)−1(Id− tB)x
t

〉 ≥ 0.
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Lemma 4 ([28]). Let S be a nonexpansive mapping defined on a closed convex subset C of a Hilbert space H.
Then Id− S is demi-closed, i.e., whenever (xn)n≥0 is a sequence in C weakly converging to some x ∈ C and the
sequence ((Id− S)xn)n≥0 strongly converges to some y ∈ H, it follows that y = (Id− S)x.

Lemma 5 ([29]). Let (µn)n≥0 be a sequence of nonnegative real numbers such that

µn+1 ≤ (1− λn)µn + λnνn + γn,

where (λn)n≥0 ⊂ (0, 1) and (νn)n≥0, (γn)n≥0 satisfy the following conditions (i) limn→∞ λn = 0, ∑∞
n=0 λn =

∞; (ii) lim supn→∞ νn ≤ 0; (iii) γn ≥ 0, ∑∞
n=0 γn < ∞. Then limn→∞ un = 0.

Lemma 6 ([30]). Let (ζn)n≥0 be a sequence of nonnegative real numbers such that there exists a subsequence
(ζni ) of (ζn)n≥0 such that ζni+1 > ζni for all i ∈ N. Then there exists a nondecreasing sequence (mj) of N
such that limj→∞ mj = ∞ and the following properties are satisfied by all (sufficiently large) number of j ∈ N,
ζmj+1 ≥ ζmj , ζmj+1 ≥ ζk. In fact, mj is the largest number n in the set {1, 2, · · · , j} such that ζn+1 ≥ ζn.

3. Main Results

Throughout this section, we make the following standing assumptions

Assumption 1. (a) Id stands for the identity operator. The operator S : H → H is supposed to be κ-strongly
monotone and ι-Lipschitz continuous for some κ, ι > 0;

(b) Let A : H → 2H be a maximally monotone operator, and B : H → H be a ρ-cocoercive operator for some
ρ > 0, with the solution set Ω = (A + B)−1(0) 6= ∅.

Our Algorithm 1 is formally designed as follows.

Algorithm 1: The hybrid forward–backward algorithm

Input: Input the algorithm parameters (ηi)i≥0, (νi)i≥0 and δ;
Output: Output p̂;

1 Initialize the data p0, p1 ∈ H;
2 Set n← 1 ;
3 while not converged do
4 if ‖pn − pn−1‖ 6= 0 then
5 Update µn such that µn = o

(
ηn

‖pn−pn−1‖

)
;

6 end
7 else
8 Choose µn as any positive number;
9 end

10 Update wn = pn + µn(pn − pn−1);
11 Update qn = (Id + νn A)−1(Id− νnB)wn;
12 Update pn+1 = (Id− δηnS)qn;
13 Set n← n + 1;
14 end
15 returnp̂ = pn

We make the following assumption with respect to the algorithm parameters.

Assumption 2. (C1) 0 < lim infn→∞ νn ≤ lim supn→∞ νn < 2ρ; (C2) (ηn)n≥0 ⊂ (0, 1), limn→∞ ηn =

0, ηn+1 = O(ηn), ∑∞
n=0 ηn = ∞; (C3) limn→∞

µn
ηn
‖pn − pn−1‖ = 0; (C4) δ ∈ (0, 2κ/ι2).
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Remark 2. Please note that the condition (C3) of Assumption 2 can be easily implemented since the value of
‖pn − pn−1‖ is known before choosing µn. Indeed, the parameter µn can be chosen such that

µn =

{
ω, if pn = pn−1;
µn = τn

‖pn−pn−1‖
, if otherwise,

where 0 ≤ ω and (τn)n≥0 is a positive sequence such that τn = ◦(ηn).

Now we are in a position to state and prove the main result of this section.

Theorem 1. Suppose that Assumptions 1, 2 hold. Then for any initial data p0, p1 ∈ H, the weak sequential
cluster point of sequences (pn)n≥0, (wn)n≥0 and (qn)n≥0 generated by Algorithm 1 belongs to the solution set
of Problem 3. In addition, the three sequences converge strongly to the unique element of VI(Ω, S).

Proof. First, we show that I − δR is a contraction operator. According to Lemma 1, we have

‖(Id− δS)x− (Id− δS)y‖2 =‖x− y‖2 + δ2‖Sx− Sy‖2 − 2δ〈x− y, Sx− Sy〉
≤‖x− y‖2 + δ2ι2‖x− y‖2 − 2δκ‖x− y‖2

=(1− α)2‖x− y‖2,

(11)

where α = 1
2 δ(2κ − δι2). Thus, we find that Id− δS is a contraction operator with the constant 1− α.

In light of the nonexpansivity of ProjΩ, we further obtain that ProjΩ(Id− δS) is a contraction operator.
From the Banach contraction principle, there exists a unique point a ∈ Λ such that a = ProjΩ(Id− δS)a.

Now, it remains to prove that (pn)n≥0 is bounded. Since B : H → H is ρ-cocoercive and
(Id + νn A)−1 is firmly nonexpansive, one concludes from Lemma 2 that Id− νnB is nonexpansive.
Let z ∈ Λ be arbitrarily chosen. Invoking Assumption 2 (C1), one infers that

‖qn − z‖2 = ‖(Id + νn A)−1(Id− νnB)wn − (Id + νn A)−1(Id− νnB)z‖2

≤ ‖wn − z + νnBz− νnBwn‖2

≤ ‖wn − z‖2 − νn(2ρ− νn)‖Bz− Bwn‖2

≤ ‖wn − z‖2,

(12)

which yields
νn(2ρ− νn)‖Bz− Bwn‖2 ≤ ‖wn − z‖2 − ‖qn − z‖2, (13)

and
‖qn − z‖2 ≤ ‖wn − z‖2. (14)

From the definition of wn, one reaches

‖wn − z‖ ≤ ‖pn − z‖+ µn‖pn − pn−1‖. (15)

Invoking Assumption 2 (C3), there exists a positive constant M1 ∈ R such that

µn

ηn
‖pn − pn−1‖ ≤ M1, ∀n ≥ 0. (16)
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From the definition of pn, which together with (14)–(16), one obtains

‖pn+1 − z‖ = ‖(Id− δηnS)qn − (Id− δηnS)z− δηnSz‖
≤ (1− ξηn)‖wn − z‖+ δηn‖Sz‖
≤ (1− ξηn)(‖pn − z‖+ ηn M1) + δηn‖Sz‖

≤ max
{
‖pn − z‖, 1

ξ
(M1 + δ‖Sz‖)

}
· · ·

≤ max
{
‖p1 − z‖, 1

ξ
(M1 + δ‖Sz‖)

}
,

(17)

where ξ = 1 −
√

1− δ(2κ − δι2) ∈ (0, 1], due to Assumption 2 (C4). This implies that sequence
(pn)n≥0 is bounded. At the same time, by putting together (14) and (15), one concludes that (qn)n≥0

and (wn)n≥0 are bounded. Once again, using the definition of wn, one concludes that

‖wn − z‖2 ≤ ‖pn − z‖2 + µn‖pn − pn−1‖(µn‖pn − pn−1‖+ 2‖pn − z‖)

≤ ‖pn − z‖2 +
µn

ηn
‖pn − pn−1‖M2,

(18)

where
M2 = sup

n≥0
ηn(µn‖pn − pn−1‖+ 2‖pn − z‖) < ∞. (19)

By combining (12) with (18), one immediately concludes that

‖qn − z‖2 ≤ ‖pn − z‖2 +
µn

ηn
‖pn − pn−1‖M2 − νn(2κ − νn)‖Bz− Bwn‖2. (20)

Invoking (20), which together with the definition of pn, one deduces that

‖pn+1 − z‖2 =(Id− ξηn)‖qn − z‖2 − 2δηn〈pn+1 − z, Sz〉

≤‖pn − z‖2 +
µn

ηn
‖pn − pn−1‖M2 − νn(2κ − νn)‖Bz− Bwn‖2 + ηn M3,

(21)

where M3 = supn≥0 2δ〈z− pn+1, Sz〉 < ∞, due to the boundedness of (pn)n≥0. Let us rewrite (21) as

νn(2κ − νn)‖Bz− Bwn‖2 ≤‖pn − z‖2 − ‖pn+1 − z‖2 +
µn

ηn
‖pn − pn−1‖M2 + ηn M3. (22)

By using the firmly nonexpansive property of (Id + νn A)−1, one arrives at

‖qn − z‖2 ≤〈qn − z, (Id− νnB)wn − (Id− νnB)z〉

=
1
2
‖qn − z‖2 +

1
2
‖(Id− νnB)wn − (Id− νnB)z‖2

− 1
2
‖(qn − z)− (Id− νnB)wn + (Id− νnB)z‖2

≤1
2
‖qn − z‖2 +

1
2
‖wn − z‖2 − 1

2
‖qn − wn‖2 − ν2

n
2
‖Bwn − Bz‖2

+ νn‖qn − wn‖‖Bwn − Bz‖,

which can be equivalently rewritten as

‖qn − z‖2 ≤‖wn − z‖2 − ‖qn − wn‖2 − ν2
n‖Bwn − Bz‖2 + 2νn‖qn − wn‖‖Bwn − Bz‖. (23)
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Returning to (14), (18) and (23), one concludes

‖pn+1 − z‖2 =‖ηn(Id− δS)qn + (1− ηn)qn − z‖2

=ηn‖(Id− δS)qn − z‖2 + (1− ηn)‖qn − z‖2 − ηn(1− ηn)‖δSqn‖2

≤ηn‖(Id− δS)qn − z‖2 + ‖qn − z‖2

≤ηn‖(Id− δS)qn − z‖2 + ‖pn − z‖2 +
µn

ηn
‖pn − pn−1‖M2

− ‖qn − wn‖2 − ν2
n

2
‖Bwn − Bz‖2 + 2νn‖qn − wn‖‖Bwn − Bz‖,

that is,
‖qn − wn‖2 ≤ηn‖(Id− δS)qn − z‖2 +

µn

ηn
‖pn − pn−1‖M2

+ 2νn‖qn − wn‖‖Bwn − Bz‖+ ‖pn − z‖2 − ‖pn+1 − z‖2.
(24)

Next, we show that (‖pn − z‖2)n≥0 converges to zero by considering two possible cases on the
sequence (‖pn − z‖2)n≥0.

Case 1. There exists N ∈ N such that ‖pn+1 − z‖2 ≤ ‖pn − z‖2, ∀n ≥ N. Recalling that ‖pn − z‖2

is lower bounded, one deduces that limn→∞ ‖pn − z‖2 exists. Using Assumption 2 (C2), and letting n
tend to infinity in (22), one finds that

lim
n→∞

νn‖Bz− Bwn‖ = 0. (25)

Taking account of Assumption 2 (C2), (C3), (25), and letting n tend to infinity in (24),
one concludes that

lim
n→∞

‖qn − wn‖2 = 0. (26)

It follows from Assumption 2 (C2), (C3) the definitions of wn and pn+1 that

lim
n→∞

‖wn − pn‖ = lim
n→∞

µn‖pn − pn−1‖ = 0, (27)

and
lim

n→∞
‖pn+1 − qn‖ = lim

n→∞
δηn‖Rqn‖ = 0. (28)

Resorting to (26)–(28), one finds that

lim
n→∞

‖pn+1 − pn‖ ≤ lim
n→∞

(‖pn+1 − qn‖+ ‖qn − wn‖+ ‖wn − pn‖) = 0. (29)

Denote Gνn = (Id + νn A)−1(Id− νnB). It is then immediately that

lim
n→∞

‖Gνn wn − wn‖ = lim
n→∞

‖qn − wn‖ = 0. (30)

For any γ ≥ 0 such that γ ≤ νn, ∀n ≥ 0, it implies from Lemma 3 that

lim
n→∞

‖Gγwn − wn‖ ≤ 2 lim
n→∞

‖Gνn wn − wn‖ = 0. (31)

Since (pn)n≥0 is a bounded sequence, there exists a subsequence (pni )n≥0 of (pn)n≥0 and a weak
sequential cluster point s ∈ H such that pni ⇀ s as i→ ∞. Due to (26) and (27), one finds that wni ⇀ s
and qni ⇀ s as i→ ∞. Thus,

lim sup
n→∞

〈Sz, z− wn〉 = lim
i→∞
〈Sz, z− wni 〉. (32)
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From the demiclosedness of I − Gγ and Lemma 4, one obtains that s ∈ Fix(Gγ). In view of
Fix(Gγ) = (A + B)−1(0), one concludes s ∈ Λ. From the fact that a = ProjΛ(I − δS)a, one sees
〈a− (I − δS)a, s− a〉 ≥ 0. As a straightforward consequence, one finds

〈Sa, a− s〉 ≤ 0. (33)

Coming back to (29), (32) and (33), one has

lim sup
n→∞

〈Sa, a− pn+1〉 = lim sup
n→∞

〈Sa, a− pn〉 = lim
i→∞
〈Sa, a− pni 〉 = 〈Sa, a− s〉 ≤ 0. (34)

Returning to (11) and owing to the definitions of pn and qn, one finds that

‖pn+1 − a‖2 =‖ηn(Id− δS)qn + (1− ηn)qn − a‖2

≤(1− ηn)
2‖qn − a‖2 + 2ηn〈(Id− δS)qn − a, pn+1 − a〉

=(1− ηn)
2‖qn − a‖2 + 2ηn〈(Id− δS)qn − (Id− δS)a + (Id− δS)a− a, pn+1 − a〉

≤(1− ηn)
2‖qn − a‖2 + 2ηn(1− α)‖qn − a‖‖pn+1 − a‖+ 2δηn〈Sa, a− pn+1〉

≤(1− ηn)
2(‖pn − a‖+ µn‖pn − pn−1‖)2

+ 2ηn(1− α)(‖pn − a‖2 + µn‖pn − pn−1‖‖pn − a‖) + 2δηn〈Sa, a− pn+1〉
≤(1− 2ηnα)(‖pn − a‖2 + 2µn‖pn − pn−1‖‖pn − a‖)
+ µ2

n‖pn − pn−1‖2 + 2δηn〈Sa, a− pn+1〉,

(35)

where α = 1
2 δ(2κ − δι2) ∈ (0, 1). Let

Γn = ‖pn − a‖2 + 2µn‖pn − pn−1‖‖pn − a‖

and
M4 = sup

n≥0

ηn+1

ηnα
‖pn+1 − a‖.

Furthermore, due to Assumption 2 (C2) and the boundedness of (pn)n≥0, we find that M4 < ∞.
In so doing, it asserts that

Γn+1 ≤ (1− 2ηnα)Γn + 2ηnα

(
δ

α
〈Sa, pn+1 − a〉+

(
µn+1

ηn+1
‖pn+1 − pn‖

)
M4 +

ηn

2α

(
µn

ηn
‖pn − pn−1‖

)2
)

.

Invoking (32), we infer that

lim sup
n→∞

(
δ

α
〈Sa, pn+1 − a〉+

(
µn+1

ηn+1
‖pn+1 − pn‖

)
M4 +

ηn

2α

(
µn

ηn
‖pn − pn−1‖

)2
)
≤ 0.

According to Assumption 2 (C2), one finds that 2ηnα ∈ (0, 1) and limn→∞ 2ηnα = 0. So doing,
Lemma 5 asserts that lim

n→∞
Γn = 0, which further implies that lim

n→∞
‖pn − a‖ = 0. Coming back to (26)

and (27), one concludes that (pn)n≥0, (qn)n≥0, (wn)n≥0 converge strongly to a.
Case 2. There exists a subsequence (‖pnj − z‖2)j≥0 of (‖pn − z‖2)n≥0 such that

‖pnj − z‖2 < ‖pnj+1 − z‖2, ∀j ∈ N.

In this case, it is obvious that there exists a nondecreasing sequence (mk)k≥0 ∈ N such that
mk → ∞ as k→ ∞. Lemma 6 asserts that the following inequalities hold,

‖pmk − z‖2 ≤ ‖pmk+1 − z‖2, ‖pk − z‖2 ≤ ‖pmk − z‖2, ∀k ∈ N. (36)
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Thanks to (21) and (36), one finds

νn(2κ − νn)‖Bz− Bwn‖2 ≤µn M1‖pn − pn−1‖+ M2ηn.

By letting n tend to infinity in the above inequality, one infers that limn→∞ νn‖Bz− Bwn‖ = 0.
According to (24) and (36), one finds that

‖qn − wn‖2 ≤ηn‖(Id− δS)qn − z‖2 + µn M1‖pn − pn−1‖+ 2νn‖qn − wn‖‖Bwn − Bz‖.

Accordingly, one finds that limn→∞ ‖qn − wn‖ = 0. A calculation similar to the proof in Case 1.
guarantees that

lim
n→∞

‖pmk+1 − pmk‖ = 0,

and
lim sup

k→∞
〈Sa, a− pmk+1〉 ≤ 0. (37)

Invoking (35), one finds

‖pmk+1 − a‖2 ≤(1− ηmk )
2(‖pmk − a‖+ µmk‖pmk − pmk−1‖)2 + 2ηmk (1− α)(‖pmk − a‖

+ µmk‖pmk − pmk−1‖)‖pmk+1 − a‖+ 2δηmk 〈Sa, a− pmk+1〉
≤(1− ηmk )

2(‖pmk+1 − a‖+ µmk‖pmk − pmk−1‖)2 + 2ηmk (1− α)(‖pmk+1 − a‖2

+ µmk‖pmk − pmk−1‖‖pmk+1 − a‖) + 2δηmk 〈Sa, a− pmk+1〉
≤(1− 2ηmk α)(‖pmk+1 − a‖2 + 2µmk‖pmk − pmk−1‖‖pmk+1 − a‖)
+ µ2

mk
‖pmk − pmk−1‖2 + 2δηmk 〈Sa, a− pmk+1〉

≤(1− 2ηmk α)‖pmk+1 − a‖2 + 2µmk‖pmk − pmk−1‖‖pmk+1 − a‖
+ µ2

mk
‖pmk − pmk−1‖2 + 2δηmk 〈Sa, a− pmk+1〉,

(38)

which sends us to

‖pmk+1 − a‖2 ≤
µmk

ηmk

‖pmk − pmk−1‖M5 +

(
µmk

ηmk

‖pmk − pmk−1‖
)2

M6 + 〈Sa, a− pmk+1〉M7, (39)

where M5 = supn≥0
‖pn+1−a‖

α < ∞, M6 = supn≥0
ηn
2α < ∞ and M7 = δ

α . By applying Assumption 2
(C3), which together with (39), we additionally derive that

lim sup
k→∞

‖pmk+1 − a‖2 ≤ 0. (40)

From ‖pk − a‖ ≤ ‖pmk+1 − a‖, we obtain that lim supk→∞ ‖pk − a‖ = 0. This further implies that
(pk)k≥0 converges strongly to a. Furthermore, one has

lim
n→∞

‖qn − wn‖2 = 0, lim
n→∞

‖wn − pn‖ = 0. (41)

Recalling that the sequence (pk)k≥0 converges strongly to a, which together with (41), one finds
that the sequences (qn)n≥0 and (wn)n≥0 also converge strongly to a. From the above, one can conclude
that the sequences generated by Algorithm 1 converge strongly to the unique solution a ∈ Ω such that
a = ProjΩ(Id− δS)a. In view of Remark 1, one sees that a ∈ VI(Ω, S). Furthermore, the solution of
such variational inequality is unique due to the properties of S. This completes the proof.

If (µn)n∈N := 0, we obtain the following Algorithm 2 without the inertial extrapolation as a
special case of Algorithm 1.
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Algorithm 2: The hybrid forward–backward algorithm without the inertial term

Input: Input the algorithm parameters (νi)i≥0, (ηi)i≥0 and δ;
Output: Output p̂;

1 Initialize the data p0 ∈ H;
2 Set n← 1;
3 while not converged do
4 Choose µn as any positive number;
5 Update qn = (Id + νn A)−1(I − νnB)pn ;
6 Update pn+1 = (Id− δηnS)qn ;
7 Set n← n + 1 ;
8 end
9 return p̂ = pn

Recently, much attention has been paid to the relationship between continuous-time systems
and neural network models, see [31,32]. One can views an iterative algorithm as a time discretized
version of a continuous-time dynamic system. We propose a recurrent neural network to Problem (1).
By taking constant parameters, we obtain the following consequence of the dynamical with respect to
the time variable t 

w(t) = p(t) + α ṗ(t)),
u(t) = (Id + γA)−1(w(t)− γBw(t)),
ṗ(t) + p̈(t) = (Id− δη(t)S)u(t),
p(0) = p0, ṗ(0) = z0.

(42)

Algorithm 1 is strongly connected with the damped inertial system (42). Indeed, Algorithm 1
comes naturally into play by performing an implicit discretization of the inertial system with respect
to the time variable t. Without ambiguity, we omit to write the variable t to get simplified notations.
In so doing, p stands for p(t), and so on. By setting S := Id and k = 1− δη, the circuit architecture
diagram of the model (42) is shown in Figure 1.
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Figure 1. Circuit architecture diagram of model (42), where e = ṗ, f = p̈, w = p + α ṗ, q = ṗ + p̈, g = q/k.

The operational amplifiers U1, U2 are combined with capacitors C1, C2, resistors R1, R2 to
work as integrators to realize the transformations between p, ṗ, p̈. The amplifier U9 cooperated
with resistors R20, R21 brings about effectiveness in amplification and opposition. Hence ṗ is
translated into −α ṗ. The amplifier U3 and resistors R3, R4, R5, R6 are united as the subtractor
block to achieve − p̈. Also, in the same way, the amplifier U8 and resistors R17, R18, R19 are
united as another subtractor block to achieve p + α ṗ. One sees that A(( ṗ + p̈)/k) and B(p + α ṗ)
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are obtained, respectively, by “A(·) realization” block and “B(·) realization” block. The amplifier
U6 cooperated with resistors R13, R14 brings about effectiveness in amplification and opposition,
therefore, A(( ṗ + p̈)/k) is translated into−vA(( ṗ + p̈)/k). The amplifier U7 cooperated with resistors
R15, R16 brings about effectiveness in amplification and opposition, and hence B(p + α ṗ) is translated
into−vB(p+ α ṗ). The amplifier U5 and resistors R9, R10, R11, R12 are united as the subtractor block to
achieve vA (( ṗ + p̈)/k) + vB(p + α ṗ)− (p + α ṗ), that is −( ṗ + p̈)/k. On the other hand, −( ṗ + p̈)/k
is translated into ( ṗ + p̈)/k through the phase inverter composed by the operational amplifier U4 and
resistors R7, R8.

4. Numerical Experiment

In this section, we consider a computational experiment to illustrate the convergence properties
of the proposed method. The experiment is performed on a PC with Intel (R) Core (TM) i5-8250U CPU
@1.60GHz under the MATLAB computing environment.

Digital signal reconstruction is one of the earliest and most classical problem in the file restoration,
the video and image coding, the medical, the astronomical imaging and some other applications.
Many problems in signal processing can be formulated as inverting the linear system, which are
modeled as

b = Qx + ν, (43)

where x ∈ Ri is the original signal to be reconstructed, ν ∈ Rj is the noise, b ∈ Rj is the noisy
measurement, Q ∈ Rj×i is a bounded linear observation operator, often ill conditioned because it
models a process with loss of information.

In our experiment, we consider a general compressed sensing scenario, where the goal is to
reconstruct an i-length sparse signal x with exactly k nonzero components from j (k � j < i)
observations, i.e., the number of measurements is much larger than the sparsity level of x and at the
same time smaller than the number of the signal length. Considering the storage limitation of the PC,
we test a small size signal with i = 212 and the original signal contains k = 180 randomly nonzero
elements. We reconstruct this signal from j = 210 observations. More precisely, the observation
b = Qx + ν, where Q ∈ Rj×i is the Gaussian matrix whose elements are randomly obtained from
the standard normal distribution N(0, 1) and ν is the Gaussian noise distributed as N(0, σ2 I) with
σ2 = 10−4.

A classical and significant approach to the problems of the signal processing is the regularization
method, which has attracted a considerable amount of attention and revived much interest in the
compressed sensing literature. We restrict our attention to the l1-regularized least squares model (43).
Lasso framework is a particular instant of the linear problems of type (43) with the non-smooth l1-norm
as a regularizer, in which minimizes a squared loss function, and seeks to find the sparse solutions of

minimizex∈Ri

{
1
2
‖Qx− b‖2

2 + α‖x‖1

}
, (44)

where the regularization parameter α(α ≥ 0) provides a tradeoff between the noise sensitivity and
the fidelity to the measurements. One knows that Problem (44) always has a solution. However,
it needs not to be unique. Please note that the optimal solution tends to zero as α → ∞. As α→ 0,
the limiting point has the minimum l1 norm among all points that satisfy QT(Qx − b) = 0,
i.e., x = arg minQT(Qx−b)=0 ‖x‖1. Since the objective function of Problem (44) is convex but not
differentiable, one uses a first-order optimality condition based on the subdifferential calculus.
For m = 1, 2, · · · , one can obtain the necessary and sufficient condition for the optimal solution
as follows

(QT(Qx− b))m ∈


{−α}, xm > 0;
{α}, xm < 0;
[−α, α] , xm = 0.
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From above, one sees that the optimal solution of Problem (44) is 0, for (QTb)m ∈
[−α, α], (m = 1, 2, · · · ), i.e., α ≥ ‖QTb‖∞. Thus, one can now derive the formula αmax = ‖QTb‖∞. For
l1-regularized least squares; however, the convergence occurs for a finite value of α(α ≥ αmax). To
avoid the optimal sparse solution is a zero vector, in this experiment, the regularization parameter was
denoted by α := 0.01αmax, where the value of αmax is computed by the above formula.

The proximal methods give a better modeling of the sparsity structure in the dataset. The major
step in proximal methods is to find a solution of arg minx(g(x) + 1

2α‖x − v‖2
2) with respect to the

function g and the parameter α > ‖QTb‖∞. On the other hand, the proximity operator is defined
as the resolvent operator of the subgradient proxαg = (I + α∂g)−1. Furthermore, the proximity
operator for l1-norm is described as the shrinkage operator, which is defined as proxα‖·‖(x)m =

(| · | − α)+sgn((x)m). Now one considers the deblurring Problem (43) via the definition of the iterative
shrinkage algorithm. Resorting to g(x) = α‖x‖1 and f (x) = 1

2‖Qx− b‖2
2, one can see that Problem (44)

is a special instance of the problem

find x ∈ H such that 0 ∈ (∂g +∇ f )x.

Under the class of regularized loss minimization problems, the function g is considered to be
a non-smooth regularization function and the function f is viewed as a smooth loss function with
gradient being ‖QTQ‖-cocoercive. Furthermore,{

proxνngx = sgn ((x)m)max{|(x)m| − ανn, 0},
(Id− νn∇ f )x = x− νnQT(Qx− b), ∀ νn > 0.

One solves the deblurring problem by using the definition of the iterative shrinkage algorithm.
Setting A := ∂g, B := ∇ f and S := Id in Algorithm 1, one can obtain the proximal gradient type
algorithm given as follows{

qn = (Id + νn A)−1(Id− νnB)(pn + µn(pn − pn−1)),
pn+1 = (Id− δηnS)qn,

where (µn)n∈N ∈ R+. Meanwhile, we set δ := 1
50 , ηn := 1

n and νn = ν := 10−8 × ‖QTQ‖, where n ∈ N.
Next, we randomly choose the starting signal in the range of (0, 1)4096 and take the number of iterations
n = 2000 as the stopping criterion.

In this experiment, the minimum norm solution is the point in the set {x ∈ R4096 | QTQx = QTb},
which is closest to the original sparse signal. Thus, we can see that the result of this experiment for a
signal sparse reconstruction is showed in Figure 2. By comparing the last two plots in Figure 2 and the
top plot in Figure 2, one finds that the original sparse signal is recovered almost exactly. We hence
conclude that our algorithm is efficient for dealing with the signal deblurring problem.
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Figure 2. From top to bottom: the original signal, the noisy measurement, the minimum norm solution,
the reconstruction signals respectively by Algorithm 1 (µn = 0.5) and Algorithm 2 .

To illustrate that Algorithm 1 has a competitive performance compared with Algorithm 2,
we describe the following numerical results shown in Figure 3.
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Figure 3. The behavior of ‖pn‖ with the number of iterations (left), the behavior of ‖Dn‖ with the
running time (right). The number of iterations is 2000. The first CPU time to compute ‖p2000‖ is about
123.41 s; the second CPU time to compute ‖p2000‖ is about 116.64 s; the third CPU time to compute
‖p2000‖ is about 116.59 s; the fourth CPU time to compute ‖p2000‖ is about 138.18 s (from top to bottom
in legend).

The left plot in Figure 3 shows that the behaviors of the term (‖pn‖)n∈N(the y-axis) with respect to
the number of iterations (x-axis), where pn is generated by Algorithms 1 and 2. It can be observed from
the test result reported in Figure 3 that (‖pn‖)n∈N converges to 12.8603. Thus, we can use (‖pn‖)n∈N
to study the convergence and the computational performance of Algorithms 1 and 2. We denote
Dn = pn − x, where x is the original signal to be reconstructed, and pn is an estimated signal of
x. The right plot in Figure 3 shows that the value of (‖Dn‖)n∈N (the y-axis) when the execution
time in second elapses (x-axis). The sequence (‖Dn‖)n∈N converges to 0.4152 with the running time.
The restoration accuracy can be measured by means of the mean squared error. We find that the
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mean squared error MSE = ‖Dn‖2/i converges to 4.2088e−5, which further implies that the iterative
sequence converges to the original signal x in this experiment.

We make a comparison of the behaviors of (‖pn‖)n∈N, (‖Dn‖)n∈N generated respectively by
Algorithms 1 and 2. It shows that the bigger µn is, the fewer the required number of iterations becomes,
the faster the convergence rate becomes. Furthermore, we find that all cases in Algorithm 1 need less
computer time and enjoy a faster rate of the convergence than Algorithm 2. It can be observed from
the plots that the changing process in all cases of Algorithm 1 outperforms Algorithm 2. The inertial
extrapolation of Algorithm 1 plays a key role in the acceleration. For µk judiciously chosen, this inertial
term improves the convergence speed of this algorithm.

5. Conclusions

In this paper, we introduced a variational inequality problem over the zero solution set of
the inclusion problems. Since this problem has a double structure, it can be considered as a
double-hierarchical optimization problem. The proposed algorithm uses the extrapolation term
αn(pn − pn−1), which can be viewed as the procedure of speeding up the rate of convergence.
As an application, the algorithm was used to solve the signal deblurring problem to support our
convergence result.
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